ISSN 0103-9741

Monografias em Ciéncia da Computagdo
ne 30/92

Program 'Design Using Abstract Data Views -
An lllustrative Example

D. D. Cowan
Luis Fernando Barbosa
Roberto lerusalimschy
Carlos J. P. Lucena
Simone B. de Oliveira

Departamento de Informdtica

PONTlFiCIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22453-900
RIO DE JANEIRO - BRASIL

PUC RIO - DEPARTAMENTO DE INFORMATICA ISSN 0103-9741

Monografias em Ciéncia da Computacdo, N2 30/92
Editor: Carlos J. P. Lucena Novembro, 1992

Program Design Using Abstract Data Views - An lllustrative Example*

D. D. Cowan
Luis Fernando Barbosa
Roberto lerusalimschy
Carlos J. P. Lucena
Simone B. de Oliveira

* This work has been sponsored by the Secretaria de Ciéncia e
Tecnologia da Presidéncia da Republica Federativa do Brasil.

In charge of publications:
Rosane Teles Lins Castilho
' Assessoria de Biblioteca, Documentag¢do e Informagdo
PUC Rio — Departamento de Informdtica
Rua Marqués de Sdo Vicente, 225 — Gavea
22453-900 — Rio de Janeiro, RJ
Brasil
Tel. +55-21-529 9386 Telex +65-21-31048 Fax +55-21-511 5645
E-mail: rosane@inf.puc-rio.br
techrep@inf.puc-rio.br (for publications only)

Program Design Using Abstract Data Views — An [llustrative
Example

D.D. Cowan *L.F. Barbosa R. Ierusalimschy C.J.P. Lucena S.B. de Oliveira

Departamento de Informatica
Pontificia Universidade Catdlica
Rio de Janeiro, Brasil
lucena@inf.puc-rio.br

September 25, 1992

Abstract

Creating new applications by integrating user interface and application components is a
relatively new idea which is currently of wide interest. A significant part of this problem is
clearly defining the separation between user interface and application components. This paper
uses an example to illustrate a new design methodology based on the concept of an abstract
data view (ADV), a structuring method which cleanly defines this separation. Both the design
and a Smalltalk implementation of the example are described. Prototypes of this example and
several others which use the ADV concept are currently running in our laboratory.

Resumo

A criagdo de novas aplicagGes pela integragdo dos componentes da interface com o usuério
com os componentes da aplica¢io e uma idéia nova que comeca a ganhar aceitacio ampla.
Uma parte substancial do problema é a defini¢o clara da separacio entre os componentes da
interface dos da aplicagio. Este artigo usa um exemplo para ilustrar uma nova metodologia de
design baseada no conceito de visSes abstratas de dados (ADVs), um método de estrutura¢io
de programas que define esta separag¢do claramente. O design da solugio é uma implementagio
em Smalltalk s3o descritos. Protétipos deste exemplo e diversos outros que usam o conceito de
ADYV estao operacionais em nossos laboratorios.

Key-words: programming techniques, object oriented programming, tools and
techniques, software design, abstract data types, abstract data views,
interactive applications.

Palavras-chave: técnicas de programagio, programacao orientada a objetos, ferramen-
tas e técnicas, design de software, tipos abstratos de dados, visdes
abstratas de dados, aplica¢des interativas.

*D.D. Cowan is with the Computer Science Department, University of Waterloo, Waterloo, Ontario, Canada, N2L
3G1.

1 Introduction

Composing new applications by integrating user interface and application components is a rela-
tively new idea which is currently of topical interest, and various aspects of this problem have
been described in the literature ([SG86, Nye90, Mye90, BBG*89, Fol89, KF90, KP88, Har89]). A
significant part of this problem is clearly defining the separation between the user interface and
the application components so that both of them can be reused in a broad range of applications.
A design methodology which clearly addresses this aspect of reuse has the potential to lead to a
disciplined approach to application development. This paper illustrates a new design methodology
which cleanly separates the user interface from the underlying application server. A key component
of this methodology is the notion of an abstract data view (ADV), a general design paradigm for
the user interface component. The generality of the ADV approach is illustrated through the design
and implementation of a specific example, namely an editor for linear graphs. A formal description
of the ADV approach is presented in [CILS92].

2 An Application - A Generic Graph Package

The research project on abstract data views is examining many interactive applications in order
to determine the generality of this design approach. One such application, a generic linear-graph
package which supports a graphical user interface for editing graphs and allows the implementation
of many different graph algorithms, was chosen to thoroughly test the concepts. This graph package
must also permit nesting of graphs! since many applications such as data-flow diagrams and finite-
state machines could use this nesting facility.

Graphs are used to represent many different types of structures and each application area often
has a specific way of viewing the graph. For example, electric circuits, process diagrams, maps
and Petri nets represent four different methods for viewing graphs. Moreover, some views require
quite complex “viewing” algorithms in order to avoid problems such as the intersection of arcs.
Thus, the generic graph package and its user interface should be easily separated so that different
application-dependent user-interfaces can be used with the same package.

The generic graph package used an object-oriented design and the nodes and arcs were imple-
mented as objects?. The initial design tried to follow the Smalltalk Model-View-Controller (MVC)
paradigm [KP88] by creating a “graph viewer” that would concentrate all algorithms and data
structures related to graphical presentation in the View, and place the algorithms relating to the
graph structure in the Model. As the design progressed some disadvantages of the MVC model
became evident. Ideally the “view” only needs information about the view or screen positions of
individual nodes and arcs, all other information about relationships among the nodes and arcs can
be held in the model data structure. However, a direct application of the MVC model needs to store
large tables with information for all graph elements, and to link each piece of visual information
with its associated object. '

!That is, each node can be decomposed and presented as a subgraph.

20ther representations are also possible.

To solve the problem of duplicating information in the view and to maintain the separation
between interface and application, the object model was used not only inside the application, but
inside the interface manager as well. Instead of a monolithic “graph viewer”, “node viewers” and
“arc viewers” were created, where a node viewer is an object that only stores information and
algorithms about presentation of and interaction with a node. Therefore, a node viewer does not
have data about adjacent arcs or nodes, or anything related to the graph topology. That information
belongs to the application, and is stored in the original node and arc objects. The viewer objects
are called Abstract Data Views (ADVs).

Even though the interface does not store the graph topology, access is often required to this
information. To allow this connection, each viewer object has a special variable, called “owner”,
that refers to the corresponding object in the application.

The design still had to handle nesting, since that feature was required by the initial problem
specification, which allowed nodes to be decomposed into subgraphs. Actually, the system already
had a restricted form of nesting: ADVs for arcs and nodes can not exist by themselves, floating on
the screen. There must be an encapsulation, a visual margin to delimit them. With the nesting
capability, this external frame was promoted to the status of an ADV, whose owner is the graph.
The fact that the ADVs for nodes and arcs are nested inside this “frame” ADV, implies that they
can only be displayed inside this area. Moreover, their position is always interpreted as relative to
their external ADV. Any movement or scrolling of the graph is accompanied by movement of the
nested ADVs.

From the previous description, it is clear that there is a strong similarity between the concept
of nested ADVs and the concept of subwindows in window systems. However, there are also several
differences. Subwindows are always rectangular areas, while ADVs have their own display methods,
and so can have any shape (e.g. the shape of an arc). Subwindows have their position defined
relative to the external window. When that is scrolled, they do not scroll together. Finally, there is
a difference in the way they are used. ADVs are intended to be created and destroyed much more
frequently than subwindows (like nodes and arcs during an editing session), and therefore need a
different implementation®. Based on that analogy, ADVs are often called light windows.

3 An Editor for Linear Graphs

The design approach using ADVs is illustrated with a simplified version of the generic linear-graph
package presented in Section 2. Although the design has been reduced in complexity the essential
features of ADVs are still required for implementation. This section contains a brief description of
the package and subsequent sections outline the design approach and implementation.

An editor for linear graphs consists of a graphical interface supported by appropriate data
structures that allows the user to draw a graph by interactively creating and removing its nodes
and arcs, where these components are usually represented in a window by circles and line segments.
In this example, the graph editor interface is composed of two menus and a working window where
the actual drawing appears. There is an element menu which allows the user to choose the type

3A good comparison is with processes in Unix systems. Because they are somehow “heavy”, many systems
implement internal processes, usually called threads or light processes.

of element (node or arc) and an action menu to specify whether the element is to be created or
removed. The elements and actions are selected from the respective menu with a pointing device.
Once the element and the action are selected the cursor is positioned in the working window to
establish a position to draw or remove a node or an arc.

If the user chooses to create a node, a dialogue will appear requesting the name of the node,
the node will then be added to the data structure for the graph and its visual representation will
be drawn in the window. A node is removed by selecting the remove command from the menu and
then indicating the node with the pointing device. Any arcs which are incident on that node are
also removed. Arcs are added by indicating the two nodes to which the arc will be connected. If
there is already an arc connecting the two selected nodes, or if the nodes are the same, the action
will be ignored. Arcs are removed by selecting the remove command followed by the arc.

4 The Design

This section presents an informal specification of the linear-graph package called GraphEditor and a
corresponding user interface called VisualGraphEditor, and illustrates the clean separation between
them. There are four basic types in this specification: nodes, arcs, events and sets. The visual
representation of nodes and arcs cannot be placed on the screen in the same position, so position
is the key used to locate either of these elements in both the user interface and indirectly in the
data structures supporting the graph package.

A wuser action is initiated with the mouse or keyboard and is sent to a server which creates
an event. An event contains several components including: the window in which the user action
occurred, the exact position in that window and the event type (which mouse button, or which
key from the keyboard). The visual graph editor or user interface uses the event and a previous
selection from the Action and Element menus to determine whether to create or remove a node or
arc.

The design of the graph editor follows the ADV approach and clearly separates the nodes
and arcs and their visual representation. Nodes and arcs are represented by the types ADTNode
and ADTArc, respectively. Another type called GraphEditor contains the definition of the types
ADTNode and ADTArc and the collections of those elements in two sets ADT_-NODES and ADT.
ARCS. These sets are initially empty.

An ADTNode contains the name of the node, and an ADTArc contains the name of the two
nodes to which it is connected. There are four basic functions which manipulate elements of
the types ADTNode and ADTArc: CreateADTNode, RemoveADTNode, CreateADTArc, and Re-
moveADTArc. The function CreateADTNode receives as argument the name of the node to be
created, and returns the newly created node. The function RemoveADTNode receives as argument
the name of the node to be removed. The function CreateADTArc receives as arguments the names
of the nodes to which the new arc should be connected, and returns the newly created arc. The
function RemoveADTArc receives as arguments the names of the nodes to which the arc to be
removed is connected. An outline of the GraphEditor is shown in Figure 1. The four functions are
defined by an informal statement of their pre- and post-conditions.

The visual representation of the nodes and arcs are represented by the types ADVNode and
ADVArec, and their corresponding elements are stored in the sets ADV_.NODES and ADV_ARCS.

Name = Sequence of characters

Type GraphEditor

Declaration: ADT_NODES: ADTNode-set
ADT_ARCS: ADTArc-set

init mk-GraphEditor(ADT-NODES,ADT.ARCS) &
ADT_NODES = {} A ADT-ARCS = {}

Type ADTNode
Declaration: node.name: Name

Function CreateADTNode (node: Name) adtnode: ADTNode
external wr ADT_NODES

pre: There is no node with this name in the ADT_-NODES set
post: Create and include node in the ADT_NODES set

Function RemoveADTNode (node: Name)

external wr ADT_.NODES
pre: There is one node with this name in the ADT_NODES set
post: Remove the node from the ADT_NODES set

End ADTNode
Type ADTArc

Declaration: from_node: Name
to-node: Name

Function CreateADTArc (from, to: Name) adtarc: ADTArc

external wr ADT_-ARCS

pre: There is no arc between the from node and the to node
and these nodes are not identical

post: Create an arc between the from node and the to node
and include it in the ADT_.ARCS set

Function RemoveADTArc (from,to: Name)

external wr ADT_ARCS

pre: There is an arc between these nodes

post: Remove the node between the nodes and from the ADT.ARCS set

End ADTArc
End GraphFEditor

Figure 1: The ADT Graph Editor

FEvent. Type = ...

Window-ID = ...
Position :: pos-z : {0,...,640}
pos-y : {0,...,200}

Event :: type : Fuvent_ Type
window : Window-ID

position : Position
Action- Type = CREATE or REMOVE

GraphFElement- Type = NODFE or ARC

ADYV VisualGraphEditor For Type GraphEditor
Declaration: Action: Action- Type
GraphElement: GraphElement_ Type
init mk-GraphEditor(Action, GraphElement) 2 Action = CREATE A GraphElement = NODE
ADYV ADVNode For Type ADTNode

Declaration: position: Position
owner: ADTNode
ADV_NODES: ADVNode-set
ADV_ARCS: ADVArc-set
init mk-Graph(ADV_NODES) 2 ADV_.NODES = {} A ADV_ARCS = {}

Function CreateADVNode (p: Position, n: Name)
Function RemoveADVNode (p: Position)
Function RemoveRelatedArcs (n: Name)

End ADVNode

ADV ADVArc For Type ADTArc

Declaration: position: Position

owner: ADTArc
Function CreateADVAre (p: Position, from, to: Name)
Function RemoveADVArc (p: Position)
End ADVArc
Function DispatchEvent (event: Event; namel, name2: Name)
End GraphFEditor

Figure 2: Type and Prototype Declarations for the Graph Editor ADV
6

Function DispatchEvent (event: Event; namel, name2: Name)
external wr Action
wr GraphElement
pre: true
post: cases event. Window-ID of
CREATEID — Action = CREATE
REMOVEID — Action = REMOVE
NODEID — GraphFlement = NODE
ARCID — GraphElement = ARC
WORKING WindowID — cases Action of
[CREATE) — cases GraphElement of
[NODE]| — CreateADVNode(event.position, namel)
[ARC]— CreateADVArc(event.position, namel, name2)
end

[REMOVE)— cases GraphElement of
[NODE] — RemoveADVNode(event.position)
[ARC]— RemoveADVArc(event.position)

end
end

end

Figure 3: The Function Display for the ADV

Both the types ADVNode and ADVArc and the sets ADV.NODES and ADV_.ARCS belong to the
type VisualGraphEditor. This type also contains the interface aspects of the application, such as
the element and action menus. The type VisualGraphEditor appears in Figure 2, and shows the
nested types ADVNode and ADVArc and their corresponding function prototypes.

. Assuming the server has a callback mechanism and knows the function corresponding to an
event, the design does not need to associate windows directly with event handlers. The screen
has five regions, and they are separated into two basic categories: menu windows, and a working
window. When an event occurs, a function called DispatchEvent defined in the ADV GraphEditor
and shown as a prototype in Figure 2 handles the event. The complete definition of DispatchEvent
is shown in Figure 3.

When the mouse is activated in a menu window, the corresponding choice will be noted. The
element menu provides the choices NODE and ARC, and the action menu provides the actions
CREATE and REMOVE. The element menu is initialized with the NODE selection, and the action

menu with the CREATE selection. It is assumed that exactly one element and one action will be
active at one time.

When the mouse is activated within the working window, the appropriate action is performed,
based on the last noted menu selection. The type Event contains the event that has occurred, and
the position and window where it has occurred. The variable name1 holds the name of a node and
the pair of variables namel arid name2 are used to represent the to-node and the from.node of an
arc.

Each element of type ADVNode contains the position of the node and its owner (the corre-
sponding ADTNode), and similarly each element of type ADVArc contai:- the position of the arc
and its owner (the corresponding ADTArc). The ADV_NODES and ADV_-ARCS collections can
be represented by sets, and are initially empty.

There are four basic functions which manipulate the ADV elements: CreateADVNode, Re-
moveADVNode, CreateADVArc, and RemoveADVArc. There is also an auxiliary function called
RemoveRelatedArcs, which removes any arcs connected to a node which is to be removed. The
function CreateADVNode receives as arguments the position and the name of the node to be cre-
ated. The function RemoveADVNode receives as arguments the position of tlie node to be removed.
The function RemoveRelatedArcs receives as argument the name of the node that is going to be
removed. The function CreateADVArc receives as arguments the position and the names of the
source and target nodes of the arc to be created. The function RemoveADVArc receives as ar-
gument the position of the arc to be removed. To remove a visual representation of an arc, the
selected position must correspond to an arc. The actual arc (ADTArc) is removed first, and then
its visual representation is removed from the collection ADT_ARCS. The four functions are defined
in Figure 4 by an informal statement of their pre- and post-conditions.

5 The Implementation

The graph editor was implemented using Smalltalk. The subclasses which involve the concepts
of ADVs and ADTs are: VisualGraphEditor, ADVNode, ADVArc, GraphEditor, ADTNode, and
ADTArec.

The subclass VisualGraphEditor is responsible for the graph editor interface, for the visual
representations of the graph elements (the ADVNodes and ADVArcs), and for the operations upon
these visual representations. This subclass also supports the element (node/arc) and the action
(create/remove) selection menus. When the user changes the selection on the two menus, the state
of both menus is altered. When the user selects a point within the workspace area, the appropriate
action is taken: nodes and arcs are either created or removed.

The visual representations of the graph elements (nodes and arcs) consist of the ADVNode
and ADVArc classes. The VisualGraphEditor contains collections of those elements stored in
Smalltalk dictionaries labelled advNodeDic and advArcDic. The VisualGraphEditor also contains
the functions that manipulate these elements. Figure 5 illustrates this implementation.

As described previously, ADVNode contains the node position in the working window, and the
owner corresponding to that position, namely a reference to the ADTNode it represents. Similarly
the ADVArc contains the arc position and its owner, a reference to its corresponding ADTArc.

The GraphEditor manipulates the graph elements, namely the ADTNode and ADTArc classes.

Function CreateADVNode (p: Position, n: Name)

external wr ADV_NODES

pre: There is no node at this position and with this name

post: Insert the node in the ADV_NODES set and draw the node
and ask CreateADTNode to add the node

Function RemoveADVNode (p: Position)

external w ADV_NODES

pre: There is a node at this position

post: Remove it from the ADV_NODES set and call RemoveRelated Arcs Function
and remove the node from the screen and so ask the Remove ADTNode
to remove the ADTNode

Function RemoveRelatedArcs (n: Name)

external rd ADV_ARCS

pre: true

post: For all arcs do:
If the arc contains the node as a to.node or a from-node
ask the RemoveADVArc Function to remove it

Function CreateADVArc (p: Position, from, to: Name)

external wr ADV_ARCS v

pre: There is not any arc at this position

post: Include it in the ADV_ARCS set and draw it on the screen
and ask Create ADTArc to add the arc

Function RemoveADVArc (p: Position)

external wr ADV_ARCS

pre: There is an arc at this position

post: Remove it from the ADV_ARCS set and remove it from the screen and
ask the Remove ADTArc Function to remove the ADTArc

Figure 4: The functions for the Graph Editor ADV

USER

INPUT OUTPUT
EVENTS VISUAL
REPRESENTATION

INTERFACE
)
Visual
J . advNodeDic
Graph ADV Functions
Edltor O nessages — advArcDic
messages
Graph 1, adtmodenic
Editor ADT Functions
e adtarcdic
O nessages

Figure 5: The Smalltalk Implementation

10

The ADT World The ADV World

GraphEditor VisualGraphEditor
adtNodeDic: advNodaeDica:
— advArcDic:
| adtArcDic: - —

N
[B
[

4=
I /;_
U = >

] ;nvuode: —_—
ADTNode : /
Labol: B’ position:1@3
eL: \ [~ owner: ADTNode o
\ e
1 —t N ADVNoda: /
ADTNoda: R position:5@2
label: ‘A’ \ [~ owner: ADTNode
\] —
ADTArc: ADVAzZS: e

™\ position:é@4

from node:
= owner ADTArc

to_noda:

Figure 6: Nodes and Arc

It contains the collections of those elements, in two dictionaries adtNodeDic and adtArcDic, and
the functions which manipulate the nodes and arcs. ADTNode contains the node label, and the
ADTArc contains the labels of the two nodes to which it is connected.

Figure 6 represents how two nodes and one arc that connects the two nodes, are represented
in the Smalltalk implementation. In Figure 6, each dictionary entry has a reference to the corre-
sponding element and the arrows in the Figure indicate that access is from the ADV World to the
ADT World.

The reader should notice that there is a clear separation between the ADT World and the ADV
World. Moreover, the ADTs have no knowledge whatsoever of the existing ADVs. However, the
ADVs must have knowledge of the ADTs they represent and so each one contains a reference to
the respective ADT by means of the owner variable. This separation makes it possible to create
different types of ADVs, thus allowing for the creation of different visual representations for a single
collection of ADTs.

Figure 6 also illustrates that there is a visual representation on the screen associated with each
ADV. An ADVNode is represented by a circle, and an ADVArc is represented on the screen by a
line connecting two nodes.

11

6 Conclusions

This paper has illustrated by an example, a design method based on Abstract Data Views (ADVs),
which clearly separates the application components from the user interface. Thus, different repre-
sentations of an application component can be presented by connecting them to a different user
interface through the owner variable. Hence, this design approach allows both the application
components and user interfaces to be reused easily in a wide variety of interactive applications.
The feasibility of the Abstract Data View approach has also been demonstrated through an actual
implementation in Smalltalk. Although this paper has shown the efficacy of the ADV approach
there is still substantial research to be accomplished. Work on formal specification of the concept
and programming language-constructs and environments are three areas of significant interest in
our current research program.

References

[BBG*89] S. J. Boies, Wm. E. Bennett, J. D. Gould, S. L. Greene, and C. Wiecha. The Interac-
tive Transaction System (ITS): Tools for Application Development. Computer Science
RC 14694 (65829), IBM Research Division, T. J. Watson Research Center, Yorktown
Heights, New York, September 1989.

[CILS92] D. D. Cowan, R. lerusalimschy, C. J. P. Lucena, and T. M. Stepien. Abstract Data
Views. Technical Report 92-07, University of Waterloo, Computer Science Department,
Waterloo, Ontario, February 1992.

[Fol89] James Foley. Defining Interfaces at a High Level of Abstraction. IEEE Software, 6(1):25—
32, January 1989.

[Har89] Rex Hartson. User-Interface Management Control and Communication. IEEE Software,
26(1):62-70, January 1989.

[KF90] Won Chul Kim and James D. Foley. DON: User Interface Presentation Design Assistant.
In UIST ’90 Proceedings of the ACM SIGGRAPH Symposium on User Interface Software and
Technology, pages 10-20, Snowbird, Utah, USA, October 1990. ACM Press.

[KP83] Glenn E. Krasner and Stephen T. Pope. A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk-80. JOOP, pages 26—49, August Septem-
ber 1988.

\

[Mye90] Brad A. Myers, (editor). The Garnet Compendium: Collected Papers, 1989-1990. Tech-
nical Report CMU-CS-90-154, School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania, August 1990.

[Nye90] Adrian Nye. Xlib Reference Manual. O'Reilly & Associates, 1990.

[SG86] Robert W. Scheifler and Jim Gettys. The X Window System. ACM Transactions on
Graphics, 5(2):79-109, April 1986.

12

