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Abstract

In this paper we study the formal specification of a DBMS formally based on the entity-
relationship concept. We use the Norman’s Database (NDB) example which has been explored
by several authors in the recent literature. The system’s operations and structure are described,
by means of techniques, which extend VDM through nesting and inheritance. The extensions to
the method and the resulting specification are presented. The advantages of the new approach
are justified in the conclusion.

Keywords: Formal Methods, modularization, reuse, object orientation, inheritance, NDB
challenge problem

Resumo

Neste artigo estudamos a especificagdo formal de um SGBD baseado formalmente no conceito
de entidade-relacionamento. Usamos o problema-desafio NDB (Norman’s Database) que tem
sido explorado por varios autores na literatura recente. As operagdes do sistema e sua estrutura
s30 descritos, usando técnicas que estendem VDM com aninhamento e heranga. As extensdes
ao método e as especificagdes resultantes sdo apresentadas. As vantagens do novo enfoque sao
justificadas na conclusgo.

Palavras-chave: Métodos Formais, modularizagao, reﬁso, orientag3o a objetos, heranga,
problema-desafio NDB

1 Introduction

Software design concepts from software engineering have begun to influence the notations used in
the area of formal specifications. New constructs are presently being proposed specifically to deal
with the issues of modularization and reuse of specifications in model based specification notations.
The general trend is to integrate formal specification methods with practically proven software
development process models.

A generally accepted approach is the extension of the ”classxca.l” model based notations, such
as Z [Spive89] and VDM [Jones86] to accommodate generally accepted software design strategies
developed in connection with established rigorous specification and development methods. So far,
in most cases, the proposed extensions have been formulated in very informal terms. The recent
debate centered around the NDB challenge problem (Norman’s Database example [FACS92]) has



served the purpose of illustrating the strengths and limitations of different formal methods as far
as the issues of modularization and reuse are concerned ([Walsh90], [Fitzg90], [Hayes92]).

The issues of modularization and reuse are, of course, closely related. Modularization is asso-
ciated to the specification of the concepts related to the notion of abstraction and it is achieved in
model based formal methods through, for instance, the use of a hierarchy of types. In the approach
proposed in [Fitzg90] it is illustrated that the use of modular specifications also supports the princi-
ple of separation of concerns while improving the understandability of specifications by addressing
the problems of complexity and size of specifications. In [Hayes92] it is shown that modularization
allows for the parameterization of related definitions which, in turn, produces the generalization of
the problem at hand. :

Reuse of specifications is a very relevant issue in software development processes. Once modular
specifications are created, they can be used to generate other specifications by composition. The
extensions  to formal notations proposed by different authors to support reuse are, in a sense,
complementary. They can be seen as a search for recurrent patterns in specifications [Fitzg90] or
as the direct use of components out of libraries of components [Hayes92].

Our view about extensions to formal methods to support software design is influenced by our
experience in the area of object oriented design [Teru91,92]. It is also based on our belief that strict
formal development is not viable in most cases and that the association of formal and informal
development practices, as it occurs in all mature engineering areas, is feasible at the present with
currently available technologies. For us, modularization is a concept associated to the hierarchy
provided by inheritance. We claim that inheritance allows for a structured view of the abstraction
levels that occur in specifications and that nesting allows for the independent meaning of objects
when considered outside of their defining environments [leru91].

Some of the available rigorous requirement analysis techniques, such as the entity-relationship
approach [Chen76}, if applied by assuming that the design step will be carried out later with the
support of a formal method such as VDM {Jones86], can lead to effective modularized/reusable
specifications. In this paper we present the formal specification of a simple Data Base Management
System (the NDB example) and illustrate how the entity-relationship approach can be associated
to an object-oriented extension of VDM. The extension proposed is given a formal semantics in
VDM and compared to the ones presented in [Fitzg90] and [Hayes92].

Next section describes the characteristics of the example Data Base Management System follow-
ing [Walsh90]. The object-oriented extensions proposed to VDM are presented in sequel followed
by the problem specification using the extended version of the method. We conclude by comparing
the solution described to those proposed by the already mentioned authors.

2 NDB'’s problem description

In the NDB’s data model, all information is handled by entities and binary relations between them.
Each entity created has a name, and some may have a value. Each relation created also has a name
and relates two (and only two) entities. One important peculiarity of the NDB is that its data
model handles the meta-model, the conceptual model and the logical model.

The meta-model comprises two sets, one for entity-sets and one for relation-types. The elements
of these sets belong to the conceptual model. At this level, each entity-set establishes one category
for the entities that may belong to the BD’s extension, while relation-types do the same for rela-
tions. Finally, the logical data model contains instances of entities and relations, and establishes
associations between them.

Objects (entities and relations) at the conceptual level have other attributes. These attributes
are status (describes when entities may be added or deleted), picture (defines the form of the entity
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~ values) and width (provides the length of the value) for entities; and name, fromset (the origin),
toset (the destination) and maptype (the cardinality) for relations.

One partxcu]anzatlon of concepts that may be imposed is that the relations should be normal-
ized. This concept requires that the values taken by the relations be restricted to those imposed
by rules dictated by the relation-type they belong to. These restrictions, also called functional’
dependencies, determines that each relation must satisfy a condition FS — TS, which implies that
if the first entity in the relation belongs to the F'S entity-set, then the other one must belong to

TS.

3 Description of the Object-Oriented Extensions to VDM

In this section we describe the techniques first proposed in [leru91), which is going to be used in
the NDB formal specification. ’
The goal of the techniques proposed here is to allow reuse of specifications and proofs, using
object-oriented techniques. Therefore we adopt a syntax more related to this paradlgm, and that
groups together the type declaration and all its operations and functions. Specification and End
are used to define the scope of the definitions we can make. Therefore, we can write '

Specification S
S:hih

LT
Operation O (...) o(..)
ext fi:Th instead of ext fi: Ty
pre. ... - opre ...
post ... post ...
End S

One of the extensions to Standard VDM is a notation to declare inheritance of specifications.
Supose we have the following specification:

Specification S
Subtype of P,
rename O}, as NOL,,,..., 0}, as NOL,

redefine Of;,,..., O}y,

Subtype of P,

rename OF, as NO7, ,...,0F,  as NOF, = .
redefine 07, ,..., 0%, ,
h: T,
[y: T,

inv-S 2 invS



Operation O (...)
ext  extOf
pre preOf
post postOf

Operation O} (...)
ext eztO}
pre preO}
post postO}
End S

The above specification declares S as a subtype of Pi,..., Px; each P; in turn, is called a supertype
of S. The following rules give the meaning of the above specification:

1. The actual components of S are the join of all components from Py,..., P; and §. If com-
ponents from different specifications have the same name and type (textually equal), then
they are merged in one component. If components from different specifications have the same
pame but diferent types, then there is and error condition.

’ 2. The actual invariant of S is .
inuS A (N inv-P})
=1

where the definition of z'nv-P,f is as follows:

inv-P;: S ~ B
inv—P‘f (s) 2 inv-P;(projp,(s))

and

»PY'O].P‘ZS - P
projp, (mk-S(...,J%,..)) & mk-Pi(f5,..)

that is, projp,, is the orthogonal projection from S to P; (remember that, by rule 1, S has
all the components from P;).

Notice that we use invS (without an hyphen) to denote the textual invariant, as written in
the specification, while inv-§ denotes the final logical function that results from the above
operation. The same distinction applies to pre and post-conditions.

It is easy to verify that inv-P; and inv-P; can be textually identical; the only difference
between them is that the latter applies to S, and so it must “throw off” some components.
Notice that invS can refer to the fields inherited from other specifications.

3. The operations of P; are insered into S in the following way: first, the operations O;',‘1 ooy Oin,

are renamed as NO;'M yoeas NO,’ni. Then, the operations O;'d’, cesh Oidy are removed. The re-
mainder operations are included in S with unmodified external lists, pre and post-conditions.
If operations inherited from different parents have the same name and same definitions (tex-
tually equal), then they are merged. If operations from different parents have the same name

but different definitions, then there is an error condition.

4



4. For each operation in the redefinition list (i.e., each O,fdj) there must be an operation Of with
the same name and the same parameter list; this operation redefines O,‘;d’_ (each declaration Of

can redefine more that one inherited operation). Suppouse that an operation Of redefines the
operations Oy,,..., Ok, from the specifications Py, ..., Pi,. Then, its actual specification is
a combination of its textual specification and the specifications of all Oy, acoording to the

following rules:

(a) The external list of O} is the join of its textual external list (eztO}) with external
lists of Of,. The list eztO} can not include fields inherited from any specification Pj,.
Intuitively, this is justified by the fact that an operation must have a behavior compatible
with the operations it redefines. If the inherited definition asserts that some componets
are not modified (by their absence in the external list), the new operation must keep

this assertion.
(b) The actual pre-condition of Of is

pre0} v (\/ pre-O},)

i=1
and again, we have that

pre-O;l.:S - B
 pre-0;, (s) £ pre-Oy,(projr, (s))

where Py, is the specification from where O; is inherited.

‘We assume that when an operation is a redefinition, then the absence of an explicit pre-
condition stands for FALSE, instead of the usual TRUE, so that the actual pre-condition
simplifies to the conjunction of the inherited conditions. '

(c) The post-condition of Of is
" ! ’
postOf A /\(pre-Ok‘. = post-O;,)
=1

and as expected, the definition of post-O;‘, is:

post-O,':'.:Sx S—+B
post-O,':‘_ (5,5)& post-Ok'.(projp,l_("é'), projp,i(s))

Notice that, to avoid inconsistencies between postOf and the inherited behavior, we need
the condition over external lists (rule 4a). Otherwise, the implicit requirement about
unchanged variables could be contradicted by postOf.

The other operations of S, which are not redefining any inherited operation, are left un-
changed.

5. All operations in S must fulfill the satisfability proof obligation. This must be checked even
for the inherited operations, because the new invariant can nullify this property.



It is easy to prove the following lemma:

Lemma: Apart from renames, a subtype S of a type P is a valid representation for the type P,
that is, it satisfies the following properties:

1. there is a retrieve function from § to P,
2. S has all operations that P has, and
3. the operations in S model the correspondent operations in P. .

The proof can be found in [leru92]. ,

Parametric types can be specified by writing the parameter after the type name, and letting the
specifications dependent on the instances of these parameters. The semantics for this construction
is defined by textual substitution. . ‘ :

Another technique we have associated to the method is nesting of specifications. This thechnique
allows decompositions to take place in a more natural way, since the perception of complex things
is usually based on structuring concepts. Figures 1 and 2 we present the translation schema of
one generic nesting construction into its equivalent flat VDM form. The nested specification is
trasportated to outside, and we create a map in the other specification. This map have handles in
its domain, and its range is a set of translated nested specifications. As we can see in the figures,
the S. Map range represents a set of S- Obj instances in each O object, and the operations defined
for the old § specification are translated into operations over the range of S- Map, using the handles
that belong to the domain of this map.

To allow us to define each nested specification as an Abstract Data Type, which have its own
components handled by the other specifications througth functions, each of which ensuring data
hiding, we define Function as a mechanism to provide a inferface with other specifications. Its
definition is writen below.

Function g¢,: T4 X...X Tg — T;
Gs (Pfu .. 'vpfg) 2 P:(f:p o °afsmpfn- '.-.1pfk)

This declaration, inside a nested specification can be translated to the flat VDM as follows:

ds :S_x T X...x Tgy — T,
g,(id,pf,,---,pjk) A PJ(f‘;(S-MaP(id))v---af:n(s-MaP(id))9pfn°°°9pfk)

Operation are similar to functions, but allow side-efects over the state of the object.

Operation Z, (pe;: Teyy- -+ Pept Tey)
ext  wr fy 1 Ty
wr f’.t,': T‘S"
wr foy,* Toy,
wr fovj N Tpvj
pre pre-Z,
post post-Z,



Specification 0
.fo;: To;

fom : Tom

inv-0 & po(0)

Specification S
fu: T'x :
Ln: Tln
inv-S 2 p,(s)
Constructor X, (...)

pre ...
post ...

Destructor Y, (...)
pre ...

post ...

Operation Z, (...)

pre .
post ...

Function f: Ty — T,
H(G.)2...

End §
End 0

Figura 1: Nested specification



S=N

S_Obj = self : S
fo i Ty

fln : Tln

where

inv-S-0bj() 2 pi(s)

O :: S-Map : S 2, §5.0%bj
foo : Ty

Jom * Tom

where

inv-0() 2 po(0)AVid € dom S_Map - self (S- Map(id)) = id

X, (...

pre ...

post ...

Y, (--2)
pre ...

post ...

Z, (...
pre ...

post ...

f,:8xTa— Ty
L(..) &

Figura 2: Translated specification



Notice the way the translation schema specifies that the operation modifies one value of the
range of S_Map.

Zy (3d:8,Pey: Teyy vy Peyt Tey)
ext wr S-Map : § — 5.0bj
wr f,“ 2 Ty,
wr fﬂvj : T,vj .
pre id € dom S'A!apl\pre'z:(fox, (S-Map(id))a .. .,L,..(S-Map(id)),fo” ye. -sfoyj 1Peyy- - ,pck)

post 3o € S-0b;j - post-Z,(fi,, (S-Map(id)), . . ., f,; (S-Map(id)), 0, pc; - - P ) A
S_-Map = S_Map { {id — o}

We still need two other facilities, to allow the creation and destruction of objects. In what
follows we present the specification of a generic creation operation, and its respective translation
to flat VDM.

Constructor X, (Pey: TeyseerPey: Tey)
ext wr fcz,: Tu,

wr foz,: Ty,
wr fo, 2 Toy
wr f.,vj: T"v,'
pre pre-X,
post post-X,

Xo (Pc;: Tc;,- "’Pck: TCE) id:s
ext wr S_-Map : § - S_Obj
' wrf,,,,l - T

oy

wr foyj : Toyj_
pre pre-X, .
post id ¢ dom S.Map A Jo € S-0bj - post-X,(0, fo,, 5 - - .,)"‘,!',J_,p,:1 yeeesDey) A
S-Map = S_Map U {id ~ o) '

Finally, we define the removal of object instances:



Destructor Y, (Pe,: Tayy---»Pdy* Tay)
ext  Wr f,q: T,z‘

wr f,,*: T,‘,k
wr j"h: T"V:

wr joyl: T"Vl
pre pre-Y,
post post-Y,

Y, (id: S, pa: Tays -« -2 Po Tq,)
ext wr S-Map : § -+ S-0bj
wr f"h : T"v:
wr foy, : Toy,
pre id € dom S_MapApre-Y,(fi., (S-Map(id)),... ,‘f.xi(.S'.Map(id)),_y",,‘,1 yooo ,nyj sPdys+++1Pdn)

post post-Y,(fs,, (5-Map(id)), .- .,j',x.,(.‘j’.Map(id)),f‘,vl yoos ,f,,yj s Pdyye -y Pa ) A
(S-Map = {id} ¢ S-Map)

To improve the OO style of our extension, we adopt the usual dot notation for the specification
of operation and function calls. So we write id.name(py, - . ., pn) for name(id, p1,.. ., Pn), Where id
is an object identificator. ' :

4 The NDB’s Specification

This section describes a formal specification for the NDB, obtained through the application of the
00 techniques described in the previous section. Our objective here is to argue that it is possible
to produce a specification for the example problem at least as modular as the ones discussed in
[Fitzg90] and [Hayes92].

Those previous works propose three main styles of specifications for NDB: one that only con-
siders binary relations, another that considers the use of a generic n-ary relation specification to
specify the same problem, and, finally, one that considers typed-relations and normalization. We
cover all three cases in this sequence. i

To begin with, we propose a diagramatic representation for the example problem, which allows
us to provide informal views of the structure of the specification. This informal conceptual model
is built through the use of simple "box-and-arrows” diagrams. In each box there is an object name
and each arrow has a relation name ("is-2” or "comp.-of”), whose semantics is associated to the
formal constructions we have proposed for the method. Each box, which represents an object, has
two parts, one containing the components and the other containing the operations and functions
of the object.
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NDBA
rels

peration INITNDB
Operation ADDTUP; -
Operation DELTUP

comp. of v comp_of comp_of

Ents Esets Relinf

[value) status map
icture conns

Constructor ADDENT] gidth onstructor ADDREL

Destructor DELENT J  embs : Destructor DELREL
onstructor ADDES Operation ADD

Destructor DELES Operation REM

Function fromv
Function tov

Function tuples
Function mapt

Figura 3: NDBA informal model

We have stated in section 2 that the NDB’s data model is constructed by means of entities,
relations, entity-sets and relation-types. Usually, these concepts generate two kinds of maps between
formal objects: one relating indexes to objects, and the other creating relations between objects.
Maps of the first kind are translated, in our specifications, to nested types. We can see this nesting
in figure 3, in association with the "comp_of” relations.

Since the informal definition of the problem is well known, we can now formulate the formal
specification of the NDB. In figure 4 we present the NDBA specification, which defines a binary-
relation based DataBase. Then, in figures 5, 6 and 7 we present the specification of NDB relations,
entities and entity-sets, respectivelly. In these figures, Status, Picture and Width are not defined
further, and the following type specifications are needed: :

Maptype = {1:1,1:M,M:1, M:M}
Pair = fv : Ents

tv : Enis
Reltype :: fs : Esets
ts : Esels

name : [Name]
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Specification NDBA
rels: Reltype — Relinf

Specification Relinf

(see figure 5)
End’ Relinf

Specification Enis

(see figure 6)
End Ents

Specification Esets

(see figure 7)
End Esets

inv-NDBA & Vrt € domrels - {fs(rt), ts(rt)} C dom Esets-Map

Operation ADDTUP (f,t: Ents, rt: Reltype)
ext rd rels: Reltype — Relinf

wr Relinf. Map: Relinf — Relinf. Obj
pre rt € domrels A rels(rt).pre-ADD(f, t)
post rels(rt).post-ADD(f,t)
Operation DELTUP (f,t: Ents, rt: Reltype)
ext rd rels: Reltype = Relinf

wr Relinf- Map: Relinf <= Relinf. Obj
pre . rt € dom rels A rels(rt).pre-REM(f, )
post rels(rt).post-REM(f,t)
Operation INITNDBA ()
ext  wr rels: Reltype — relinf

wr Esets. Map: Esets — Esets. Obj

wr Ents_Map: Ents — Ents_Obj

- wr Relinf. Map: Relinf = relinf. Obj
post rels = { } A Esets-Map = {} A Ents_Map = { } A Relinf_-Map = { }
End NDBA

Figura 4: NDBA specification



Specification Relinf
map: Maplype
conns: Pair-set
inv-Relinf 2 mapi(conns) A3rt € dom rels - (rels(rt) = self AV € conns -
(let mk-Pair(f, 1) =r in
f € membs(Esets-Map(fs(rt))) At € membs(Esets- Map(ts(r)))))
Constructor ADDREL (m: Maptype, rt: Reliype) .
ext 1d Esel.Map: Eset — Esel. Obj
wr rels: Reltype — Relinf ,
pre {fs(rt),1s(rt)} C dom Esets-Map A 1l ¢ dom rels
post map = m A conns = { } A rels = rels U {rt — self}
Destructor DELREL (ri: Reltype)
ext  wr rels: Reltype — Relinf
pre 1 € domrels A conns = {} A rels(rt) = self
post rels = {rt} <4 rels
‘Operation ADD (f,1: Ents)
pre mapt(conns U {mk-Pair(f, 0} .
post conns = conns U {mk-Pair(f, 0}
Operation REM (f,1: Ents)
pre mk-Pair(f,1) € conns
post conns = conns — {mk-Pair(f, 1)}
Function fromv: Pair — Enis
Jromv (1u) 2 fu(tu)
pre tu € conns
Function {ov: Pair — Ents
tov (tu) 2 tv(tu)
pre tu € conns
Function {fuples: — pair-set
tuples () £ conns
Function mapt: D-set -~ B~
mapt (c) 2Pt1,12€ c- 11 £ 12A
cases map of
M:M — false
M:1 — fu(11) = fv(12)
1:M — tv(11) = tv(12)
1:1 — fo(11) = fo(12) V tu(11) = tv(12)
end o

End Relinf

Figura 5: Relinf specification
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Specification Ents
value: [ Value]

inv-Ents & 3z € mg Esets-Map - self € membs(z)

Constructor ADDENT (v:[Value], m: Ents-set)
ext  wr Esets. Map: Esets -~ Eset-Obj
pre m C dom Esets-Map

post value = v A Esets-Map = Esets-Map t
{es — p(Esets-Map(es), membs — membs(Esets.Map(es))U {self}) | es € m}

Destructor DELENT ()
ext  rd Relinf. Map: Relinf -, Relinf.Obj
wr Esets. Map: Esets -~ Esets-Obj
pre Vrl € U{tuples(r)|r € mg Relinf. Map} - fromv(rl) # self A tov(rl) # self

post Esets-Map = Esets-Map t
{es — p(Esets-Map(es), membs — membs(Esets-Map) — {self}) | es € dom Esets- Map}
End Ents

Figura 6: Ents specification

As it could be expected, the state invariant has been broken down in small parts, each of
which associated to the state of the object type it most refers to. For example, in the specification
presented in [Walsh90], there is a declaration

dom em = Udom esm

which states that the set of the entities must be the same as the set which contains all the enti-
ties that belong to an entity-set. This intention is captured in our specification by inv-Ents and
inv-Esets. .

Another interesting point is related to the choice of which components should be nested, and
which ones should not. Clearly, those belonging to an object type must be nested in it. The
components that should not be nested are those that define relationships between objects, e.g., rels
in NDB specification presented in the work cited above.

The specifications of creation and destruction of object instances are quite simple in our version
of the method, because part of then are implicit from the semantics of Constructor and De-
structor. Only the initialization values for the object (as can be seen in the constructor ADDES)
and the influence of these operations over other objects (which is shown in the destructor DELES)
remain to be specified. '

14



Specification Esets
status: Status
picture: Picture’
width: Width
membs: Ents-set

inv-Esets & membs C dom Ents. Map

Constructor ADDES (s: Status, p: Picture, w: Width)
post status = s A picture = p A width = w A membs = {}

Destructor DELES ()

ext rd rels: Reltype — Relinf

pre Art € dom rels - fs(rt) = self V ts(rt) = self
End Esets

Figura 7: Esets specification

A generalization to NDB relations can be defined by specifying a type which is independent
of this problem. Since it has some of the characteristics of relations, we can redefine Relinf as a
subtype of this new type (indirectly), making a new specification for NDB, called NDBB. This is
shown in figure 8.

There is no need to rewrite the other specifications, because the changes done in Relinf are
hidden in its structure, by the use of functions. So, instead of the old version of Relinf, we use the
specification presented in figure 11 to specify NDB, thogether with those in figures 9 and 10, for
Relation and BinaryRelation. These specifications illustrate the use of parametric types.

In figure 9, a type Fsel is used, but we left it undefined there, because it can be any set of
constants which denote relation selectors. That is not the case in figure 10, since the relations have
cardinality equal to 2, and to define the properties of the relation atributes, we must use selector
names. '

When we generalize Relinf and create Relation, our mental activity is concentrated on the
identification of the portions of the structure and the operations that are candidate to become a
new object. In this and in other similar cases, the invariant may need to be broken, and the more
general object may acquire some of its parts. This situation happens with the old Relinf invariant,
which have one part aquired by BinaryRelation (the statement in which mapt is used), and the
other aquired by the new Relinf.
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Relation

conns

Function tuples
Function value

is.a

BinaryRelation

map

peration REM
Operation ADD
Function fromv
Function tov

NDBB Function mapt
comp.of / comp_of | comp_of i5-a
Relinf
Ents Esets

peration DELREL
Operation ADDREL

Figura 8: NDBB informal model

Specification Relation(D)
Tuple = Fsel = D
conns: Tuple-set

inv-Relation £ Vitl1,t2 € conns- dom 1 = dom t2

Function tuples: — tuple-set

tuples () 2 conns

Function value:(Tuple x Fsel) = D

value (2, sel) 2 t(sel)
pre t € conns
End Relation

Figura 9: Relation specification
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Specification BinaryRelation(D)
Subtype of Relation(D)

map: Maptype
inv-BinaryRelation & (¥t € conns-domt = {FS, TS}) A mapt()

Operation ADD (f,t: D)
pre mapt(map, conns U {FS — f,TS = t}) -
post conns = conns U {FS +— f, TS - t}
Operation REM (f,t: D) '
pre {FS+ f,TS— t} C conns
post conns = conns — {FS f,TS > t}
Function fromv: Tuple = D
fromv (tu) £ value(tu, FS)
Function tov: Tuple = D
tov (tu) 2 value(tu, TS)
" Function mapt: D-set =~ B
mapt (c) AVi1,12 € c- 11 # t2A
cases map of
M:M — true
M:1 — t1(FS) = t2(FS) = t1(TS) = 12(TS)
1:M — t1(TS) = t2(TS) = t1(FS) = t2(FS)
1:1 = t1(FS) = t2(FS) « t1(TS) = t2(TS)

end

End NRelation

Figura 10: BinaryRelation specification
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Specification Relinf
Subtype of BinaryRelation(Ents)

inv-Relinf 2 3rt € domrels- ((rels(rt) = self ) AVt € conns-
fromu(t) € Esets-Map(fs(rt)) A tov(t) € Esets-Map(s(rt)))

Constructor ADDREL (m: Maptype, rt: Reltype)
ext rd Esets. Map: Esets = Esels. Obj

wr rels: Reltype — Relation
pre  {fs(rt),ts(rt)} C dom Esets-Map A rt ¢ domrels

post map = m A conns = { } A rels = rels U {rt > self}

Destructor DELREL (rt: Reltype)
ext  wr rels: Reltype — Relation
pre rt € domrels A conns = {} A rels(rt) = self

post rels = {rt} ¢ rels

End Relinf

Figura 11: Relinf specification using BinaryRelation
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Relation

is.-a

TypedRelation

norm
tpmc

BinaryRelation-
3

is.a

Binary TypedRelation
NDBC Function conv

comp_of // comp.of com\is/ ‘

. Ents | Esets Relinf

Figura 12: NDBC informal model

The opposite activity, specialization, can also takes place, as ilustrated in figure 12. It re-
quires taking the BinaryRelation type and determining a more restrictive invariant, to produce
BinaryTyped Relation. Specialization occurs in another situation, when it is necessary to agregate
new components to a type. We can observe this by looking Relation and TypedRelation in figure 12..

Figures 13 and 14 specify TypedRelation and BinaryTypedRelation, respectively. It is necessary
to define the type Norm as follows, which is used there to comprise all the possible kinds of
normalization it is possible to define over the atributes of the relations in the DataBase.

Norm = (Fsel-set X Fsel)-set

The other specifications need to be rewrited a little, leting BinaryRelation be a subtype of Typed
Relation, instead of Relation, and leting Relinf be a subtype of BinaryTypedRelation, instead of
BinaryRelation.
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Specification TypedRelation(D)
Subtype of Relation(D)
Tpmc = Fsel ==+ D-set
norm: Norm
tpmce: Tpme
inv-TypedRelation & (Vm € conns-domm = domipmc A (Yz € domm - m(z) € tpmc(z))) A
(Ytp € norm - let mk-Norm(s,f) = tp in
sU{f} C domipmcA
(Vi1,12 € conns-s < 11 = s 12 = t1(f) = 12(f)))

End TypedRelation

Figura 13: TypedRelation specification using Relation

Specification BinaryTypedRelation(D)
Subtype of BinaryRelation(D)

inv-BinaryTypedRelation 2 3rt € domrels - tpme = {FS fs(rt), TS v ts(rt)} A
norm = conv(map)

Function conv: Maptype — Norm

conv (ty) 2 cases ty of
M:M - {}
M:1 — {({FS}, TS)}
1:M — {({TS},FS)}
111 - {({TS}, FS), ({FS}, TS)}

end

End BinaryTypedRelation

Figura 14: BinaryTypedRelation specification using BinaryRelation
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5 Conclusions and Future Work

The extensions to VDM proposed in the present paper do lead to modular and reusable specifica-

tions. The semantics of the proposed extensions was formally given in terms of established VDM

constructs . The new constructs capture the notion of object-oriented design as defined by estab-

lished design theories (decomposition by form as opposed to functional decomposition [Maher90])

and made viable by existing object-oriented programming languages. The proposal is contrasted

with some of the recent solutions presented in the literature and illustrated by the same NDB
"challenge problem”.
In the case study described we were able to highlight a characteristic of object oriented specifi-
cations which has a direct parallel in the Z notation [Spive89]. When states are specified in model
_ based specification methods they need to be integrated later to other states which are, eventually,
more general than the originally specified states. In this situation, the initially defined operations
need to be generalized. In Z this generalization is called 2 promotion. It is achieved by means of
the schema calculus which is part of the Z notation. The same issue occurs in the case of nesting
since it is also a composition operation. In this case the state of the objects are composed of all

- the nested object components. This is guaranteed by the semantics of the proposed object ori-
ented features . In other words, promotion is implicitly defined in the techniques illustrated before
therefore reducing the effort required for the expression of a formal specification.

Since we have used functions to handle the interface between objects the resulting specification
displayed a high degree of independence between objects. When changes were needed during the
case study to the point of requiring a restructuring of the specification they were confined to the
interfaces. In other words there was no need to redefine other types when a type specification was
changed.

Inheritance also provided the reuse of specifications. It takes place when a new type needs to
be specified and some of its characteristics can be imported from an already defined type. If the
existing specification is sufficiently general the new type can be defined as a subtype.

The use of our extended version of VDM in association with the informal entity-relationship .
approach simplified considerably the understanding of the problem. The structure of the informal
diagrams of the semi-formal method were derived directly from the characteristics of the new
features included in VDM.

In the continuation of the present work we are trying to associate concurrency features to the
set of proposed object oriented features.We are also working on the creation of 2 method to allow
the separated reification of the types. Right now we need to translate the specifications produced
to Standard VDM to then apply the conventional reification method. Of course, this is still far
from ideal.
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