ISSN 0103-9741

Monografias em Ciéncia da Computagdo
n® 37/92

Decoupling Interface and Implementation:
the TOOL scilution

Sérgio E. R. Carvalho

Departamento de Informatica

PONMTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAC VICENTE, 225 - CEP 22453-900
RIO DE JANEIRC - BRASIL

PUC RIO - DEPARTAMENTO DE INFORMATICA : ISSN 0103-9741

Monografias em Ciéncia da Computagdo, N2 37/92
Editor: Carlos J. P. Lucena | | Dezembro, 1992

Decoupling Interface and Implementation: the TOOL solution®

Sérgio E. R. Carvalho

* This work has been spdnsored by the Secretaria de Ciéncia e
Tecnologia da Presidéncia da Republica Federativa do Brasil,

In charge of publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentag&o e Informagdo
PUC Rio — Departamento de Informdfica
Rua Marqués de Sao Vicente, 225 — Gavea
22453-900 — Rio de Janeiro, RJ
Brasil :
Tel. +55-21-529 9386 Telex +55-21-31048 Fax +55-21-511 5645
E-mail; rosane@inf.puc-rio.br
techrep@inf.puc-rio.br (for publications only)

DECOUPLING INTERFACE AND IMPLEMENTATION:
| THE TOOL SOLUTION |

S. Carvalho

ABSTRACT

It is expocted that a large portion of the software systems to be constructed in this
decade will involve object oricntation, message passing and graphical user interfaces. Design
methodologies for such systems are now being studied. A typical goal pursued in these
methodologies is the separation between the interface and the implem entation of an
application. In this report a design approach providing a high interface-implementation
decoupling degree is proposed. This approach takes full advantage of object orientation, by
considering the handling of asynchronous messages as part of object behavior. The existence
of TOOL, a programming system containing asynchronism at this high level, suggests the
construction of mechanisms for antomatic design-program translation.

RESUMO

Espera-se que uma grande parte dos sistemas de goftware que geréo desenvolvidos nesta
década conteré orientaglio a objetos, passagem de mensagens, ¢ interfaces gréfices para
usvérios. Metodologias de projeto para estes pistemas estio agora sendo estudadas. Um
objetivo tipico destas metodologias é a separagdo da interface de um programa da sua
implementagio . Neste relatério um enfoque de projeto que produz um alto desacoplamento
entre interface ¢ implementagio & proposto. Este enfoque se aproveita de uma cxtensdo do
conceito de orientagdo a objetos, onde o tratamento de mensagens assincronas ¢ considerado
como parte do comportamento de objetos. A existéncia de TOOL, um sistema de programagao
que contem assincronismo neste alto nivel, sugere & construgio de mecanismos para a tradugfo
automética de projetos para programas, -

EEYWORDS AND PHRASKES

object orientation, message passing end receiving, graphical user interface, design
methodology, interface-implementation decoupling, asynchronous object behavior, the
language TOOL. '

ACKNOWLEDGEMENTS -

The TOOL programming system is the result of a joint research and development
project conducted by SPA (Sistemas, Plancjamento ¢ Anélise), a software house in Rio, and a
group from the Departamento de Informatica of the Pontificia Universidade Catélica, also in
Rio. The system contains a programming language and its compiler, a linker, an abstract
machine and run-time support, a library of classes, and an environment for the friendly
construction of TOOL programs. This report must be understood as another result from this
same team effort, although the author takes sole responsibility for its contents. Special thanks
are due to Otavio P. Coelho, Nelson Gorini, and Werther J. Vervloet, early day team members.
Thanks are also extended to the younger generation, Mario S. Cardoso, Eduardo Galucio and
Toacy C. Oliveira, and to several PUC students and colleagues who contributed to the
production of this report..

1. INTRODUCTION

There is a strong belief that a reasonably large portion of the software systems to be
constructed in this decade will involve three important programming aspects:

¢ graphical user interfaces;
¢ message passing;
+ object orientation.

Each and every one of these aspects is related to programming languages and techniques -
which lie outside the regular working environment of most conventional language
programmers today. In fact, those dealing primarily with procedural (or conventional)
languages are not typically addressing, for example, the construction of objects that, being
displayed on a screen, allow the user of a program to asynchronously interfere with the
exccution of that program. '

In order to design and implem ent modern software systems adequate resources must be
available, as for example:

¢ sgoftware platforms;

¢ programming languages;
¢ design methodologies.

Several adeqimte platforms for the developmént of modern programming systems exist
today. As an example we could mention the Windows operating system from Microsoft, which
includes message passing features and user interface objects.

Unfortunately, adequate langusges where message passing and graphical interfaces can
be coded and constructed with ease are more difficult to find. In fact most languages being
used today for such purposes are derivations of conventional languages, such as C and Pascal,
which were not primarily designsd to handle messages. The result is that even for
programmers familiar with the basic implementations of such languages, the understanding of
the new object oriented and message passing versions is a hard task, often left incomplete.
Besides, programmers must also become familiar with large and unstructured sets of functions,
~ in order to code message passing,.

Design methodologies for the construction of modern systems are also being discussed
[CILS 92, 1LCIS 92, VPCCB 91]. An important common consideration in some of these
methodologies is the proposed separation of the interface part (which loosely concentrates the
objeots seen by the user of the system) from the implementation part (where the "real” work is-
done). This seems justifiable enough, if considered, for example, from the reuse point of view:
the higher the degree of decoupling between interface and implementation, the higher the
possibility of reuse of any of these parts when the other changes. Unforhmnately, even though
object orientation and graphical interfaces are taken into consideration in proposed

1

methodologics, when it comes to message passing one tends to see mainly the old-fashioned
message dispatcher, at a lower level a loop consulting a queue in order to decode and treat
messages, and at & higher level an object which treats all messages relating to some user
interface.

In this paper we propose a design methodology in which interface and implem entation
are highly decoupled. This is achieved, briefly, by teking full advantage of the object
orientation concept, through the inclusion, in classes, of message sending and receiving object
behavior. (A welcome side effect of this inclusion is that dispatchers are no longer needed; in
other words, they can be relegated to the operating syste level, where they actually belong.)
Tt seems also appropriate to mention that the design features proposed below can be casily
teanslated into a new, high level programming language built specifically for the construction
of the software systems under consideration hers. As a convenient consequenco, the
design-program mapping is more strightforward.

At this point, a disclaimer may be in order. What we propose is yst another yardstick,
one that can be used, perhaps when all others have failed, to choose one among several possible
designs. We recognize the fact that, especially for small systems, the proposed separation
between interface and implementation, in this (possibly as well as in any other) methodology,
may lead to undesirable results, even increasing the complexity of the final product.

This paper is organized as follows. The methodology proposed is arrived at through a
series of designs, of increasing decoupling degrees, which relate to a case study: the
construction of a program to play TicTacToe. This is done in section 3. In section 2 we shotily
describe language features which are important to the understanding of the case study solutions
that follow. In section 4 we present our conclusions.

2. THE LANGUAGE TOOL

TOOL is a new object-oriented and message-driven programming system built to
simplify the construction of programs that involve their users as components: through controls
~ disposed in one or more interface screens, users activate routines that realize their wishes. For
example, by "pressing” a button labelled "Cancel”, the user gencrates an cvent that interrupts
the current processing; by selecting the menu option "Edit”, the user generates an ¢vent that
places on the screen a submenu displaying the editing options available. '

'Ihc.curtem version of TOOL nums on Microsoft Windows; other modern software
platforms will be used in the future. A concise description of TOOL can be found in [CARV
92]; the language is fully described in [SPA 92].

Program construction in TOOL is simplified by:

¢ true object orientation, allowing both a structured definition of interface objects and an
elegant and high level mechanism for message handling;

2

¢ aview of object orientation acceptable to real life programmers, where "new” concepts
such as class, inheritance, method, polymorphism and the like can be explained from
knowledge already in possession of conventional language programmers; '

¢ afriendly, Windows-like application environment for program construction, compilation,
linking and execution.

The main feature of TOOL is the class, which encapsulates the attributes necessary to
define object structure and behavior. Object structure is obtained from a record-like
declaration; object behavior can be expressed either with procedures and functions (called
methods in TOOL), or with handlers for asynchronous messages. A class in TOOL is a passive
entity, used mainly during compilation, to validate object use. Besides modeling objects,
classes can be used in the definition of new classes, through a simple inheritance mechanism.

Three possible relationships can be established between two objects in TOOL: the is-a
relationship, defined by inheritance; the has-a relationship, defined by structure declaration;
and the owns relationship, defined at object creation. An object x owns an object y if the
oreation of y takes place within an operation being applied to x. The owns relationship is -
fundamental in the obtention of a high decoupling degree between interface and
implementation, as we shall see later.

A TOOL program is a sequence of classes. Since TOOL classos arc passive structures,
we may ask how an execution environment can be obtained from such a sequence. The answer
is that during the construction of an executable module, the TOOL environment asks the user to
name the "main class" in the program: a class in the sequence possessing a method called
"Main". The execution starts with the application of this main method to an object of the main
class, automatically crested by the system.

3. INTERFACE DRIVEN PROGRAMS: A CASE STUDY

An interface driven program, or a program controlled by a user who activates routines
by acting on graphical interface objects, can usually be "separated” in two main parts, which we
can call interface and implementation. These are communicating parts, of quite different
natures. The interface part should contain all actions responsible for placing, m one or more
screens, objects that the user sees and approciates, there recognizing a representation of his/her
real world. As examples of interface objects, we could mention control objects (buttons,
menus), and application objects (text, geometric figures). On the other hand, the
implementation is responsible for the "dirty work", that executed behind the soreens (or
windows 7), where private algorithms, acting on data structures unseen to the user, respond to
the uscr's wishes.

_ The execution of &n interface driven program usually starts out with the placement, on
the screen, of the first user interface in the application program. In TOOL, when this

construction terminates, the executable program rests, waiting for the user to start the

festivities by activating some control object, say a button, thercby commanding someo action.

3

When this action terminates, or cven while this action is still being carricd out, the nser can
affect some other control object on the screen, for example & menu option, to command another
action.

The execution of a TOOL program can thus be seen as a "race” between the user,
commanding actions by activating interface controls, and the implementation, carrying out the
requested actions, At times, when the user 1s thinking out his/her next move, the system
seems to be "at rest”: some interface is still being shown, but the implementation may not be
executing any actions (ary visible actions, that is: maybe some garbage collcctxon is taking
place, but this is not the concern of users).

We can exemplify by considering a toy, but representative, application: the construction -
of a program to play TicTacToe. Here the interface part is responsible for placing, on a screen,
a 3x3 matrix of buttons, where the game is to be played - each time the user plays, the program
respond% and matrix positions are marked accordingly on the screen. This interface can be
improved if we place on the screen a message area, where the turn is indicated, and where
congratulations are offered to the winner (if it is the user). Besides, we may want to provide
the user with controls to interrupt a losing game, and to elegantly exit the program. We may -
also consider the display of statistic data, and so on.

The nature of the implementation is completely different. In the accompanying
TicTacToe source code (see the Appendix), the implementation contains sll actions related to
the winning strategy adopted. This is done by examining, at each gystem’s turn, an 8x3 matrix
used to represent all winning configurations, and which is updated each time a position is
played.

In systems like these, interface and implementation must clearly correspond. In this
example, the interface sends to the implementation the position played by the user, and
receives back an answer, to display in the game matrix. Since the interface knows game
buttons, and the implementation knows winning configuration positions, data must be
transformed along the way. Here lies a crucial decision in the design of interface driven
programs: how and where to convert data in the interface-implementation path. Inthe
following paragraphs some solutions to this question are examined. The importance of this
consideration lies in the fact that the higher the degree of coupling between interface and
implementation, the smaller the possibility of reuse of any of these parts, and the higher the
maintenance c¢osts for the system.

Solution 1: mutual knowledge

One solution would be the construction, both in the interface and in the implementation,
of special conversion routines, to be invoked when a change of worlds is about to happen. In
this way one could increase the degree of independence bstween interface and implementation,
allowing the connection of a single interface to several possible implementations, and
vice-versa, at the reduced cost of changing only the conversion routines. The diagram below

4

illustrates this solution, which contains the highest degree of coupling among the ones to be
presented:

n buflons: 1.9
.\ |
conversion n
7(INTERFACE
i \Z IMPLEMENTATION
",
conversion

L
winning configuration molrix (8]
. i 1.8

jo 1.3

In this solution, if an interface button must be converted to an i,j pair of implementation
coordinates, then we would need an implementation conversion routine which receives a button
i and produces the corresponding pair. Moreover, this routine would have to be invoked from -
within the interface code, which is executing when the need for this conversion arises. It
follows that the interface would have to know the name of an object of the implementation
class, the receiving object for this conversion routine. Symmetrically, the implementation
must also know some interface object, which could then receive the application of some
interface conversion routine that would discover a button from a pair of coordinates.

Unfortunately this symmetry in design is not well represented in programming
-languages (of any nature), including TOOL: the composition mechanism for the construction
of object structures allows us to declare, for example, an implementation field in some ,
interface class, making this field known to the interface; but we would not be able to declare

the opposite situation as well.

We can solve this cross-referencing problem, and break up this need for symmetry, by
choosing a preponderant part between interface and implementation. In the second solution

that follows, this approach is discussed, and a corresponding TOOL program model is
presented.

Solution 2: favored knowledge

In this second solution, the interface classes, perhaps by being in direct contact with the
user, or by being the intermediaries between the user and the realization of their wishes, are
favored with knowledge: they know the implementation, which they must activate to carry out

5

user wishes. The reverse is not true, however: the implementation does not know the interface
it is working for. This asymmetric situation is illustrated in the diagram below.

» n INTERFACE

ISR MENTATION
converaion

L

In TOOL this specialization of knowledge would be acted out by two objects: the main
interface class object, automatically created by the system, and an object of the main
implementation class, created as a component of the interface class object, and therefore known
to the interface. When the need for a button-coordinates conversion arises, the interface would
apply to the known implementation objest a conversion routine defined in the implementation.
This routine would return to the interface the position of the button to be played by the system.

. We argue that, even though the degree of decoupling has been increased in this solution,
the fact that the interface object must know the name of the implementation object, and the fact
that the implementation must know interface details to convert button to coordinates and
vice-versa, still maintain the coupling between these parts at an unnecessarily high level (in the
third solution, presented below, both of these needs disappear).

The TOOL program skeleton helow illustrates this organization.

XCLASS MainInterface;

REPRESENTATION -- object structure.
-- typically control objects needed to construct the interface.

MainImplementation x; -- the known implementation object.
END REPRESENTATION

METHOD Main; -- execution starts here.

x <- CRBATE; -- creates the implementation object.
- X <- SetUp; -- or any such method,
-- prepares the implementation for execution.
X<~ .

6

END METHOD -- Main.

-- other Mainlnterface operations, containing for chlc x <- Play (ub, sb);
-- where ub is the user's button and sb the system's answer.

END XCLASS -- Mainlnterface.
-- other interface classes, if needed.

CLASS Msinlmplementation;
i:IE'IHOD SetUp;
END M.IETHOD -- SetUp.
METHOD Play (IN Button ub, OUT Button sb);
END M%IHOD -- Play.

-- other Mainlmplementation operations.

END CLASS -- Mainlmplementation.
-- other implementation classes, if needed.

In the skeleton above the interface knows x, the implementation object it creates. It is
then able to apply to x operations in x's class (the main implementation class), as for example
x <- SetUp and x <- Play (ub, sb). The implementation, through x, merely tcsponds to the
irterface objoct, without knowing its name (via parameter passing).

With this program organization the cross-referencing problem mentioned above has
been solved, and the quality of the design has been improved, due to the concentration of all
data-conversion routines in one part, the implementation part, However, the fact still remains
that the implementation must know interface details in order to convert data. We conclude
that concentrating the data-conversion burden in one part of the overall system would only
marginally increase the degree of decoupling between interface and implementation.

Solution 3: conversion classes

Another solution, suggested by the inadequacies of the ones above, would be the
construction of another set of classes, in fact conversion classes cont&.ining mainly routines to
carry out domain changcs In this solution, whenever a conversion is needed, a routine in this

- class is invoked, and the proper data is passed on to the proper domain, as shown in the diagram
below:

INTERFACE

[: | CONVERSION

IMPLEMENTATIDN
'J "'

- Inthis solution the need to know is concentrated in the conversion routines, the only
ones to be changed when decoupling is to take place. This already increases the degree of
independence between interface and implementation: neither needs to know the name and the
operations of the other.

The construction of a program structure to reflect this solution, in a first-generation
object-oriented language like Smalltalk or C++, wonld rely on return parameters placed in
conversion routines: for example, after the conversion from button to coordinates, this
conversion routine would expect, from the implementation, new coordinates to convert to the
system's button. In modern object-oriented languages, able to code message passing as object

chavior, however, an even higher decoupling can be obtained: both the interface and the
implementation, after discovering, respectively, the button or the coordinates played, can send
a message to their owner, an object of the conversion class, informing it of the option selected.
This message can in fact be sent without knowing the name of the conversion object, as shown
in the TOOL program skeleton below.

XCLASS DataConversion; -- the main class in the application.

REPRESENTATION
Interface f; -- the main interface object.
Implementation m; -- the main implementation object.

END REPRESENTATION

METHOD Main; -- execution starts here.
-~ local declarations, if needed.
BEGIN :
f<-CREATE; --to establish ownership: the DataConversion object
m <- CREATE; -- created by the system receives messages from f and m.

8

f <- Initializc; -- to create an interface on the screen.
m <- Initialize; -- to create internal data structures.

END METHOD -- Main.
'HANDLER FROM f FOR ButtonToCoord (Button b);
-- to trap the message ButtonToCoord sent by the interface.
BEGIN
-- find coordinates 1,j from buttonb. .
v m <- Play (i,j); -- sends the corresponding pair to the implementation.
END HANDLER -- f:ButtonToCoord.
HANDLER FROM m FOR CoordToButton (Pair p);
-- to trap the message CoordToButton sent by the implementation.
BEGIN : :
.- find button b from the pair p of coordinates.
f <- Mark (b); --sends the corresponding button to the interface.
END HANDLER -- m:CoordToButton.
-- other methods and handlers, if needed.
END XCLASS -- DataConversion.
XCLASS Interface;
MESSAGE -- to be sent to owner.
ButtonToCoord (Button);
END MESSAGE
METHOD Initialize;
END METHOD -- Initialize.
METHOD Mask (Button b);
. END METHOD -- Mark.

-- other routines, if needed, containing the message sending statement
.. OWNER <<- ButtonToCoord (b), issued when & user button is marked.

END XCLASS -- Interface.
XCLASS Implementation; .

MESSAGE -- to be sent to owner.

CoordToButton (Pair);
END MESSAGE

METHOD Initialize;

PN WMUTIOD -~ Imtielize,
METHOD Play (Pair p);
END METHOD -- Play.

-- other routines, if needed, containing the message sending statement
-- OWNER <<- CoordToButton (p), issucd when a user position is played.

END XCLASS -- Implementation.

In the next paragraphs the skeleton above is described. Execution starts, as mentioned
before, with the creation, by the TOOL system, of an object of the Conversion class, indicated
as the main class during program construction. We shall call this distingnished object sysobj.
The structure of sysobj, as indicated in the declaration of the Conversion class, is a composition
of an Interface object f and of an Implementation object t. Once sysobj is available, the
Conversion method Main is applied to it, again by the TOOL system.

Within Main the objects f and t are created. This establishes ownership: sysobj will
receive all messages sent by both f and t to their owners. Once f and t are created, they receive
the application of initialization methods in the corresponding classes. These initialization
methods typically display a first interface and prepare internal implementation data structures.
Since this concludes the application of Main to sysobj, the program rests, waiting for the user
to press a button, thus starting the game.

The choice of a button by the user generates actions that affect both the interface and
the implementation. In the interface, this button must be marked as belonging to the user.
Clearly the interface should be responsible for this action: it concerns its own internal
structures, and no domain change is necessary. Once this marking occurs, however,
implementation actions must be executed: the system must respond. At this time, using the
generic message passing capabilities of TOOL, the interface object f sends a message to its
owner (unknown to f), advising it as to the button played by the user. It should be noted that
the only information sent along with the message is the button played, and that no result of this
message is expected by the interface. g

At this time the interface rests, having done its job. Eventually sysobj will receive this
message, and the actions specified in the corresponding message handler will take place.
Initially, the corresponding implementation coordinates are found; once they are available, the
implementation object t receives the application of the method Play. Play receives a pair of
user coordinates and produces a pair of system coordinates, corresponding to some (unknown
to the implementation) button in the interface. Again the results produced are passed to the

10

generic owner via an asynchronous message, and not through parameter passing (more
comments on this choice of communication mechanism in section 4 below),

At this point it is hopefully possible to see the communication pattern of the system:

once either the interface or the implementation produces a result, a message is sent to their
ovior, paseing thic result; having teansleted the information recsived, the owaier pagses on
adequate domain information. The diagram below illustrates this pattern.

1 Mark INTERFACE
e

{
N R
l BullonToCoord ' CoordicBuiion TONVERSION
J— —_— — ___A...._ -}
i
¥ .

b

I

Piay

1
Ie
: IMPLEMENTATION

4, Conclusions

In the long section above three solutions to the interface-implementation decoupling

problem were presented. The decoupling level increased as we progressed along.
Summarizing the solutions obtained, we can state the following;:

L3

&

solution 1 is inadequate from all points of view, having in fact been presented to create
atmosphere, so to speak.

solution 2 is adequate, being the one basically adopted both in the MVC [KP 88, VPCCB
91] and in the ADV-ADT [CILS 92] methodologies. In it the client-server approach is
clearly identified: in our example, the implementation serves its client interface by
producing the button played by the system. However, the client (the interface) must
know the name of the server (the implementation), and the server must know internal
structures of the client. :

solution 3 presents a higher decoupling degree, since both the interface and the
implementation serve a common client, a conversion object, without the need to know
either its name or its internal details. This is possible with message passing and the use
of a generic message receiver, namely the owner of the message sending objects. This
totally decouples both the interface and the implementation from the system where
included, thus allowing their insertion in other systems with greater ease.

We mentioned in the beginning of this report that a large body of programming systems

involving object orientation, graphical user interfaces and message passing is expected to be

11

conatructed in this decade. We have scen, considering the case study above, the advantage,
from the design point of view, of dealing with message passing mechanisme at a higher level
than that usnally found in most object oriented systems today. And yet it secms only natural to
consider the handling of messages as part of object behavior, and as a consequence to include
inthe proper programming unit, the class, operations to inplement this beluvior .

For suppose, in this next to last paragraph, that we had only methods available, with
their vsual semantics (that of procedures and/or functions). How could we decouple interface
and implementation in such a programming model? The answer would have to be by trying to
create, in the conversion class, methods to translate data between domains. But this would
imply in a strict control enforced by the conversion class, with the corresponding saving of
return addresses on the execution stack. Moreover, this would imply in the passing of
parameters back and forth, increasing the coupling among conversion, interface and
implementation, But finally, as a last argument, this would deny the very nature of interface
driven programs: asynchronism is a built-in feature of such systems, being the natural
participating way for their users.

We conclude with our favorite bumper-sticker:

TOOL PROGRAMMERS DOIT ASYNCHRONOUSLY.

12

BIBLIOGRAPHY

[CARV 92} Carvalho, S., "TOOL: a Shert Description”, Monografias em Cigncia da
Computagio, n. 25/92, Departamento de Informatica, PUC/RJ.

[CILS 92] Cowan, D, lerusalimschy, R., Lucena, C., Stepien, T., "Abstract Data Views”,
Technical Report 92-07, University of Waterloo, Computer Science Department, Waterloo,
Ontario, Feb 92. : :

[KP 88] Krasner, G., Pope, S., "A Cookbook for Using the Model View Controller User
Interface Paradigm in Smalitalk 80", JOOP Aug-Sept 88, pp 26-49.

[LCIS 92] Lucena, C., Cowan, D. Ierusalimschy, R., Stepien, T., "Application Integration:
Constructing Composite Applications from Interactive Components”, Technical Report,
University of Waterloo, Computer Science Department, Waterloo, Ontario, March 92.
[SPA 92] SPA Sistemas Plancjamento ¢ Anilise, "TOOL: the Language", Apr 92.
[VPCCB 91] Vecchio, L., Pimenta, M., Cabral, R., Campos, L., Bonelli, A., "OParadigma

Model Pane Dispatcher sem Ligrimas”, Relatério Técnico 017/91, Departamento de Ciéncia da
Computagdo, UFMG, 1991.

13

APPENDIX

o i e e e e et e a8 S e G A e LB S n S e I e e 8 B O B 2 B ok B P e B B O e e B e e e e e e

..

REPRESENTATION
TTTInter intf;
TTTImpl impl;

END REPRESENTATION

METHOD Main,

BEGIN
intf <- CREATE;
intf <- SetUp;
impl <- CREATE;
impl <- SetUp;

END METHOD -- Main.

HANDLER FROM intf FOR ButtonToCoord (SHORT pos);
SHORT ulin, ucol;
BEGIN
CASEpos
WHEN 1 THEN ulin := 1; ucol :=1;
WHEN 2 THEN ulin := 1; ucol :=2;
WHEN 3 THEN ulin := 1; ucol :=3;
WHEN 4 THEN ulin ;= 2; ucol := 1,
WHEN 5 THEN ulin := 2; ucol :=2;
WHEN 6 THEN ulin := 2; ucol := 3;
WHEN 7 THEN ulin := 3; ucol i=1;
WHEN 8 THEN ulin := 3; ucol :=2;
WHEN 9 THEN ulin := 3; ucob = 3;
END CASE '
impl <- PlayButton (ulin, ucol);
END HANDLER -- intf:ButtonToCoord.

HANDLER FROM intf FOR ResetImpl;
BEGIN

| impl <- Reset; :
END HANDLER -- intf:ResetImpl.

14

HANDLER FROM imp! FOR CoordTeButton (SHORT i, SHORT j, STRING m);
SHORT pos;
BEGIN
CASE 1 :
WHEN 1 TIIEN pos :=j;
WHEN 2 THEN pos:=2*1+j-1;
WHEN 3 THEN pos :==2 *1+j;
ELSE pos :=0;
END CASE
intf <- MarkButton (pos, m);
END HANDLER -- impl:CoordToButton,

END XCLASS -- TTTConv.

-- INTERFACE

XCLASS GamcButton;
-- Models pushbuttons that know their positions.

REPRESENTATION
PushButton pb;
SHORT pos;

END REPRESENTATION

MESSAGE :
GBClicked (SHORT);
END MESSAGE

HANDLER FROM pb FOR Clicked (SHORT ¢);
BEGIN v

OWNER <<- GBClicked (pos);
END HANDLER -- pb:Clicked.

METHOD GBInitialize (IN SHORT x, IN SHORT y,
IN SHORT dx, IN SHORT dy,
' ID Window POLY parent, IN SHORT p);
BEGIN
pb <- CREATE;
pb <- PushButtonlInitialize (x, y, dx, dy,
" ¥ TRUE, parent);
pos i=p;
END METHOD -- GBInitialize.

15

METHOD GBShow;
BEGIN

pb <- Show;
END METIIOD -- GEShow,

METHOD GBGetText RETURNS STRING m;
BEGIN

m = pb <~ GetText;
END METHOD -- GBGetText.

METHOD GBSetText (IN STRING m);
BEGIN

pb <- SetText (m);
END METHOD -- GBSetText.

- END XCLASS -- GameButton.

XCLASS TTTInter;

REPRESENTATION
Window POLY w;
Brush b;
Push Button new_game, end_game; -- reset and end game,
Static 8; -- for user messages.
GameButton bl, b2, b3,

b4, b5, b6,
. b7, b8, b9; -- the 3 * 3 matrix.

SHORT Spos; -- gystem's play position.
STRING m; -- message to user,

END REPRESENTATION

MESSAGE
ButtonToCoord (SHORT);

' ResetImpl; '

END MESSAGE

METHOD SetUp;

BEGIN
w <- CREATE;
w <- Initialize(OVERLAPPED_WINDOW, "TicTacToe",

10, 10, 500, 300, NULL);

b <- CREATE;

b <- StockBrushlInitialize(GRAY_BRUSH);
w <- SetBackgroundBrush(b);

16

8 <- CREATE; .
5 <- Staticlmtishize(CHILD, CENTER, ",
20, 20, 200, 30, w);

noev e <. CREATE:
end_game <- CREATE,;
new_game <- PushButtonlnitialize(250, 20, 100, 30, "new game",
. TRUE, w);
end_game <- PushButtonInitialize(350, 20, 100, 30, "end game”,
' FRUE, w);

bl <- CREATE;

bl < GBImtxahzc (200, 100, 30, 30, w, 1)
b2 <- CREATE;

b2 <- GBInitialize (230, 100, 30, 30, w, 2);
b3 <- CREATE;

b3 <- GBlnitialize (260, 100, 30, 30, w, 3);
b4 <- CREATE;

b4 <- GBlnitialize (200, 130, 30, 30, w, 4);
b5 <- CREATE;

b5 <- GBInitialize (230, 130, 30, 30, w, 5);
b6 <- CREATE;

b6 <- GBInitialize (260, 130, 30, 30, w, 6);
b7 <- CREATE;

b7 <- GBInitialize (200, 160, 30, 30, w, 7);
b8 <- CREATE;

b8 <- GBInitialize (230, 160, 30, 30, w, 8);
b9 <- CREATE;

b9 <- GBInitialize (260, 160, 30, 30, w, 9); .

bl <- GBShow;
. b2 <- GBShow;
" b3 <- GBShow;
- b4 <- GBShow;
b5 <- GBShow;
b6 <- GBShow;
b7 <- GBShow;
b8 <. GBShow;
b9 <- GBShow;
new_game <- Show;
end_game <- Show;
8 <- Show;
, w <- Show;
END METHOD -- SetUp.

17

BANDLER FROM b1, 52, b3, b4, b5, b6, b7, b&, b\
FOR GBClicked (SHORT upos);
GamceButton gb;
BEGIN
ehow CREATE,

-- 1dentify game button:

CASE upos ,
WHEN 1 THEN gb <- SAME (b1);
WHEN 2 THEN gb <- SAME (b2);
WHEN 3 THEN gb <- SAME (b3);
WHEN 4 THEN gb <- SAME (b4);
WHEN 5 THEN gb <- SAME (b5);
WHEN 6 THEN gb <- SAME (b6);
WHEN 7 THEN gb <- SAME (b7);
WHEN 8 THEN gb <- SAME (b8);
WHEN 9 THEN gb <- SAME (b9);

END CASE

-- if not played before, mark and play this button:
IF (gb <- GBGetText) <"
THEN 5 <- SetText ("Position played. Try again...");
ELSE
g <- SetText ("Please wait. My turn...");
gb <- GBSetText ("U");

-- advise owner, requesting conversion:
OWNER <<- ButtonToCoord (upos);
_ ENDIF
END HANDLER -- b1...b9:GBClicked.

HANDLER FROM new_game FOR Clicked(SHORT enum);
BEGIN _
g <- SetText("New game. Your turn...”);
bl <- GBSetText ("");
b2 <- GBSetText (");
b3 <- GBSetText (";
b4 <- GBSetText ("");
bS <- GBSetText (");
b6 <- GBSetText (");
b7 <- GBSetText ("");
b8 <- GBSetText (");
b9 <- GBSetText (");
OWNER <<- Resetlmpl;
END HANDLER -- new_game:Clicked.

18

HANDLER FROM end_game FOR Clicked(SHORT enum);
BEGIN
SELF.s <- SctText ("Thank you.");
bl <- GBSctText ("');
b2 <o GHSuiText (")
b3 <- GBSetText ("),
b4 <- GBSetText ("');
b5 <- GBSetText (");
b6 <- GBSetText ("),
b7 <- GBSetText ("');
b8 <- GBSetText ("),
b9 <- GBSetText (");
OWNER <<- ResetImpl;
END HANDLER -- end_game:Clicked.

METHOD MarkButton (IN SHORT spos, IN STRING m);
BEGIN
IF spos <> 0 THEN -- mark system button:
CASE spos » :
WHEN 1 THEN b1 <- GBSetText("'S");
WHEN 2 THEN b2 <- GBSetText("S");
WHEN 3 THEN b3 <- GBSetText("S");
WHEN 4 THEN b4 <- GBSetText("'S");
WHEN 5 THEN b5 <- GBSetText('S");
WHEN 6 THEN b6 <- GBSetText("S");
WHEN 7 THEN b7 <- GBSetText("S");
WHEN 8 THEN b8 <- GBSetText("S");
WHEN 9 THEN b9 <- GBSetText("'S");
END CASE '
ENDIF
-- send message to user:
8 <- SetText (m);
END METHOD -- MarkButton.

END XCLASS -- TTTlInter.

-- IMPLEMENTATION
CLASS Cell;
PUBLIC REPRESENTATION
SHORT pos, nextl =0, nextc := 0,
firstl, firstc;
END REPRESENTATION
END CLASS -- Cell.

19

XCLASS TTTImpl;

REPRESENTATION
ARVRAY gane O [E 3] Celly - winnimg combimation:
ARRAY mark OF |8, 3] CHAR; -- positions played.
END REPKRESENTATION

MESSAGE :
. CoordToButton (SHORT, SHORT, STRING);
END MESSAGE

METHOD Reset;
' SHORT l:=1,¢:=1;
BEGIN : :
LOOP
LOOP
mark {I, ¢} ="
EXIT WHEN ¢ =3;
ci=c¢c+1;
END LOOP
EXIT WHEN | = 8;
Te=141;
ci=1
END LOOP
END METHOD -- Reset,

METHOD SetUp;
BEGIN
SELF <- Reset;
' game[1,1].pos:=1; game[1,1].nextl:=4; game[1,1].nextc:=1;
game[1,1] firstl:i=1; game[1,1] firstc:=1;
game[1,2].pos:=2; game[1,2].nextl:=5; game[1,2] nextc:=1;
game[1,2] firstl:=1; game[1,2] firsto:=2;
game[1,3].pos:=3; game[1,3].nextl:=6; game[1,3].nextc:=1;
game[1,3] firstl:i=1; game[1,3] firstc:=3;
game[2,1].pos:=4; game[2,1].nextl:=4; game[2,1].nextc:=2;
game[2,1] firstl:=2; game[2,1] firsto:=1;
game[2,2].pos:=5; game[2,2].nextl:=5; game[2,2] nextc:=2;
game[2,2] firstl:=2; game[2,2] firstc:=2;
game[2,3].pos:=6; game[2,3].nextl:=6; game[2,3].nextc:=2;
game[2,3] firstl:=2; game[2,3] firstc:=3; ‘
- game[3,1].pos:=7; game[3,1].nextl:=4; game[3,1].nextc:=3;
- game[3,1]firstl:=3; game[3,1] firstc:=1;
game[3,2].pos:=8; game[3,2].nextl:=5; game[3,2].nextc:=3;

20

- game[3,2] firstl:=3; game[3,2] firstc:=2;
game[3,3].pos:=9; game[3,3].nextl:=6; game[3,3] nextc:=3;
game[3,3] firstl:=3; game[3,3] firstei=3;
game[4,1].pos:=1; game[4,1].nextl:=7; game[4,1].nextc:=1;
game[4,1] firstl:=1; game[4,1] firste:=1;
game[4,2] pos:=4; game[4,2] nextl:=0; game[4,2].nextc:=0;
game{4,2) firstl:=2; game[4,2] firstci=1;
game[4,3].pos:=7; game[4,3] .nextl:=8; game[4,3].nextc:=3;
game[4,3] firstl:=3; game[4,3] firstc:=1;
game[5,1].pos:=2; game[5,1].nextl:=0; game[S5,1].nextc:=0;
game[5,1].furstl:=1; game[5,1] firste:=2;
game[5,2].pos:=5; game[5,2].nextl:=7; game[5,2] nextc:=2;
game[5,2] firstl:=2; game[5,2] firstci=2; -
game[5,3].pos:=8; game[5,3] nextl:=0; game[3,3].nextc:=0;
game[5,3] firstl:=3; game[5, 3].ﬁrstc =2;
game[6,1].pos:=3; game[6,1]nextl:=8; gamc[G,l].nexto:==1;
gamc[G,l]fxrstl:=1; game[6,1].firstc:=3;
game[6,2].pos:=6; game[6,2] nextl:=0; game[6,2] .nextc:=0;
game[6,2] firstl:=2; game[6,2] firstc:=3;
game[6,3].pos:=9; game[6,3].nextl:=7; game[6,3].nextc:=3;
game[6,3] firstl:=3; game[6,3] firstc:=3;
game[7,1].pos:=1; game[7,1].nextl:=0; game[7, l]ncxtc =0,
game[7,1].firstl:=1; game{7,1] firstc:=1;
game[7,2] pos:=5; game[7,2] nextl:=8; game[7,2].nextc:=2;
gamef7,2] firstl:=2; game[7,2] firstci=2;
game[7,3].pos:=9; game[7,3] nextl:=0; game[7,3].nextc:=0;
gamej7,3] firstl:=3; game{7,3] firstc:=3;
game[8,1].pos:=3; game[8,1] nextl:=0; game[8,1].nexic:=0;
game[8,1] firstl:=1; game[8,1] firstc:=3;
game[8,2].pos:=5; game[8,2] nextl:=0; game[8,2]nextc:=0;
game|8,2] firstl:=2; game[8,2] firstc:=2;
game[8,3].pos:=7; game[8,3].nextl:=0; game[8,3].nextc:=0;
game[8,3] firstl:=3; game[8,3] firstc:=1;
END METHOD -~ SetUp.

METHOD PlayButton (IN SHORT ulin, IN SHORT ucol);
SHORT slin, scol; -- system coords.
STRING s;

BEGIN
-- record user's choice:

SELF <- RecordChoice (ulin, ucol, 'U’);
-- test user's win:
IF SELF <- Win ('U") THEN
OWNER <<- CoordToButton (0, 0,
"You winy congratulations!™);
RETURN;

21

ENDIF
-- find system position:
SELF <- FindSysPos (slin, scol);
-- game over, it's a tie:
IF slin= 0 THEN
OWNER «<<- CoordToRutton (0, 0,
"It's a tie. Choose new or end game.");
RETURN;
ENDIF
-- record system position:
SELF <- RecordChoice (slin, scol 'S
IF SELF <- Win ('S") THEN .
s == "System wins. Choose new or end game.”;
ELSE
8 = "Your tirn ...7;
ENDIF
OWNER <<- CoordToButton (slin, scol, 5);
END METHOD -- PlayButton.

PRIVATE METHOD RecordChoice W\
(IN SHORT lin, IN SHORT col, IN CHAR player);
SHORT |, ¢; -~ local line, column,
SHORTLk; --temp for line.
BEGIN
 l=linj ¢ :=col;
-- record choice in all configurations:
LOoOP
mark{l, ¢] := player;
-- find next configuration:
k := gamefl, ¢].nextl;
RETURN WHEN k = 0;
¢ = game[l, ¢} nextc;
1:=k;
END LOOP
END METHOD --RecordChoice.

'PRIVATE METHOD Win (IN CHAR player) RETURNS BOOLEAN w;

- SHORT | :=1;
BEGIN
w = FALSE;
LOOP
IF mark[l, 1] = player AND\\
mark([l, 2] = player AND W\
mark[l, 3] = player
THEN w := TRUE; RETURN;
END IF

22

RETURN WHEN | = §;
I=1+1;
END LOOP
END METHOD -- Win.

PRIVATE METHOD FindSysPos (OUT SHORT slin, OUT SHORT scol);
BEGIN
slin := 0; scol == 0;
-- try winning config:
SELF <- FindConfig (S','S’, ', slin, scol);
RETURN WHEN slin <> 0;
-- avoid losing:
SELF <- FindConfig (U, 'U’, ', slin, scol);
RETURN WHEN slin < 0;
-- try to win:
SELF <- FindConfig ('S','', ', slin, scol);
RETURN WHEN slin <> 0;
-- find any position:
slin = 1;
LOOP
scol == 1;
LOOP
RETURN WHEN mark{slin, scol] ='";
EXIT WHEN scol = 3;
scol = scol + 1;
END LOOP
EXIT WHEN slin = 8;
slin i=slin+1;
END LOOP
-- game over, all positions played:
slin := 0; scol :=0;
END METHOD -- FindSysPos.

PRIVATE METHOD Fdeonug (IN CHAR ¢1, IN CHAR ¢2, IN CHAR ¢3,
OUT SHORT slin, OUT SHORT scol);
SHORT I; -- local line.

BEGIN
f:=1;
LOOP
IF (mark{],1] =c1 AND\

mark[[,2] =¢2 ANDW
mark[1,3] = ¢3) OR\
(mark{1,1]=¢2 AND\\
mark[1,2] = ¢l ANDW

mark[1,3] =¢3)
THEN slin := game[l,3] firstl;

23

scol = game[l,3] firstc;
RETURN;
ENDIF
IF (mark[1,1] = c1 AND \\
mark[1,2] = ¢3 AND\\
mark[],3] = ¢2) OR\\
(mark[1.1] =¢c2 AND\\
mark[1,2] = ¢3 AND\\
mark[1,3] =c1)
THEN slin := game[l,2].firstl;
scol 1= game[l,2] firstc;
RETURN;
ENDIF .
IF (mark[1,1] =¢3 AND\\
mark{1,2] = ¢2 ANDW
mark[1,3] =¢1) ORW\
(mark[1,1] =<3 AND\\
mark[1,2] = c1 AND\\
mark[1,3] = ¢c2)
THEN slin = game[l,1].firstl;
- scol := game[l,1].fursts;
RETURN;
ENDIF
RETURN WHEN 1 = 8;
1=1+1;
END LOOP
slin := 0; scol 1= 0;
END METHOD -- FindConfig,

END XCLASS -- TTTImpl.

24

