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Abstract

The process of implementing a formal specification on another one
is very important in formal software development and can be
described in terms of simple logical concepts as an interpretation
into a conservative extension. An extension consists of the addition
of new symbols and axioms, a simple, but important, special case
being the so-called extensions by definitions. The new symbols to
be introduced correspond to sorts, functions or predicates.
Extensions by the addition of function and predicate symbols are
well studied in the literature.

Our purpose here is to analyse conservative extensions that
introduce new sorts. This is of importance because it occurs often in
implementing formal specifications, when new sorts are
“constructed” from the concrete ones.

We specify and analyse some well-known sort introduction
constructs akin to those found in programming languages, namely
cartesian product, discriminated union, subsort and quotient. In
each case the extension is shown to have unique, up to
isomorphism, expandability and to be conservative; moreover the
new sort is shown to exhibit the desired behaviour. Also, the new
sort is connected to the old ones by means of conversion functions.
Some derived properties are also established.

Key words:
Formal specifications, software development, formal methods, sort
introduction, conservative extension, cartesian product,
discriminated union, subsort, quotient, formal logic, universal

property.
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Resumo

O processo de implementar uma especifica¢ao formal em outra é de
grande importancia no desenvolvimento formal de programas,
podendo ser descrito em termos de conceitos 16gicos simples como
uma interpretacdo em uma extensao conservativa. Uma extensao
consiste do acréscimo de novos simbolos e axiomas, um caso especial
simples, porém importante, sendo as extensoes por definicdes. Os
novos simbolos a serem introduzidos correspondem a sortes,
funcoes ou predicados. Extensdes por acréscimo de simbolos de
funcio e de predicado estio bem estudadas na literatura.

Nosso objetivo aqui é analisar extensdes conservativas que
introduzem novos sortes. Isto é importante pois ocorre com
freqiiéncia na implementagao de especificagcoes formais, quando
novos sortes sao “construidos” a partir dos concretos.

Alguns mecanismos de introducdo de sortes similares aos
encontrados em linguagens de programacao - produto cartesiano,
unido discriminada, subsorte e quociente - sao especificados e
analisados. Em cada caso se mostra que a extensao tem a
propriedade da expansividade tnica, a menos de isomorfismo, sendo
conservativa; enquanto o novo sorte exibe o comportamento
desejado. O novo sorte se liga aos antigos por meio de fungoes de
conversio. Algumas propriedades derivadas sao estabelecidas.

Palavras chave:
Especificagdes formais, desenvolvimento de programas, métodos
formais, introducdo de sortes, extensdo conservativa, produto
cartesiano, unido discriminada, subsorte, quociente, 16gica formal,
propriedade universal.
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1 Introduction

The process of implementing a formal specification on another one is very important
in formal software development and it can be described in terms of simple basic
logical concepts.

Formal specifications are presentations of theories in many-sorted logic, and
an tmplementation of a formal specification A on another formal specification C
amounts to an interpretation of A into a conservative extension B of €. The idea
here is that the ‘concrete’ specification C' is extended so as to incorporate versions
to which the abstract symbols of A can then be mapped, [TM87, Vel87].

An extension consists of the addition of new symbols and axioms; a simple, but
important, special case being the so-called eztensions by definitions. The new sym-
bols to be introduced correspond to sorts, functions or predicates. Extensions by
the addition of function and predicate symbols are well studied in the literature. In
particular, extensions by definitions of function and predicate symbols are charac-
terized by the property of unique expandability, which entails conservativeness and
eliminability [Sho67].

Our purpose here is to analyse conservative extensions that introduce new
sorts. This is of importance because it occurs often in implementing formal specifi-
cations, when new sorts are “constructed” from the concrete ones. We first specify
and analyse some well-known sort introduction constructs, akin to those found in
programming languages ([Hoa74]), namely cartesian product, discriminated union,
subsort and quotient. In each case the extension is shown to have unique, up to
isomorphism, expandability and to be conservative, which corroborates the intu-
itive feeling that these amount to extensions by definition of a new sort. Moreover,
the new sort is shown to exhibit the required behaviour. In the context of imple-
mentation of formal specifications, the new sorts introduced should be somehow
‘connected’ to the old ones. This is what our intuition requires and is what happens
in the case of the four constructs examined.

In section 2 we shall provide formal specifications for each one of these four
constructs by axiomatising their usual descriptions.

In section 3 we establish the adequacy of these specifications by showing that
they capture the intended behaviour; this is done by characterising their models and
showing that the extensions are conservative, monomorphic, invariant under isomor-
phisms and present the functorial character to be expected from these constructs.

2 Constructs for introducing new sorts

In this section we present formal specifications for the four usual constructs for sort
introduction: cartesian product, subsort, discriminated union and quotient.
The specifications for the first three constructs are axiomatisations of their usual



description [Hoa74, Vel87]. While the specification for the last one axiomatises the
construction of the quotient with its natural projection.
Later on we shall establish some properties of these specifications.

2.1 Cartesian Product

Let T be a specification with two sorts Sy, S2. Then, a specification of the cartesian
product of these two sorts is:

=T+
sort o
operations  py:C — 5
p2:C— 5
axioms

e Vz;: 51V:172 : 52 3y :C pl(y) =I APZ(y) = T2

o Vy,y': C p(y) =py)Ap(y) =m(y) =y =y

These axioms make C behave as the cartesian product of S; and S, as will be
shown.

Indeed, in the next section, we will show that, in any model of T’, the new sort
may be regarded as consisting of the ordered pairs < aj,a; > of elements of the
given sorts.

2.2 Subsort

Let T be a specification with a sort S and an unary (relativisation) predicate r over
S (r points which elements of S are in the subset N of S) such that T |z 3z : S r(z).
Then, a specification of the subsort N of the sort S in according with r is:
T'=T+

sort N

operations j: N — §

axioms

e Vz:S r(z) < Jy:N z=j(y)
o Vy,y': N j(y) =i(y) =y =y

These axioms force N to behave as the set of elements of S selected by r.

In fact, as will be shown in the next section, in any model of T’, the new sort can
be regarded as consisting of those elements of sorts that satisfy the relativisation
predicate.

Note that if we already have the sorts S, N and the function symbol ; then we
can introduce the predicate symbol r by definition (as the image of the function j).
But we cannot define N solely from S and r.



2.3 Discriminated Union

Let T be a specification with two sorts Sy and S;. Then, a specification of the
(discriminated) union of these two sorts is:

T =T+
sort U
operations 1hw:5 -U
ig . Sz - U
axioms

Yu:U (3z1: 5 u=d(z1))V(3zz: S u=1iy(zy))

® V:ZI1 . Sl V.’Eg . 52 i]((l)l) 7£ iz(.’tz)
o Vz,z': S 1(z)=i(z") =z =1

o Vy,y' 1 S; L(y) =i(y) >y =y

These axioms make U exhibit the behaviour of the discriminated union of S;
and S,, as will be shown.

Indeed, in the next section we will show that the new sort in a model of T’ may
be viewed as the discriminated union of the given sorts.

2.4 Quotient sort

Let T be a specification with a sort S and a binary predicate ¢ over S, which is
proved in T to be an equivalence relation. Then, a specification of the quotient sort
Q of the sort S by the relation ¢ is:
=T+

sort Q

operations p:S — Q

axioms

e Vz,z': S ¢(z,2') < p(z) = p(z')
o Vy:Q Jz:5 p(z)=y

The axioms state that g is the kernel of the function p and also p is onto.

We will show in the next section that the new sort in a model of T’ can be
regarded as consisting of the equivalence classes of the elements of the given sort
under the equivalence relation.

Note that if we have sorts S and Q and a surjective p : S — @ then we can
introduce ¢ by definition via the first axiom, but we cannot define sort @ only from
S and q.

Also, by introducing such a quotient sort one can normalise any equivalence
relation g over sort S to true identity over Q.



3 Adequacy of the specifications

In this section we establish some model theoretic properties of the specifications

presented in Section 2.
For each one of the four specifications, we examine their models, which leads to:

e their characterisation, showing that the new sort indeed exhibits the desired
behaviour.

e the invariance under isomorphism and the functorial character ([HS73]) of the
constructs specified.

These results indicate the adequacy of the specifications in capturing behaviour that
is to be expected from the intuitive view of these sort introducing constructs.

We shall examine each construct in turn in the following four subsection.

We shall use T to stand for the specification of the given theory, where a new
sort is to be introduced, and T’ for the extended theory, with the new sort and its
accompanying conversion functions. Also, L stands for the language of the specifi-
cation T, and L' for the language of T". Given a structure A’ for the language L',
we use A = A'/L to denote its reduct to the sublanguage L.

Finally, given a function h defined on a many-sorted structure A, we use hs to
denote its restriction to sort S4.

3.1 Cartesian product

In this subsection, T and T’ are the specifications in subsection 2.1.

The next result characterises the models of T’. It shows that the new sort may
be regarded as consisting of the desired ordered pairs and behaves as (categorical)
product ([HS73]) of the given sorts.

Theorem 3.1.1 (Characterisation of Mod T’) A' = T’ iff, with A'/L = A,

1. AE T, and

2. there ezists a bijection b : C*" — S x St such that h(c) =< pi'(c),p (c) >.
Proof:

e To prove the direction left-to-right assume A’ = T" and A = A’/L.

1. Clearly AT

2. Consider the function h : C*' — S xS3' defined by the given assignment.
The two axioms of T’ establish its surjectivity and injectivity.

e To prove the direction right-to-left assume A |= T. Consider its expansion A
to a structure of L’ with C4* = S{* x S and its projections. Then, clearly
A* k= T'. The requirement in (2) implies that A" = A*, as L'-structures.
Therefore, A" = T".



Corollary 3.1.2 (Expansiveness) The extension T C T is ezpansive.
Corollary 3.1.3 (Conservativeness) The eztension T C T’ is conservative.

Proposition 3.1.4 (Invariance under isomorphism) Given A';, A, E T’ each
isomorphism between their reducts h : Ay — A, eztends (uniguely) to an isomor-
phism k' : Ay — A'z, i.e. the following diagram for the first projection and the
analogous one for the second projection commute

Proof:

For j = 1,2, since A'; |= T’, the characterisation result in theorem 3.1.1 states that
the mediating m; =< pf",pfl’ >: CA) — SlA’ X S;" is a bijection extending the
identity 1 : .4; — A; to an isomorphism &; : A’; — AJ. The given (iso)morphism
h: A, — A, can be extended to an (iso)morphism ~* : Af — A by the addition of
hs, xhs, : S{1x S — {2 x S, with hs, X hs, (< a1,a3 >) =< hs,(a1), hs,(az) >.

Existence: The composite h;*.h*.h; is an isomorphism A’ : A} — A’; with the
required commutativity.

Uniqueness: Given any g : A} — A’ with the required commutativity on the
new sort, we have

A A A
1 m |
C——L— 5 xS,
gcl hx h

Sy Sz
AI
A A
C 2
m, > Sl X52



whence ¢ agrees with h over the new sort, in view of the bijectivity of m, and
maq.

Corollary 3.1.5 (Monomorphic character) Given A1, A"y = T’ with A,/L =
A = A',/L, there ezists a (unique) bijection he : CAt — CA? extending the identity
to an isomorphism A’y = A';.

Notice that in the previous corrollary one cannot conclude A’y = A'; because the
objects of the new sort may have distinct representations in the two structures.

In fact we can extract a more general result from the construction in the proof
of Proposition 3.1.4.

Proposition 3.1.6 (Functorial character) Given A'y, A’y |= T, each homomor-
phism h : A; — A, between their reducts to L has @ unique eztension to an homo-
morphism b’ : A"y — A’

Proof:
It suffices to use the construction in the proof of proposition 3.1.4 and notice that
the assumed bijectivity of A was relied upon only for concluding that the resulting
k' is bijective.

Indeed, the following commutative diagram

A, 4 A
¢ m )
hi hxh

S Sz

2 2
m, > Sl XSZ

defines A’ uniquely on the new sort, because the mediating m; =< pf" ,p;” > are
bijective .

3.2 Subsort

In this subsection T and T’ refer to the specifications in subsection 2.2. Notice the

precondition T =3z : S r(z)

Theorem 3.2.1 (Characterisation of Mod T’) A’ = T’ iff, with A'/L = A,

1. A= T, and



9. there ezists a bijection h : NA' — r#, where r4 = {a € S* /| A E r(z)[a]},
such that h(c) = j*'(c).

Proof:
e To prove the direction left-to-right assume A’ = T’ and A = A'/L.

1. Clearly AT

2. Consider the function h : N4 — S4 defined by the given assignment.
The two axioms of T’ establish that, since k = j#', h is injective and its
image is the extension 4 of r in A

e To prove the direction right-to-left assume A E T, so r* # 0. Consider
its expansion A" to a structure of L’ with NA" = r# and its inclusion. Then,
clearly A’ = T". The requirement in (2) implies that A’ = A", as L'-structures.
Therefore, A" = T".

This result establishes that the new sort may be thought of as consisting of those
elements that satisfy the relativisation predicate. But, the elements of the new sort
may very well have a different representation. This possibly different representation
is one reason for the conversion fuction j : N — S. This is illustrated by the
(unsigned) naturals as a subsort of the (signed) integers.

Corollary 3.2.2 (Expansiveness) The extension T C T’ is ezpansive.
Corollary 3.2.3 (Conservativeness) The extension T C T’ 1s conservative.

Proposition 3.2.4 (Invariance under isomorphism) Given A'y, A'; = T', each
isomorphism between their reducts h : A; — A, extends (uniquely) to an isomor-
phism b’ : A"y — A'3, i.e. the following diagram commutes

: Al
A J Al

|
h !
|
'|
I\f‘a A




Proof:

For k = 1,2, since Ay = T’, the characterisation result in theorem 3.2.1 states that
the restriction ji : N*'* — r#* is a bijection extending the identity 1 : Ay — Ai
to an isomorphism g : A’x — Aj. The given (iso)morphism k : 4; — A; can be
extended to an (iso)morphism k" : A} — A} by the addition of h, : 741 — r#2, well
defined as the restriction of h (because A; = T).

Existence: The composite g;'.h".g; is an isomorphism A’ : A’} — A’; with the
required commutativity.

Uniqueness: Given any g : A'; — A’; with the required commutativity on the
new sort, we have

: A
J].rl

i

gi h
r

N®

J2

whence g agrees with h’ over the new sort.

Corollary 3.2.5 (Monomorphic character) Given A';, A"y E T’ with A'y/L =
A = A',/L, there ezists a (unique) bijection hy : NA» — NA2 estending the
identity to an isomorphism A’y = A';.

Again, notice that we cannot conclude A’y = A’; because of possibly different
representations.

Proposition 3.2.6 (Functorial character) Given Ay, A'; = T’ each homomor-
phism h : Ay — A; between their reducts to L has a unique ertension to an homo-
morphism b’ : A’y — A,

Proof:
It suffices to notice that the construction in the proof of proposition 3.2.4 does not
really need the bijectivity of A.

Indeed, the following commutative diagram



'
1

A .

N' b

hyl h = h/r4
r

ﬁ‘é

defines A’ uniquely on the new sort because the restrictions ji : N A 5 A are well
defined bijections.

3.3 Discriminated Union

In this subsection, T and T’ stand for the specifications in subsection 2.3.

The next result characterises the models of T°. It shows that the new sort may be
viewed as the disjoint union of the given sorts, as desired, and exhibits the behaviour
of their (categorical) coproduct ([HS73]).

Theorem 3.3.1 (Characterisation of Mod T’) A' = T iff, with A'/L = A,

1. AE T, and

2. there exists a bijection h : St + S5t — UA" such that h(a) = i{'(a) for each
a € S and h(b) = i3"(b) for each b€ S3.

Proof:
e To prove the direction left-to-right assume A’ = T' and A= A'/L.

1. Clearly A =T

2. Consider the function h : S{#i+S# — U4’ defined by the given assignment.
The four axioms of T’ establish its bijectivity.

e To prove the direction right-to-left assume A = T. Consider its expansion A*
to a structure of L' with U4 = S{* + S7' and its insertions. Then, clearly
At = T’. The requirement in (2) implies that A" = A*t, as L'-structures.
Therefore, A" = T".

Corollary 3.3.2 (Expansiveness) The eztension T C T’ is expansive.

Corollary 3.3.3 (Conservativeness) The extension T C T’ is conservative.

10



Proposition 3.3.4 (Invariance under isomorphism) Given A';, A"z = T, each
isomorphism between their reducts h : A; — A, extends (uniquely) to an isomor-
phism B' : A"y — A'y,ie. the following diagram for the first insertion and the
analogous one for the second tnsertion commute

Proof:

For k = 1,2, since A’y | T, the characterisation result in theorem 3.3.1 states
that the mediating ny = [if”‘lifl“] : SlA" + S — UA* is a bijection extending the
identity 1 : Ay — Ax to an isomorphism hy : A'x — A}, The given (iso)morphism
h: A; — A, can be extended to an (iso)morphism At : AT — A7 by the addition
of hs, + hs, : S{* + Sf* — S + 832, with (hs, + ks, )(ax) = hilax), if ax € SP°
for k =1,2.

Existence: The composite h;'.h*.h; is an isomorphism &' : Ay — A’; with the
required commutativity.

Uniqueness: Given any g : A1 — A’z with the required commutativity on the
new sort, we have

A A A
U'«—1— 5 45’
gul h+h
Y

A A
U , A
< n2 S1 +522



whence g agrees with h over the new sort, since n, and n, are bijective .

Corollary 3.3.5 (Monomorphic character) Given A}, A; = T’ with AL /L =
A = A'y/L, there exists a (unique) bijection hy : UA't — UA extending the identity

to an isomorphism A’y = A';.

Proposition 3.3.6 (Functorial character) Given A'y, A’; = T’ each homomor-
phism h : A; — A, between their reducts to L has a unique eztension to an homo-
morphism b’ : A’y — A';

Proof:
It suffices to notice that the actual construction in the proof of proposition 3.3.4 did
not rely on the bijectivity of h. Indeed, the following commutative diagram
Al A A
1 n |
U @<4——1— 1
S, +5S,
h%
642 A4
- S, ? S 2

[i{"*]i3"*] are

defines h' uniquely on the new sort, because the mediating ny =
bijections.

3.4 Quotient

In this subsection T and T’ are to be understood as the specifications in subsection
2.4. Notice the precondition on T: reflexivity, symmetry and transitivity of ¢ must
be theorems of T.

The next resultcharacterises the models of T’ by showing that the new sort can
be thought to consist of the desired equivalence classes, or representatives for them.

Theorem 3.4.1 (Characterisation of Mod T’) A’ | T’ iff, with A'/L = A,

1. AT, and

2. there ezists a bijection h : SA/q* — Q*' such that h([a]) = p*'(a), where [d]
is the equivalence class of a € S under q.

Proof:

12



e To prove the direction left-to-right assume A’ |=T' and A = A'/L.

1. Clearly A = T, whence ¢* is an equivalence relation on S4.

2. Consider the function p*' : S#* — Q#'. The two axioms of T’ show that
p*' is surjective with Ker(p*') = ¢#, where Ker(p*') = {< a1,a, >€
SA x SA / p*'(a;) = p*'(az)}. Hence, there exists a bijection A such that
the following diagram commutes

A A' A’
s —P »Q
b 4
7
n //h
7
A Vd
S/q

with n : 4 — S54/¢* given by n(a) = [d].

o To prove the direction right-to-left assume A = T, so ¢* is an equivalence
relation on SA. Consider its expansion .47 to a structure of L' with Q4* =
S4/q* together with its natural projection onto the quotient. Then, clearly
A? = T’. The requirement in (2) implies that A" = A% as L'-structures.
Therefore, A" | T".

Corollary 3.4.2 (Expansiveness) The ertension T C T’ is expansive.
Corollary 3.4.3 (Conservativeness) The extension T C T’ is conservative.

Proposition 3.4.4 (Invariance under isomorphism) Given A'y, A'; = T’, each
isomorphism between their reducts h : A; — A; eztends (uniquely) to an isomor-
phism k' : A"y — A'y,i.e. the following diagram commutes

: Al
1 P A

A
Q 4—F 5§
|
hl
Q
'l
QAZ< SAZ




Proof:
For j = 1,2, since A’; | T’, the characterisation result in theorem 3.4.1 gives a

bijection p; : S41/¢* — Q4 extending the identity 1 : A; — A, to an isomorphism
g+ Aj — Al

Now consider the given (iso)morphism A : A; — A;. Since A, 4; = T, we
have < h(a),h(a’) >€ ¢** whenever < a,a’ >€ ¢g*. Thus, since Ay, 4, £ T’
, < h(a),h(a') >€ Ker(p*?) whenever < a,a’ >€ Ker(p**) and there exists h, :
SA1 [qA1 — §42 /¢#42 such that the following diagram commutes

A
b g4
|
hs lhq

'A2 S'AZ

S >

The addition of k, : $#1/g* — 542/¢*2 to the given h : A} — A,, extends it to an
isomorphism h? : A] — Aj.

Existence: The composite g;'.h%.¢; is an isomorphism A’ : A'; — A'; with the
required commutativity.

Uniqueness: Given any g : A"} — A’; with the required commutativity we have,
on the new sort

14



g
Q hy h
\

S
B, n,

v \J

: A,
Q 2 < P 2

which shows that g agrees with A’ over the new sort, since p; and p, are
bijections.

Corollary 3.4.5 (Monomorphic character) Given Ay, A'; = T’ with A'y/L =
A = A’y /L, there ezists a (unique) bijection hgq : QA" — QA2 extending the identity

to an isomorphism A’y 2-

In this case it is quite clear why we cannot conclude A’y = A’;: one may use
different representatives for the equivalence classes.

Proposition 3.4.6 (Functorial character) Given Ay, A'; | T’ each homomor-
phism h : A, — A, between their reducts to L has a unique extension to an homo-
morphism h' : A'y —» A,

Proof:
The construction presented in the proof of proposition 3.4.4 yields the desired exten-
sion, because it does not actually rely on the bijectivity of k. Indeed, the following

commutative diagram

15



Al ~v
Q' «—P SAl/ci41
|
h' Ih
I q
4 Y
2
Q' ~ S /(i42
P,

defines A’ uniquely on the new sort because each ; is a bijection and h, is uniquely

defined by

SA1 __nl_> SAl/dtl
I
hS :hq
4 A
S - » S “q2

4 Conclusions

We have examined four sort introducing constructs: cartesian product, subsort,
discriminated union and quotient.

Introduction of new sorts is of interest because it occurs often in implementing
formal specifications. In constrast to the introduction of new function or predicate
symbols [Sho67], the case of new sorts is not extensively studied.

The four constructs examined correspond to natural constructions of new sets.
Three of them have found their way as data structuring constructs in program-
ming languages [Hoa74]. The quotient construct is of importance in developing and
verifying correct implementations [TM87, Vel87].

In section 2 we have provided formal specifications for these four constructs by
axiomatising their usual descriptions as extensions of specifications. In each case,
in addition to the new sort, we also introduce appropriate conversion functions,
connecting it to the old sorts.

In section 3 we have established the adequacy of these specifications in the sense
of exhibiting the intented behaviour. We have first characterised their models, up

16



to isomorphism, as expansions by addition of a new sort as desired. In fact, we have
shown that up to a unique isomorphism,

o a model of the cartesian product of S; and S, is the expansion with new sort
S x S# with the cartesian projections, which makes it a categorical product
(see 3.1);

¢ amodel of the subsort of S defined by relativisation predicate r is the expansion
with new sort {a € S* / A |= r(z)[a]} with its inclusion (see 3.2);

e a model of the discriminated union of S; and S; is the expansion with new
sort the disjoint union of Sf* and S3! with their inclusions, which makes it a
categorical coproduct (see 3.3);

e a model of the quotient of S by equivalence relation g is the expansion with
new sort consisting of the equivalence classes under ¢ together with its natural
projection onto the quotient (see 3.4).

From these characterisation theorems we have derived other desired properties
of the specifications:

e the extensions are expansive, hence conservative;
e invariance under isomorphisms and monomorphic character;

o functorial character: each homomorphism between basic models has a unique
extension to a homomorphism between models with new sorts and their con-
version functions.

In each case the new sort is unique, but only up to isomorphism; this contrasts
with the case of introduction of new function or predicate symbols by definitions,
when we have unique expandability of models. Also, these more familiar exten-
sions by definitions exhibit eliminability: any formula of the extended language is
equivalent to some formula inthe original language.

In our case of introduction of new sorts one should not expect full eliminability,
because of the new variables ranging over the sort introduced. Nevertheless, a kind
of generalised eliminability is still possible, as we shall examine in a forthcoming

paper.
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