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ABSTRACT

TOOL is an object-oriented, event-driven programming system, designed to simplify the task of
building application programs for Windows and similar environments. Its class construct has been
designed to allow the definition of behaviors of different natures for the modelled objects. In this
report we propose the inclusion of iterators in TOOL, as coroutine-like operators, which provide
the programmer with the ability of using control loop objects of any class.

RESUMO

TOOL é um sistema de programagao orientado a objeto e dirigido por eventos projetado para
simplificar a tarefa de construgdo de programas aplicativos para Windows e ambientes similares.
Sua estrutura de classes foi projetada para permitir a defini¢do de comportamentos de diferentes
naturezas para os objetos modelados. Neste relatério propomos a inclusao de iteradores em TOOL,
como operadores semelhantes a corotinas, que proveém o programador com a capacidade de usar
objetos de controle de repeticao de qualquer classe.
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1 Introduction

TOOL [1] is an object-oriented, event-driven programming language, designed to simplify the task
of building application programs using the extensive facilities provided by Windows and similar
environments. It incorporates some of today’s most important features for the development of
modern software, such as object orientation, message passing and graphical user interfaces.

The object orientation programming paradigm has as its fundamental motivations the concepts
of extensibility, encapsulation, protection and reutilization. Its basic ideas of classes and objects
evolved from the well-known procedural programming environment.

e Extensibility is the ability to define new data models (classes) and new operations which are
used to express object behavior and are contained in classes.

o Encapsulation is achieved through a syntactic entity (class), which contains the definition of
the data structure and also the operations performed on the objects modelled by this class.

e Protection guarantees the data integrity of modelled objects, allowing users to access objects
only through the operations defined in their corresponding classes.

e Reutilization is achieved through the inheritance concept. Class hierarchies can be created
and then stored in libraries for reuse, cutting down on software development costs.

Iterators are a generalization of the iteration facility available in programming languages. They
are user-defined control units, which provide to the programmer the ability of using loop control
variables of any abstract data type. The iterator can be seen as a special operation encapsulated
within a certain class. When applied to an object in a loop statement, it produces a sequence of
values for this object, thus controlling the iteration. This kind of operation abstraction is another
important step towards full extensibility and software reutilization, promoting instances of user-
defined abstract data types to first class entities.

This work presents the basic concepts concerning iterators and object orientation in TOOL. It
describes syntax, implementation restrictions and details for the inclusion of iterators as a new
control structure in TOOL. The next section overviews some important concepts, which provide
the basis for understanding the TOOL environment and the proposed iterator facility. In section 3,
iterators are introduced through its basic concepts. In section 4, the inclusion of iterators in TOOL
is proposed and discussed. The final section presents some concluding remarks.



2 TOOL — The Language

The main TOOL feature related to iterators is object orientation. This section focuses on the
fundamental concepts of the object orientation feature of TOOL, namely: classes, objects and
methods. More details on TOOL may be found in [2, 3, 1].

2.1 Classes in TOOL

The class is the main abstraction mechanism in object oriented systems. A class contains the data
representation of the objects it models, and the operations applicable to those objects.

A class in TOOL can be described as a program unit, serving two essential purposes:

e the modelling of objects, defining basically their data structure, and the operations that can
be applied to them;

e the creation of more specialized classes.
The binding between classes and objects in TOOL is very strong, usually performed at compilation
time. This means that once declared as being an instance of a certain class, an object must behave

according to the operations described in that class. Therefore, the compiler is able to, at translation
time, verify the correctness of all operations applicable to an object.

The TOOL system provides the user with a set of built-in classes and a mechanism for the construc-
tion of user-declared classes. There is no nesting of classes in TOOL, and classes cannot be locally
declared in methods. From now on, the general term class will stand for user-declared classes, and
built-in classes will be explicitly referenced in the text when necessary.

Classes can contain:

e an inheritance clause;
e a section defining the structure of class objects;

o a class data structure to be shared among objects of the class;

a section defining constant values for objects of the class;

private and/or public class operations.



The inheritance mechanism in TOOL establishes a subclass relationship between classes. Inheri-
tance in TOOL is simple: each class has only one direct superclass.

2.2 Object Behavior

Classes are passive entities, used in programs in the creation of other classes and in the modelling
of objects. Objects (instances of classes), on the other hand, are dynamic since they exist during
program execution.

TOOL supports the existence of variable and constant objects. This text deals specifically with
variable objects. These can be introduced in the class declaration sections concerning object rep-
resentations and shared representations. They may also appear as method or handler parameters,
as method results, and as entities local to methods or to handlers. Objects can also be used as

elements in structure declarations.

In the design of object oriented languages to be compiled, such as TOOL, all objects must be
declared. This indicates to the compiler the expected behavior for the object, and also the amount
of memory it will need at execution. At declaration, besides binding an object to a class, an object
is associated with a base class, which defines the data structure for the object (its state) and the
operations that can be applied to the object (its behavior). The duration of this association depends
on the lifetime discipline of the object, also established at declaration. Initial values may also be
explicitly given to objects.

The discipline of an object involves both the binding strength and the lifetime of the declared object.
The binding strength measures the facility objects may have of changing classes at execution-time.
The lifetime represents the span of execution-time during which the object actually exists, and
may be referenced. There are three possible lifetimes for TOOL objects: automatic, dynamic and
polymorphic.

In the automatic discipline (assumed as the default discipline when none is specified at declaration)
the lifetime is that of the enclosing method. Automatic lifetime objects are very efficiently handled
by the TOOL system, and should be used whenever possible.

Dynamic objects are not allocated/deallocated on method entry/exit; instead, the programmer
controls their existence using the built-in methods CREATE and DISPOSE. Dynamic objects
are useful in the representation of data structures which have their sizes increased/decreased at
execution time. The dynamic lifetime discipline affects the existence of objects, but not their
associations with base classes: throughout their programmer controlled life cycles, dynamic objects
are associated exactly with the base classes in their declarations.



Objects declared with the polymorphic lifetime discipline also have their existence controlled by
programmers, again through the application of the methods CREATE/DISPOSE. Their class as-
sociation, however, may vary at execution time. The base class of the polymorphic object plays an
important role in the definition of the class variation range for the object. The subclass structure
whose root is the base class of an object, defines a set of subclasses. The object is allowed to change
from its base class to any class of this set.

Polymorphic class variations occur when a polymorphic object receives the application of the built-
in method NOWIS. An argument must be provided when this application occurs: an already
created dynamic or polymorphic object of a subclass of the declaration class of the object, or exactly
this same declaration class. The application of NOW_IS to a polymorphic object changes the class
of this object, if the class of the argument is different than the class of the receiver. When this
change occurs, the behavior of the polymorphic object changes accordingly: a new set of methods
is applicable to it. In TOOL, polymorphism is a feature of objects, established at declaration,
which means that the cost of polymorphism is only paid when due. This advantage results from
the combination of late binding with the redeclaration facility for operations in subclasses.

2.3 Methods in TOOL

Class operations define the behavior of class instances (objects), being the only operations applicable
to those instances.

Two kinds of operations can be currently declared in TOOL: methods and message handlers. Meth-
ods are the TOOL equivalent to procedures and functions in languages like Pascal and FORTRAN,
being bound at execution-time only when applied to objects declared as polymorphic. Message
handlers implement the asynchronous operation feature in TOOL. There is no synchronism be-
tween the message handler and the invoking unit. Several message handlers may be active at the
same time, perhaps along with methods.

Results are obtained by the application of operations to receiving objects. A method may change
the object’s internal state, produce side effects, or produce a result to be used in an expression. In
fact, the receiver is a distinguished argument, in TOOL actually outside the argument list:

z < —P(-) — — z is the receiver of method P
or
y<<—-M(--) — — y receives the message M.

When the execution of a method terminates, the next instruction to be executed is the one following
the method application statement. Only the most recently applied method is active. Other methods



are either suspended or inactive.

Methods in TOOL can be either built-in or created by class constructors. User declared methods,
located in user declared classes, are needed to supplement the built-in behavior.

The possible attributes for TOOL methods are inline, private, and virtual. The inline attribute
is actually a request to the compiler, to replace method application statements with the code for
the method itself. This is done in order to obtain better execution time efficiency. This attribute
is valid for both public and private methods.

The private attribute indicates a method which can only be invoked from within methods and/or
handlers in its own class; a method not visible to users of the class. In all other respects, private
methods are no different than “public” methods.

The virtual attribute is associated with methods which cannot be implemented in a class A, and
which, for every subclass of A, must either be implemented (through redeclaration), or in turn
declared virtual. In other words, for a virtual method in a class, only the method interface (name,
parameters and result, if any) is given.

Classes containing virtual methods (virtual classes) can only be used in the declaration of objects
of polymorphic lifetime discipline, which furthermore, in order to posses full behavior, must receive
a NOW_IS application.

A method declaration may contain the declaration of parameters. Parameters can be either full-
fledged objects, or merely argument identifiers.

Object parameters are locally known objects, can be of any class, and can have any lifetime disci-
pline suitable to that class. Three object parameter modes are available for TOOL methods: in,
out, and inout. In each case, the correspondence between argument and parameter is made with
the passing of object values.

Argument identifiers, on the other hand, are simply place holders for the corresponding arguments
in the method application. Argument identifiers are designated by the mode id. Parameters for
inline methods can only be argument identifiers.

In TOOL the reserved word self designates the receiving object, a distinguished parameter. Access
to the receiver’s components is possible through self, with dot notation. self is not an object; it is
merely an identifier, to be used within operation bodies. The binding of self to a receiving object is
automatically made at the time the operation is applied, and remains until operation termination.

Objects of any class and suitable lifetime discipline may be returned from methods. Returning
objects are specified in the returns clause of a method’s signature. The returning object is, as



is the receiving object, a distinguished parameter. Its local value may be repeatedly changed by
assignment, when the method’s body is being executed. As far as the overall execution is concerned,
however, only the last such value matters, since this is the one passed back when the execution of

the method ends.

Single objects and/or structures of objects may be locally declared in methods. This being the
case, their life cycle is bound to that of the enclosing method. Automatic objects behave like local
variables in Pascal or C: they are created on method entry, and destroyed on method exit.

The dynamic and polymorphic lifetime disciplines can also be attached to local objects, or to
components of local object structures. In this case explicit creation must occur, and explicit
destruction may occur.

The execution of a method terminates either normally, after the execution of the last statement
in its body, or abruptly, when a possibly conditional return statement is executed. In either
case, the last value associated with the return object, if there is one, is returned to the calling
environment. Several return statements may exist in a method’s body, placed anywhere in its
statement sequence.

3 Iterators — Underlying Concepts

Iterators are a control abstraction available in some programming languages, notably CLU [4]. They
permit users to iterate over arbitrary types of data in a convenient and efficient way, preserving
abstraction by specification [5].

In order to clearly understand the utility and functioning of iterators, we may start from analysing
repetition structures. High-level languages provide control structures that allow the programmer
to specify looping over a certain set of instructions. We are essentialy interested in counter-driven
iterative control structures!, used to model the common case in which the number of iterations is
determined by a finite sequence of values assigned to a so-called loop control variable. Frequently,
before the iteration begins, the lower and upper bounds of the control variable are determined. In
FORTRAN, the control variable can only be of type INTEGER. Pascal allows counter-driven loops
where the counting variable is of any ordinal type.

Pascal also prescribes that the control variable is not to be altered in the loop. The value of the
variable is also assumed to be undefined outside the loop. These restrictions, far from placing
arbitrary constraints on the programmer, contribute to the readability and maintainability of the

1As opposed to the condition-driven repetition structures.



resulting programs by limiting the scope of the loop counter [6].

Further abstraction is provided by languages such as CLU [4], which allow the programmer to have
control variables of any abstract data type (cluster in CLU) and provide constructs for specifying
how the sequence of values of such control variables is to be produced. These constructs are called
iterators, and are declared in the cluster modelling the control variable. An iterator yields the
sequence of values a given loop is to span over when applied to the loop control variable. The
elements of the collection are provided one at a time. The policy that selects the next element of
the collection is hidden from the user of the iterator and implemented by the iterator itself. The
iterator is responsible for producing the items, while the module containing the loop defines the
actions to be performed.

In the following example from a CLU program [6], atom, the loop control variable, is of the user-
defined type node, and list is an iterator. The instructions are meant to retrieve and manipulate
all the nodes belonging to a list(z).

for atom : node in list(z) do

perform an action on atom

The iterator used above can be specified by a module that takes a parameter of the abstract type
linked list and delivers a parameter of abstract type node.

list = iter (z: linkedlist) yields (node)
yield(n)
end list

At each iteration of the above loop, the module list is activated, and a node yielded by it is
assigned to atom. As a consequence of yielding, the iterator is suspended, its local environment is
retained, and control flows back to the loop. At each loop iteration, the iterator is resumed with
its previously saved local environment and executes from the instruction following the last yield,
much like a coroutine. When the iterator indicates that the sequence of objects is exhausted, the
loop statement terminates.

Iterators are efficient to execute. Yielding from an iterator is like a call: the body of the for loop
is “called” from the iterator. Resuming an iterator is similar to a return: the loop body “returns”
to the iterator. Therefore, the cost of using iterators is at most one procedure call per execution of
the loop body; the cost may be less because of compiler optimizations [5].

With the addition of iterators, variables of user declared types can really be considered first-class



entities.

4 TIterators in TOOL

In the last section, iterators were presented in the environment of CLU - not an object oriented
language. In order to understand iterators in an object orientation framework, a few adjustments
must be made. Here iterators are units declared inside user-declared classes (while in CLU, they
were built inside clusters), so they are only to be applied to objects belonging to this specified class,
just as any ordinary method. This means, that instead of referencing a control variable, we have a
control object whose sequence of values is in the same way responsible for controlling the number
of repetitions of a certain loop.

We first briefly present how repetition structures work today in TOOL, before introducing iterators
in TOOL. A single loop statement is used to specify repetition in TOOL (the syntax is presented
bellow). The execution of a loop statement can be controlled by conditional exit and repeat
terminators, placed anywhere in the loop’s body, and in any number.

loop

exit [when boolean ezpression]

repeat [when boolean ezpression]

end loop

The exit terminator terminates the loop’s execution, transferring control to the statement imme-
diately following the loop. The repeat terminator terminates a loop iteration, transferring control
to the beginning of the loop’s body. Both terminators are only valid in loop bodies.

4.1 Syntax

The introduction of iterators in TOOL, follows the syntax used in CLU [5], and is illustrated in
the skeleton bellow:



loop
for obj — itername[(arguments)];
— — obj is the control object to which itername is applied

— — An iterator may be declared without parameters

exit ---

repeat ---

end loop

The reserved word for indicates that the loop is controlled through the application of an iterator.
obj is the object to which the iterator, named itername, is applied. The iterator itername must
be implemented in the object’s class or superclass thereof, with the following syntax:

iterator itername [(parameters)};

— ~ local declarations
begin

yield [when boolean ezpression);

end iterator

The reserved word iterator indicates the nature of this active unit. The begin-end iterator pair
delimits the iterator’s body.

The statement yield [when boolean-ezpression]; may be substituted for yield’s in if statement
branches.

Single objects and/or structures of objects may be locally declared within iterators, just as in any
method. Their life cycle is bound to that of the enclosing iterator. The dynamic and polymorphic
lifetime disciplines can also be attached to local objects, or to component of local object structures.
In this case, explicit creation must occur, and explicit destruction may occur.
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4.2 Semantics and Restrictions

In order to discuss semantics and implementation issues, it is useful to compare iterators with
procedures (methods, in TOOL). We begin by considering the yield iterator statement, as opposed
to the return statement that can be used to terminated methods.

The execution of a method terminates either normally, after the execution of the last statement in
its body, or abruptly, when a possibly conditional return statement is executed. In either case, the
last value associated with the return object, if there is one, is returned to the calling environment.
Several return statements may be placed anywhere in a method’s body.

At each yield the iterator is suspended, providing a new value for the control object. The iterator’s
context is not lost. On the next iteration, the iterator will continue from the point where it stopped,
executing the first instruction just after the most recently executed yield statement. The sequence
of control object values produced by the iterator until its termination is encountered, defines the
number of iterations of the active loop.

No return statement is allowed in the body of an iterator. When the last value is yielded, a flag
in the iterator’s environment is set signaling the end of the iterations (see section 3). This flag is
tested each time the iterator is resumed, determining if the iteration should proceed or not.

The only permitted atributtes for iterators are private or virtual. When no attribute is present
at declaration, the iterator is considered to be public, which means that it can be applied to an
appropriate object (an instance of the iterator’s class or subclass thereof).

The control object is read-only in the loop’s body. This means that:

¢ it can be used only as an input parameter to other methods;
e it cannot be assigned to;

¢ it cannot be subject to method applications, to avoid side effects.

However, the control object is freely accessed in the iterator’s body, where its new values are
produced.

The value of the control object after loop termination is the value obtained after the last activation
of the corresponding iterator, even if loop termination is caused by exit statements, which may be
found in any number in the loop’s body. In the case of a repeat statement, the iterator is called
again and the control object will have the value obtained in this last activation of the iterator.
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Iterator’s parameters are exclusively of input mode. This restriction is due to the main motivation
for the inclusion of iterators in TOOL, which is to produce a sequence of values to control an
iteration process. There is no sense in generating side effects through the activation of iterators.
These input parameters may be of any lifetime discipline, following the same rules established for
ordinary methods in section 2.3.

The control object may be of any lifetime discipline. Dynamic and polymorphic objects must have
obviously been explicitly created before the application of the corresponding iterator.

The redeclaration and the inheritance of iterators follow the same rules given for ordinary methods
in TOOL, which means that iterators defined in a certain class will be inherited by its subclasses if
not redeclared. Late binding of the iterator code to be executed may occur when the control object
follows a polymorphic discipline.

Loop control objects with polymorphic discipline may not change classes during the execution of
a certain iterator. This is rather a consequence of the nature of iterators, which when used should
be the only providers of values to loop control objects. (Recall that no assignments to loop control
objects are allowed in the loop’s body.)

Nested loops with identical or different iterators are allowed. If identical iterators are used in nested
loops, the control objects used in each for clause must be distinct, because the control object of a
certain iterator must not be changed in the loop’s body, for example by another iterator. In the
iterator’s body, loops with or without other iterators are also allowed. Recursion is allowed in the
iterator’s body.

4.3 Implementation

The representation structure of the object is the structured set of values of all data components of
the object, which are declared in the object representation section of the object’s class. With the
inclusion of iterators, it is necessary to maintain a pointer to the iterator’s environment created when
the iterator is applied to the control object. This environment includes the following information
concerning the iterator:

e parameters, local objects;

o entry point;

¢ termination flag.
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As mentioned before, at each yield the iterator is temporarily suspended. After the loop’s body
is executed, the control is passed to the iterator, which resumes from the instruction following the
last executed yield. This instruction is given by the entry point.

When the final yield of the iterator is executed, the termination flag is set to signal the end of the
iteration. The loop’s body is executed for the last time. The iterator’s environment is abandoned
and the execution continues from the first instruction following the end loop delimiter.

In TOOL, the way objects are implemented in memory depends on their lifetime discipline. Auto-
matic objects have their representation structure in the stack as automatic variables in languages
like C and Pascal. Also for automatic objects, the pointer to the iterator environment is main-
tained in the stack. On the other hand, a dynamic or polymorphic object is implemented as a
pointer in the stack, which points to a descriptor in the heap. The descriptor has pointers to the
representation structure of the object and to the current iterator’s environment (while the iterator
is active), both of them located in the heap. This organization is shown in Figures 1 and 2.

stack

iterator’s environment

object

representation

Figure 1: Memory Organization for Automatic Control Object

stack

descriptor object representation

object

iterator’s environment

Figure 2: Memory Organization for Dynamic or Polymorphic Control Object
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5 Concluding Remarks

This work describes the most important features concerning the inclusion of iterators in the object
oriented language TOOL. An iterator is introduced as a special method, which provides the pro-
grammer the ability of controlling a certain loop. The number of iterations of the loop will depend
on the sequence of values of the control object.

At first glace, iterators seem to be an important operation abstraction for an object oriented
language. However, it is worth noting that iterators are essentially application dependent, and this
fact represents a fundamental contradiction towards the underlying concepts of object orientation.
The dependency on the application seems to determine severe restrictions on the extensibility and
reutilization of these constructs, fundamental features of the object orientation paradigm.

Although this issue may tend to qualify iterators as restricted tools in the object oriented pro-
gramming environment, they are in fact essential constructs for the development of a flexible and
rational object oriented programming technique, since they promote objects of user declared classes
to first-class objects. In this sense, the inclusion of iterators in an object oriented language like
TOOL is not only completely justified, but also necessary.
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