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ABSTRACT
The work presented here has its focus on the formal construction of programs out of non-
constructive specifications involving quantifiers. This is accomplished by means of an extended
abstract algebra of relations whose expressive power is shown to encompass that of first-order
logic. Our extension is the first finitary onc that solves the classic issue of lack of
expressiveness of abstract relational algebras first stated by Tarski and later formally treated by
Maddux, Németi, etc. First we compare our extension with classic approaches to expressiveness
and our axiomatization with modern approaches to products. Then, we introduce some non-
fundamental operations. One of them, the relational implication, is shown to have heavy
heuristic significance both in the statement of Galois connections for expressing relational
counterparts for universally quantified sentences and for dealing with them. In the last sections
we present two smooth program derivations based on the theoretical framework introduced
previously.
Keywords: Formal program construction, Relational algebras, Algebraiztion of logic.

"RESUMO '
O trabalho aqui -apresentado focaliza a construgdo formal de programas a partir de
especificagdes nio-construtivas contendo quantificadores. Iste € obtido através de uma digebra
abstrata de relagdes, cujo poder expressivo demontra-se que abrange o da légica de primeira
ordem. Nossa extensdo é a primeira finitiria que resolve o problema cldssico da falta de
expressividade das dlgebras rclacionais abstratas. Tal problema € aquele enunciado
originalmente por Tarski e mais tarde tratado formalmente por Maddux, Németi, etc. Nas
primeiras segdes, comparamos nossa extensdo com abordagens cldssicas e nossa axiomatizagio
com abordagens modernas para produtos. A seguir, introduzimos algumas operagdes ndo
fundamentais. Mostramos que a operagdo chamada de implicagfo relacional. tem um forte
significado heurfstico, tanto no enunciado de conexdes de Galois para contrapartidas relacionais
de sentengas quantificadas universalmente quanto para seu tratamento posterior. N as dltimas
segdes, apresentamos duas derivagSes completamente sintiticas baseadas no arcabougo.teérico
introduzido previamente. . .
Palavras Chave: Construgio formal de programas, Algebras relacionais, Algebrizagio da
l6gica. '
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1 Introduction

The last few ycars have witnessed a renewed interest of the computing science
community in relational programming calculi. The main reason for such interest is the
postulated advantage of such calculi for dealing with non-determinism. Also, the
claim about its fitness for expressing what-to-do instead of how-to-do specifications
should not be ignored.

In the meantime, another major issue of whether or not a programming calculus
should encompass the whole path from non-constructive specifications to programs
has been almost completely neglected. In the ‘case of some methods, as CIP, such
disregard simply leads to a bias in the rescarch work favouring algorithim optimisation
to the detriment of algorithm construction. Howcever, looking at program calculi in
general, and at relational ones in particular, the situation is worse because any
dccision about this issue biascs harmfully the choice of an underlying theoretical
framework. In the particular casc of relational programming calculi, the question is as
crucial as whether or not Abstract Relational Algebras qualify as an appropriate basis
for them. )

Along this paper we first argue, in Section 2, that, under the light of the restricted
expressiveness of Abstract Relational Algebras, initially recognised by Tarski [Tard1]
and later on formally stated by Henkin and Monk [Hen74] as well as by Maddux and
Németi [Mad83, 91, Ném91], we should abandon them as a basis of relational
programming calculi. We also e¢xamine the implications of the so-called
representability problem over programming calculi development. In the following
section, we first analyse a well-known solution to representability and subsequently
some classical solutions to the expressivenes$ problem, namely, Cylindric and
Polyadic algebras. Later on, in Section 4, we propose a formal extension to Abstract
Relational Algebras, prove that it has the same expressive power than first-order logic
with equality, discuss its representability and compare it with both classical algebras
for first-order logic and other extensions to Abstract Relational Algebra under use, for
supporting relational programming calculi.

In the second part of the paper, i.e., in Section 5, we first introduce in Subsection 5.1
some results about partial identities as a tool for dealing with types within an
homogencous framework as well as a refinement order relation among relations. In
the following subsection we introduce an example of the calculation of a recursive
expression out of a first-order non-constructive specification involving an existential
quantifier. In Subsection 5.4 we recall the concept of residuals and introduce a
convenient heuristic way for considering them. Finally, in Subsection 5.5 we illustrate
with a detailed example how to derive recursive expressions out of non-constructive .
specifications involving universal quantifiers!.

1 The properties of the “classical” relational operations are well-known and can be found

elsewhere [Sch89].



2 Are Abstract Relational Alﬂebras an Appropriate Support for
Programming Calculi?

One of the various presentations (:\xiomatizadons) for Abstract Relational Algebras is
that due to L. Chin and A. Tarski [Chi51]. The version we choose here is that
presented by G. Schmidt and T. Stréhlein [Sch85a]2.

Definition 1 An Abstract Relational Algebra is a structure A = (5)%,+, a,',;,T) over a

non-empty sct R, such that .

(1)  (R,+,,7) is a complete atomic Boolean Algebra. Its zero element will be
denoted by 0, and its unit element by . The symbol < is used for the
ordering with respect (o the lattice structure and is called inclusion

@ (SR,,) is a semigroup with exactly one identity elemnent which is denoted by 1,
1e(rs)t—r(st)&r11r=r '

3) riscterTiiciorl;starF . Schroder rule

4 r#0-—oirje=co o Tarski ride

The standard modcls for Abstract Relational Algebras so defined are called Proper
Relational Algebras. A Proper Relational Algebra [Tard41] is a first-order theory
satisfying the following extralogical axioms,

i VXVy(xeoy) : vii, YxVy (xrTy ¢ yrx)

i, VxVy(=x0y) viii. VXVy (Xr+8y <> Xry vxsy)

i, Vx (x1x)) ix. VYXVy(Xresy>xryAaxsy)

v, VxXVyVz ((xry aylz) -»xrz) x - VxVy(xrisy e (Va)xrzvzsy)
v VXYY (x@y <> x1y) ©oxi VxVy(xrisy <> @z)xrz azsy)
vi. VXYY (XTy > —axry) xii,. r=seVXVy&ry<>xsy) .

This is a two-sorted theory, i.e., its variables are of two kinds, one ranging over
individuals (denoted here by x, y, z,...) while the other ranges over relations
(denoted here by italic letters r, s, 1, ...). The atomic sentences are of the form xry
(with intended meaning "x is in relation r withy") and r=s (where the symbol =
denotes equality over relations).- Variables on individuals range over a fixed sct A,
while variables on relations range over some subsets of A x A —this simplicity is
introduced by the inclusion of the so-called Tarski rule within the axiomatization of
Abstract Relational Algebras.

The symbols introduced by Tarski are; in our notation, eo (for the universal relation), 0
(for the null relation), I (for the identity relation) and ¢ (for the diversity relation), as
relational constants, together with the following operations on relations -
(complement), T (converse), + (union), * (intersection), + (relative addition), and 3
(relative product).

Tarski [Tard1] posed two questions that are not only fundamental for the ﬁel(ls of
Relational Algebras and Algebraic Logic but that we consider of prm)ordlal
importance for relational programming calculi.

2 For an up-to-date history of the development of Relational Algebras and a deep study of its
relation with first-order logic see [Mad91}.



« Can every property of relations, relations among relations, ctc., that can be defined
in a Proper Relational Algebra3, be expressed in an Abstract Relational Algebra?

* Iscvery model of (1) to (4) of Definition 1 isomorphic to a Proper Relational
Algebra (its standard model)? In other words, is every Abstract Relational Algebra
representable?

It has been known for many years that the answer to both questions is negative,
The first one was answered by Tarski himsclf by showing two simple first-order
expressions '

(Vx)(Vy)Vz)Bu)(xruanyruazru) ©)

(3x)(By)3z)Bu)(xry AXrzaxruayrzayruazru) ©

that cannot be expressed within his relational calculus (abstract relational algebra).
For instance, no sentence of the relational calculus is satisfied by exactly the same
relations that satisty expression (5). Some years later Henkin and Monk {Hen74] and
Maddux [Mad83, Mad91] stated that Relational Algebras correspond to predicate
logic in which only three individual variables are allowed and all predicates are at
most binary.

The Representation Problem (i.e., whether every abstract relational algebra is
representable) received a negative answer from Roger Lyndon.[Lyn50]. Lyndon
constructed a finite nontrivial simple relational algebra which is non-representable.
Our view of Programming Calculi is, on one hand, that such calculi should be
unifying formalisms for writing either non-constructive or constructive specifications
and for calculating programs out of them. On the other hand, we claim that acrual
SJormal programming methodologies will contain, together with specification,
construction and validation tools, not one but various interacting programming calculi
(then, the possibility of inter-translation of tcrms between them is a must). Thus, from
our viewpoint, we should provide not only programming calculi exhibiting —at least*—
the expressive power of first-order logic with equality, but also calculi for translating
back and forth first-order expressions to terms of such programuming calculi.
Moreover, if we do not want to fall into a linguistic trap resulting in divorce from
reality (i.e., practical software cngineering) as had happened in the case of logical
empiricists with respect to the explication of the construction of scientific theories, we
should bear in mind that while calculating a program we can often interpret terms as
input-output (semantical) relations,

3 Tarski used the terms Elementary Theory of Binary Relations and Calculus of Binary
Relations for Proper this Relational Algebra and Abstract Relational Algebra, respectively.

4 If we want to talk about termination within the programming calculus itself, we should
require that such calculi have an expressive power which encompasses that of first-order
logic.
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Fig. 1. Relative exprcssivcnessncv)f Abstract Relational Algebra
So, if we consider, '

» Tarski’s statement that the answer to the first question remains negative even if we
enrich Abstract Relational Algebra by the addition of any finite number of new
constants denoting fixed relations, properties of rclations, operations on relations,
and so on, provided that all concepts introduced in this way are invariant under
any one-to-one mapping of the class of individuals on itself, as well as,

« the non representability of Abstract Relational Algebras,

. we should abandon Abstract Relational Algebras as the basis for programming .
calculi, especially if we consider that the actual expressiveness situation is that
depicted in figure 1. :

3 “Classical” Solutions to Representability and Expressiveness
Problems

3.1 Point Axiom and the Solution of the Representability Problem

The solution to the problem of the non-representability of Abstract Relational
Algebras is well known, requiring the inclusion of an extra axiom. For example G. ‘
Schmidt and T. Strohlein have proposed [Sch85a] the introduction of an axiom that
they have called point axiont. Let us analyse succinctly their proposal.

Definition 2 Let x be a relation. We call
(7 xavectoriff x=x300
"(8) xapointiff xisavector, x20, x;x" <]

Notice that the interpretation of a vector in a Proper Relational Algebra is a relation
B x A c Ax A. Then, since A, the fixed set we have taken in the standard model we
are dealing with, is invariant for every vector, such vector is one of the ways’ of
representing sets within an Algebra of Relations. In fact this is the way chosen by

5 For a detailed treatment of how to represent and internalise sets within a Relational Algebra
see [Vel92] .



Hoare and He [110a86a, 8Gb]). Along the same line of thinking, notice Lhat points are

then the representation of unary sets.

Continuing with the representation problem we will say that an Abstract Relational
Algebra satisfics the point axiom if r# 0 — (Hx)(By)(x,y pointsA x; y¥ < r). Now

we can state the main representability result obtained by G. Schimidt and T, Stréhlein,

ie,

Theorem 3 An Abstract Relational Algebra A satisfying the point axiom is a Proper
Relational Algebra. More precisely A is representable.

The reader interested in the proof of this theorem as well as in the detailed treatment
of this issue is referred to [Sch85a).

3.2 Classical Algebras for First-order Logic

Since Boolean Algebra has the expressive power of propositional logic, it seems
natural to try to obtain an algebra for first-order logic (in particular for first-order
logic with equality) by extending Boolean Algebra with some operations so as to cope
with quantifiers (and the equality predicate). ’

Boolean Algebras with Operators. B. Jénsson and A. Tarski defined the concept of
Boolean Algebras with Operators [J6n51], i.c., an algebra resulting of extending a
Boolean Algebra with a number, not necessarily finite, of operations satisfying certain
conditions. They also show [J6n52] that Abstract Relational Algebra is a Boolean
Algebra with Operators — unfortunately with not enough CXplebIVC power to become
an algebra of first-order logic.

Speaking formally {J6n51], by an algebra' we shall mean a finite, infinite, or
trans{initc sequence,

6= (7 fo. fr o ferr)

where A is a non-empty set and each fg is a function of some finite rank mg with
domain A™ and range a subsct of A. In this context the term operation is sometimes
used instead of the tenn function ; fo, f1, ..., f&, .. . are referred as fundamental

operations of A.
Consider now the Boolean Algebra B =(#,+,0,e,), then,

Definition 4 A function f on AMto A is called

o normal if, given any j<m and a sequence x € A™ such that x =0, we always
have f(x) =0,
- (i)  monotonic if, given two sequences x ,y € 1’1‘“ such that x<y , we always

have f(x)< f(y);
(i)  additive if, given any j<m and two sequences x ,y € A™ such that xp =yp
whenever j#p<m, we always have f(x+y)= f(x)+ f(»);
(iv) completely additive if, given any j<m, a non-empty set I, and sequences
2@ € AM with i e I such that x, =y, (") whenever i, i' € /and j#p<m, and
such that Zx(‘) exists, then Ef(x(i)) exist and we have

513 =2’ f(x(»)“

iel iel

iel



Now we are able to introduce the following,

Definition 5 By a Boolean Algebra with Operators we shall mean an algebra
O=(#A,+,0,o, m’fo’fl-"'7f¢.”'>’ such that (14 +,0,o,oo) is a Boolean Algebra and
the functions f¢ are additive. By an atom of O we mean an atom of the Boolean
Algebra (&,+,0, o,>). We say that O is aromistic if the Boolean Algebra
(B,+,0,9, ) is atomistic. We call O complete if the Boolean Algebra (B,+,0,9,0)
is complete and if cach of the operations fg is completely additive. '

Then, it is evident that cvery algebra satisfying the axioms (1) to (4) in Definition 1
-i.e., every Abstract Relational Algebra—, is a complete atomic Boolean Algebra with
operators, the operators being 3 and T.

tor

Fig.2. € v with x=0,0=3and¢ ={BX B x B}

Two Classical Solutions for the Expressiveness Problem. In defining Abstract
Relational Algebra, A. Tarski et al. extended Boolean Algebra with a finite set -of
operators —a way we will call Peircean—. The efforts of L. Chin, A. Tarski and F. B.,
Thompson [Chi48, Tar52] and later of Henkin, Monk and Tarski [Hal62], for defining
an algebra for first-order logic with equality led to the introduction of Cylindric
Algebras. But, in doing this, they abandon the Peircean way of extending Boolean
Algebra in favour of extending it with infinitely many operators, thus obtaining
algebras of sets of infinitary sequences, and likewise for Halmos's Polyadic Algebras.

Before we begin with a succinct analysis of both algebras let us recall that the
Lindenbaun Algebra of Formulae of a theory in a first-order language £ is a structure



§Sp={Dp v, A —F,T,3vyg wgvé)g £ < Where @ 4 is the set of formulae of .2 and
weve is the equivalence class of the equation v ¢ =v; for every §,§ <o. We will
denote by T the sct of sentences of £ and by §z4  the quotient algebra with respect to
the ¢quivalence relation = dcfined as, ¢ = Y YlCldS iff @ ¢> y is a consequence of
I". This quotient algebra is the so-called Tarski algebra associated with .2 and T,
Cylindric Algebras. Let Y be a non-empty set. Subscts of “Y may be thought of a-ary
relations, and we may perform on them the usual Boolean operations \, M and — (the
latter, complementation, being performed with respect to “Y). Now foreachx < o
we introducc a unary operation @,(:Y) , or simply &€, as follows. For any ve “Y,
QIS:Y)r ={xe *Y: thereisaye v withx; =y; forall A <o with 2 # K}

Also we consider special sets B, : ' ‘

pecial sets Py, 't

nﬁ;Y)’z {x € *Y: x.=1x,, forany X, A< cx} @
Now, a Cylindric Set Algebra of Dimension o with base X and unit set *Y, for
brevity €S, is a structure’ : :

Sy = <9_“(“Y),u,m,—,®,°‘Y, c&:,(:uy),;agy)>
: K,A<o

An idea of these notions can be easily captured by considering the case k=0, o =3
(see figure 2 with v being the square relation ¢ = {B x B x B}).

A subset ¥ < 3Y can then be pictured as a point set in three dimensional space, €,v
being the cylinder genérated by moving ¥ parallel to the O-axis (this is the reason why
operations €, are called cylindrifications). B, consists of all points equidistant
from the O and 2 axis, and is thus a diagonal planc (this is the reason why elements
B, are called diagonal elements). ’

The connection of CS ‘s with first-order logic with equality can be seen as follows..
Let £ be a first-order language with equality, ® » the set of formulas of £, and
M = (Y,ri)ie , amodel for @ 4. For each formula @ of £ let S, ¢ be the collection
of all xe ®Y which satisfy ¢ in M. Sets S, induce a homomorphism
Sy gf/Er - 9_‘7( “’Y) with base Y. In particular, for any formula ¢ of £ and any
K < ®, we have

©®  Sylvi=n]=Pu

10 Sy [-¢]=Sy[0]

an ém[(PV\V]= SM[‘P]UéM[‘V]
12 Sy loaw]=S,[0]n S, [v]
@) Sy lo—w]=Sylo]uSylv]
ay  5,3ve)e]= ¢Sy (o] |

6 Here # is closed under the indicated operations and has as elements the indicated special
subsets of *Y .
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Fig. 3. Relation between first-order formulas and cylindric terms.

The general notion of Cylindric Algebra is obtained by abstraction from this set-
theoretic version. So, a Cylindric Algebra of dimension o is a structure
CA“:(E,+,o,~,0,°°,cx,6d§ satisfying the following axioms for all

A<
KA L<oandx,ye A: ohea

Co (@, +,9,—,0,00) is a Boolean Algebra, ¢ :A— HAandd, €A
Cy ¢ 0=0 ‘ »

Cy x=<¢x?
C3 ce(xecy)=coxocy
Cq X = ¢, X .

Cs Ve =00
Cs ifK;tftr;tumcnbM:cx(b,d-bw)
C7  ifx#Athenc (dy ex)oc,(d, 0%)=0

Notice that CA ,is a Boolean Algebré with Operators and that §24 _is a cylind'ric
algebra of dimension ®, which satisfies the additional condition of locally finite
dimension: '

7 Where< represents the natural order within the Boolean reduct.



Cg for any x € A there arc only finitely many x <A such that ¢, x # x

Hence, the eight axioms defining a Cylindric Algebra of dimension o furnish a theory
presentation for the Tarski algebra associated with £ and T'. A better grasp of what
was discussed above can be obtained by examining figure 3. Polyadic Algebras. et
us, now, recall the concept of Polyadic Algebra, via Quantifier and Transformation
Algebras [Hal62].

First, a Quantifier Algebra of degree ¥, (whme % is a cardinal number) is a triple
(8,],3), where B is a Boolean Algebra, J is a sct with cardinality x, and Jisa
function from subsets of ] to quantificrs (endomorphisms) on B, such that for all te B,
D)t =+, and IADIE)e = (M U K) e whenever H, K < J. The set ] is referred to as
the index set for the variables. We are interested in algebras of degree o actually in
those whose clements correspond to formulas with finitely many variables; these are
the so-called locally finite Quantifier Algebras of degree ®, i.e., to every ¢ € B there
corresponds a finite subset Hof J such that (J —~ He= &

Now, a Transformation Algebra is a triple @, J, ), where B is a Boolean Algebra, ]
is a set, and S is a function from transformations on J (i.e., mappings of J into itsell) to
endomorphisms on B, such that for all ¢ € B, S(8)¢= ¢ where & is the identity
transformation on J, and S(6)S(t)p= S(o1v) p, whenever ¢ and T are transformations
on J.

Finally, a Polyadic Algebra of degree @ is a quadruple P = (B ], S, 3), where
(B,7,3) is a locally finite Quantifier Algebra of degree ® and (B,], Sy is a .
Transformation Algebra, such that for all ¢t € A, S(a)3(H)¢t= S(p)I(H) ¢+ whenever
HcJ and ¢ and p are transformations on J agreeing on the set J —H, and
) S(P)t = S(p)Ap! H) ¢t whenever H <] and p is a transformation on J never
mapping any two distinct clements of J into the same element of H. We can have a
better grasp of the idea behind Polyadic Algebras by looking again at figure 2. A
Polyadic Algebra provides just one function 3 from subsets of J to quantifiers and -
infinitely many transformations on J (each one allowing the construction of one of the
infinitely many alfabetical arrangements of the variables).

Polyadic Algebra is then an algebra of pure first-order logic. Notice again that a
Polyadic Algebra ] = (B, 7], S, 3) is a Boolean Algebra with operators.

The Fitness of Abstract Relational Algebras, Cylindric and Polyadic Algebras to
Underlying Programming Calculi. Thus, as we have seen above both Cylindric and
Polyadic Algebras are Boolean Algebras with Operators, the former being an algebra
for first-order logic —due to their diagonal elements— Whllb the latter is just an algebra
for pure first-order logic. :

The attractive aspect of Abstract Relational Algebra for underlying a programming
calculus resides in its absence of variables over individuals, the same aspect that led
functional languages and functional based programming calculi to deserve so much
attention. This absence of variables is due to the fact that the extension to Boolean
Algebra necessary for constructing Abstract Relational Algebras is Peircean —i.e.
finitary-. In fact, Abstract Relational Algebra is a Boolean Algebra extended with just
two operators, namely, ; and T



We should notice that both Tarski et al., with Cylindric Algebras, and Halmos, with
Polyadic Algebras abandon the Peircean-like way of extending (&, +,,~,0,%) in
favour of a more direct attack to the problem. Both approaches maintain a Boolean
Algebra over a universe of elements whose internal structure, if any, is immaterial. By
imposing an infinite arity, they produce theorics over sequences of infinite length
restricted by a local finiteness condition. Tarski et al. choosc to represent the
existential quantifier by infinitely many cylindrifications < (one for each variable
vy), and cquations vg=v; by means of a doubly infinite sequence of diagonal
elements . Halmos, on the other hand, represents the existential quantifier by
means of a single function 3 but introduces infinitely many transformations on the
index sct J. We should notice that both Cylindric and Polyadic Algebras are models
laden with a syntactical artefact, in that the former, by means of each of the " {-axis”,
and the latter, by means of the index set J, have hidden “names” for variables over
individuals,

4 V-Extended Abstract Relational Algebra

Let us analyse here, a way for constructing a {initary algebra of first-order logic with
equality introduced by A. M. Haeberer, P. A. S. Veloso, G. A. Baum and P. Elustondo
[Hac90, 91, Vel91la, 91b, 92].

4.1 Tackling the Expressivennes Problem as Posed By Tarski, Henkin and Monk
First of all we will analysc and solve the expressiveness problem as it was posed by
Tarski [Tar41]. So, we will try to express, by means of V -operation --in addition to
classical relational opcmtmnv one of thc first-order expressions stated by Tarski, say
(5. ,
Let us recall expression (5),
(Vx)(Vy)(Vz)Bu)(xruayruazru)

First, notice that there is no difficulty in expressing a simpler version of (5), Iike

(Vx)(Vy)3u)(xruayru) 15)
Since this is equivalent to

(Vx)(Vy)@u)(xruaurTy)
it can be expressed by ;¥ = oo, The key idea here is the fact that the existential

quantifier (Ju) can be simulated by the relative product. If we would try to apply this
simple idea to (5), we would be led to something like -

(vVx)(¥y)(Vz)@u)(xruaurTyau rTz)

This is equivalent to (5), but we cannot simulate the eftect of (Ju) by the relative
product. The reason for this is the fact that variable u now occurs three times in the
matrix of the formula. Tarski’s relational calculus has no variables over individuals,
and the relative product r; r7 _tonsumes”, so to speak, variable u.

Let us extend Proper Relational Algebra with a new operation V —which we will call
Jork — defined as

(\'/x)(\?’y)(\?’z)(xer[y,z]<—>xryAxsz) _ (16)



Where [ ] is a non-commutative pair formation operation. Notice that in doing so,
variables over individuals will no morc range over a fixed set A without any
noticeable structure but over a set A™ of all finite trecs made out of elcmcnts of a
fixed set A, i.e., a frec groupoid generated by A.

Another - useful operation which can be defined - from V is
r®s= ((1 Y oo)' ;r) v ((oo v s) It is easy to scc¢ that the Extended Proper
Relational Algebra cxpression for such operation will be, .

(V) (YY) (V)Y w)([x. 2] r ® s[y, w] > xry Azsw)

Then, by finitely extend the Proper Relational Algebra with the operation V we obtain
a Proper Algebra over locally finite trees.

Shifting back our attention to the problem of expressing relationally first-order
formula (5), it is easy to see that in the same way that we were able to express (15) as
r; 17 = oo, we can now express (5) as r ;'(rT \Y% rT) =ooV oo,

4.2 The Expressiveness of V-Extended Abstract Relational Algebra

Encouraged by the result presented in Subsection 4.1, one is tempted to conjecture
that a Boolean Algebra extended with operations 3 and T as above and an abstract
operation V —resulling from the axiomatization of V from its properties derived within
the above extended Proper Relational Algebra— has the expressive powu of first-order
logic. We will show that indeed this is so.

Definable Subsets and their Representation. Consider a first-order language £ with
equality =, given by a set P of predicate symbols (we do not consider function
symbols, since functions can, for our purposes, be replaced by their graphs). As usual,
a structure I3 for £ consists of a domain B together with a realisadon B < “B, for
each oc-ary predicate symbol pin P 4. This can be extended to assign a realisation for’
each formula @ € P . It is more convenient, however, to view a formula as defining a
set of trees over B. For this purpose we introduce some notation to be also used later.
We let f() be the set of variables with free occurrences in formula ¢, and for a finite
set W of variables, we let h(¥) = max{i: v; € W}. Consider a formula ¢ € ®p with
h(f(¢)) = n; we associate with ¢ a set ¢® of strings over B defined as follows

(PE = {[blv [ [t [bn—l’ bn]] : KBP“ (P(bl» e bn)}
where 8 =@+, .., b,) means that the assignment of by to v; fori=1,...,n,
satisfies ¢ in B (sec, c.g. [Ebb80]). We call a subset S of U = B* defi inable ift S = ¢
for some formula ¢ € @ . We shall denote by E@B) the set of all finite unions of
definable subsets of 1. (Ihc reason for the closure under union is the fact that each
definable subset consists of trees of the same length.) Clearly, Z(B) is a Boolecm
Algebra of subsets of L.
A structure B for .2 assigns to each n-ary predicate symbol p an n-ary relation p3. In .
addition, we wish to regard a structure as assigning a binary relation (on rees) to each
predicate symbol. Thus, we define the relational realisation of p in B as
BIpl = {(lby,.., bal M by, .., be B} (where A is a fixed special value).
The above relational interpretation of predicate symbols suggests using them to build
other relations by means of the relational operations. The set T(4) of relational terms
is obtained from the basic terms, 1, oo, and p (for each p € Py, by means of the



relational operation symbols + , 7,3, 7, V. (This is the sct of closed rerms, the set of
terms with variables in 7/ having, in addition, all variables in W as basic terms.)
Now, given a structure B for £, with domain B, cach such term 1 denotes a binary
relation B (1] on U = B* defined inductively in the obvious way. We call a binary
relation 7 © U x U denotable iff r = P[] tor some T € T(L), and use IXIB) to refer to
the set of all denotable relations over 8.

In order to correlaie the elementary subscts in E(3B) with the denotable relations in
IX(18), we nced a way to represent a subset S © U by a binary relation r & Ux U.
The relational interpretation of a predicate symbol suggests representing the set
S € Uby the relation S x {A}. Let A() be the sct of all binary relations r over U
with Ran(r )= {A}, i.e., restrictions to the converse of points A. We define
A (W — A(U) by A (S)=5x{A}. This representation is quitc natural, in
that A(p®) = B {p1®; but another one will prove more convenient. Let 1(U) be the set
of all identity relations over U and define 1:9(U) — 1(U) by assigning to S the
identity relation over S.

Some simple propertics of these representations will be of intercst. First, both
representations of sets are equivalent, via a bijection b A1) — I(U) and its inverse.
Second, these bijections can be represented by terms, b being represented by the terin
b(z) = (w; =) o I —sec Subscction 5.1 . Thus, from the viewpoint of denotable
relations, they are interchangcable. Finally, both represcntations are bijective, their
inverses assigning te each relation its domain. In fact, it is interesting to notice that
x € Siff {x, x) € I(S). Thus, 5 is elementarily definable iff I(S) is so, both of them by
prenex formulas with the same prefix [Ebb80].

The Expressive Power of V-Extended Abstract Relational Algebra. We are now
ready for the main result of this section, which will show that terms in V-Extended
Algebra of Relations have the expressive power of first-order logic. This will be
established by showing that any sct of trees that can be defined by a first-order
formula can also be denoted by a closed term of such algebra. In view of the remarks
in the preceding section, concerning representation of subsets as relations, it suffices
to show that, for every set in E(#B), there exists a term T in T(J), such that JB[1]is the
identity on .S. So, let us denote by () the set of all termst in T (), such that, for
every structure 3B for .2, (1] < B[ /1, and by 3 (IB) the set of their denotations in
structure B for.£. Also we define, by induction on m, €; = Iy and €, =€,,; X I,
where Iy is the restriction of / to B.

Proposition 6 Given a first-order language /Z, there exists a function T:®p — 32,
such that for every structure 8 for .2, I(¢®) = B[ ()], for every formula g€ Py, -

Proof We will define 7' by induction on the structure of formula .
Basis: We must distinguish three cases.

8 In particular, making A the truth value T (true) this representation was adopted by M. Frias
and R. Wachenchauzer [Fri92], who used the Haceberer-Veloso programming calculus
[Hae91] for deriving and optimising programs which interact with relational data bases.



Case 1: (is v, =v,. Then, we set
: T =v)=(I1V DT 531V D
Case 2: ©is vy, ..., vy) with p € Pp Then, we set
Ty, . vad=b@ T ;b =(p;pTN s I
where b(p) = (p 5 o) e I denotes the conversion of B[p] to 1(p®).
Case 3: ¢ is an atomic formula afu,, .. ., uy) obtained from one of the above
o(vy, ..., v,) by mcans of a substitution ¢. Then, Lemma 8 below yields
Ty, . o) =87 3 Talvy, ..., v ); S
where §7 is a term, simulating o, casily constructed by means of 1, Iy
and V.
Inductive step: We must distinguish two cases

Ifgis =y,  thenweset T(—y)=1(-y)ee

Now, let h(f(¢)) =n. In view of Lemma 7 below, it suffices to consider ¢' of the

form PAVI =V AL AV =V, .

Ifoisyve, then (p' is' equivalent -to y 'v8'S where 'y ' is
YAV, =V A... AV, =V, and similarly for 0'. Lemma 1 applied to
the inductive hypothesis gives Z(y") and 2(0'). We then set

Ty v ) = Thy) + T(O)

If @ is @vpy, clearly @' is equivalent to (v )y' A v, =v,, whete W' is obtained
from y by the substitution ¢ that interchanges v; and v,,. So, Lemma
8 below, applied to the inductive hypothesis, gives T(y"). Then, we
set:

T@EvIY) =(1V )5 Toy) 5(1V oo
whence Lemima 7 will give Z{o).
Q. E D.

Lemma 7 For every ni > 0, there exists a term d,, such that, for every formula ¢
with h(f(@))=n, if ¢ is the formula @ AVy =Vy A... A Vyun = Vinen ODE can have
'I((P') = (I((P) ® €n and ‘T((P) = dnT H 'Z((P' ); dn- '

Proof Trivial by induction using (I V m)T (o V I)T and V, see [Vel91b).

Lemma 8 Given a subslitution ¢ on {1,...,n}, there exists a term S(o), such that
for any formula ¢ with h ({(@)) = n, if 0((p) is the formula obtained by applying ¢ to
@, then one can take Z{o(@)) =X0) T ; (@) ; o).

Proof Trivial, see [Vel91b] and the discussion. on the construction of non-
atomic cylindrifications below.

Now, it is easy to sce that 3(&) = {t ¢ 1: te T£)}. So, from the very definitions of
the operations and constants of the V-Extended Relational Algebra one can see that,
for each term 1 € 3(£), one has formulae @y, .. ., ¢, € P defining its domain (in the
sense that for every structure B for £, Dom(B [1]) = ¢, Bu ... U@, B). Thus, we have

- cur main result:



Theorem 9 Given a first-order language £ with equality and a structure 8 for .2,
I EB)) = 3(@W). Hence, forevery S < B, there exists T € T()- such that BB [t] =I(S)
iff S € E(W);and conversely, for every t € (L), there exists S € F(IB) such that
B]I=W(9iff t € I(B).

Therefore, the representation of every definable subsct of 38 is denoted by a relational
term. . ‘

Notice that in Proposition 6 we define the translation 7 for the existential quantifier
just for the case of the quantification on variable v,. For generalising the
quantification on other variables we relay on terms d, and $(o) for respectively
adjusting the number of variables and producing an alphabetical transformation of the
original formula. This seems to be very close to the way Polyadic Algebras treat the
same problem, the difference being that, in case of V-Extended Relational Algebra,
this trick is an artefact of the proof, while in the former it is inherent in the algebra
itself. Notice also that both d, and ${o) are constructed with the constants and
operations of the V-Extended Relational Algebra.

By calling n=(/V oo)T andp= (o V 1)T and using a somewhat two-dimensional
notation we can express, for instance, Z((3 viX3vay(vy, vy, Vg, V3, Va)) 83,

mym)) T AN
wiw;| VY T3S v
p p
v ;fl‘(\p(vo,vl,v_z,v3,v4)); \%
P : : Y
ds ds?

where the pair of terms (Cls, ds Ty is the construction, within V-Extended Relational
Algebra, of the cylindrification ¢;¢, \y”(vo,vl,vz,v3,v4) .
Set of sentences of /£

e

i

mmx«.ﬂ""‘"
U
Fig. 4. Domains and morphisms involved in the proof of expressiveness of
V-Extended Relational Algebra '



4.3 An Axiomatization of V-Extended Abstract Relational Algebra.
Lct us now introduce an axiomatization for V-Abstract Relational Algebra.

Definition 10 A V-Extended Abstract Relational Algebra is a structure
AV = <9¥,+, 0, ;7 ,V) over a non-empty set R, such that

(17)  (R,+,9,7) is a complete atomic Boolean Algebra. Its zero element will be
denoted by 0, and its unit element by eo, The symbol < is used for the
ordering with respect to the lattice structure and is called inclusion

(18) (9”,,) is a semigroup with exactly one identity element which is denoted by 1,
ie. (rys)se=r;(s;0) & ryl=lir=r

19 riscterTjiciei;stTaF Schroder rule

(20) r¢0~>oo;r§°°=°° : Tarski rule
@) rVs=(r;(1Ve))e(s;(=V 1)

(22 (er);(th)T=(l;;tT)°(s;qT)

@) (1Y) V(=V))+1=1

Notice mat in the preceding section we call, for the sake of compactness,

n=(1V ) andp= (oo V1) . The intention behind the choice of symbols 7 and p
is to connect (/Veo)" and ( v )" with the first and second projections
respectively.

The concept of pr 0/ecrzons and of some kind of product in connection with algebras
of first-order logic and, in special, with Relational Algebras appears as early as 1946
with the seminal work of Everett and Ulam on Projective Algebra [EEve46]. Later on,
De Roever [Roe72], Schmidt and Strohlein [Sch85b], Zierer [Zie83], Berghammer
and Zierer [Ber86], Berghammer {Ber91], and Backhouse ct al. [Bac92]?, introduced
the product and projections either as data types or as operations. However, each one
of them failcd to formulate that a Relational Algebra extended with a product of this
kind has enough expressive power. Everett and Ulam (and, later, Bednarek and Ulam
[Bed78]) when defining Projective Algebra, extended Boolean Algebra with three
fundamental operations: two projections p; and p, and a product (1. In doing so they.
failed by not recognising the power of their combination with Peircean operations for
the construction of a Relational Algebra over locally finite trees. Those researchers
involved in computer science failed because they had a categ,oncal viewpoint that
“masked” the non fundamental character of projections.

Formally speaking we can extend algebra AV by definition as,

Definition 11
23) m=(IVe)
@ p=(=vi)

9 The idea of direct product and direct sum presented in this paper by Backhouse et al. was
borrowed from the works of the Munich group.



@5) r®s=((1vw)T;r)\?((mV1)T;s)

Comparing our Axiomatization with Other Approaches to Projections and
Product. We are able now (o compare our axiomatization with both, the Munich one
and that due to Backhousce ct al.

First let us prove that the Munich group!® axiomatization can be dcrxvcd from our one,
The Munich axiomatization is, in our own notation,

My wlym=1

M pTip=1

My (m3mT)e(p;pT)=

M3 n¥;p=coand pt ;m=coll

My er=(r;nT)5(s;pT)

Mp can be denvc,d as follows, by applying (23), whercby we can write

({Veo);(IV e ) which by axiom (22) equals (1 JT)D(oo ooT) =1, M; can be
proved similarly, To deuve M, notxce that irom (25) omne has -
I9l= g(IV )T nv ((ooV 1) i1 --(1 Voo) V(=V 1) whlch by, applying
axiom (21) can be rewritten as (I ) 3(1V )0 (( V 1)" ; (e V 1)} which by
(23) and'(24) is (n nT)O(p p } = notice that we proved equalily with /® Jbecause
we are working with homogencous relations. M 3 can be derived in a straightforward

way from (23), (24) and (22). Finally, M4 is equal to (21), provided that we use

definitions (23) and (24).

As for the axiomatization due to Backhouse ct al. we can show that it exhibits more.
axioms than are necessary. As presented in [Bac92] it looks like,

By rVs=(r;n")e(s;pT)

Bj (m3mT)e(pspT)ct

B; (er);(z‘Vq)T::(r;tT)o(s;qT) :
B3 Dom(r) = Dom(p)

Notice that By equals (21), B; equals M2 in the homogeneous case , Bz equals (22)
and Bj equals (22°). .
As for B3 let us introduce the following deftnition.

Definition 12 15,y = (r3r7)e!

Then, B3 can be derived immediately trom M 7 and Definition 12 prov1dcd the
equivalence Dom(r)=Dom(s) <> L pon(r) = L pom(s) hOIdS, which in turn, is obvious,
since Iy is the equivalence relation restricted to set X. Here, we are using the usual
meaning for Dom(r), ic., (Vx)((x € Dom(r)) <> (Ey)(xty))

10 Schmidt, Stréhlein, Zierer and Berghammer.
11 Actually one of them suffices for this axiomatization, we include both just for symmetry.



4.4 On the Representability of V-Extended Abstract Relational Algebra

The representability of V-Extended Abstract Relational Algebra as defined by axioms
(17) to (22) is still an open problem, being the object of ongoing research. However,
as was discussed in [Bau92], V-Extended Abstract Relational Algebra is representable
if we add to the above mentioned axioms the following one,

(26) t#0Atc Vo () Bw)0xvVwct)

Then, denoting by »"the sct of atoms of AV, representability can be proved in the
- following way:

Proposition 13 oe sf »aVoaess,

Proof Take B such that B#0and BcaVa, then, by axiom (26), there exist
vyand & such that 0 =y V § = and consequently y# 0# d.
Now multiplying by projcctions, we obtain
Yo(8;)=(yVE);ncPsnc(aVa)m=oae(a;=)=a
(v5)e8=(y V8)spcPipc(aVa)p=(as=)oa=a
Because o € s2and yo(8; )% 0, wehave y o (5;0) =0
Therefore, oo yand o < 8, giving a Voacy V3 so that indeed
f=aVa .

Q. E. D.

Proposition 14 o€ s — (oc ; 7) sa =0,

Proof From (22) we can deduce that (oc ; 7) ca=(aVa); g v J)T
since 73 (sVi)cr;sVr;t [Hac9l] wehave o;(IVI)caVa. But,
by hypothesis and Proposition 13, a Voess, so that we have

a;{(IVI)=oVa (since (]VJ) cannot be 0). '

Then, (003 7)ear=(aVa);(7V 1) =0 ((1 v 1); ((1 v J)T)), which,
by (22), equals a;éjoj),thus, (a J)oa 0.

Q. E.D. o |

Lemma l5 (rjs)et= (r; ((rT ; t‘) os))ot.

Proof See [Sch91] page 21.

Proposition 16 o.€ s — (OLT ; a) s 7=0.
Proof By applying Lemma 15 we have ((XT H a) ol= (aT H ((a H 7) ° oc)) o]

But, from__Proposition 14, we have oec s — (oc H 7)0 o = 0, thus,
(aT5a)eT=0
Q. E.D.

Proposition 17 0. € &£ — 0. is functional.



a';a)cl, which is a characterisation of the functionality of o
{J6n52]

Proof By Progmsition 16 oce‘sz/-—>(aT )oI*O and by hypothesis

Q.E. D.

Hence, by a well-known result [J6n52], since its atoms are functional, the V-Extended
Abstract Relational Algebra extended with axiom (26) is representable, ie., all its
modecls are isomorphic to the Propcr V-Extended Relational Algebra,

5 On the Calculation of Recursive Expressmns for Quantified
Relational Terms

5.1 Some Useful Results on Partial Identities

As it should be noticed, in constructing the V-Extended Abstract Relational Algebra
we chose to work in a homoegeneous framework (for a comparative discussion about
both homowcncous and heterogeneous apprmchcs sce [Ber93]). Thus, we are forced
to have some kind of type relativization mechanism. It is obvious that such
mechanism depends on the way we have chosen for internalising sets in the relational
framework. Some authors, as Hoare and He [Hoa86a) use vectors (which they call
conditions) and, therefore, intersection as relativizing operation. Others, as ourselves,
chose partial ldcntmes theretore using left multiplication (;) for relativizing!?2
relations.

Proposition 18 shows the equivalence between both ways of relativization,

Proposition 18 (1 o (s oo)) r=ro(s;e). -

Proof It is known [Schél] that (qO(r, )) =(g;s)e(r;e)
Then, (1(532))57=(157)s (s32) = ro(s5)

Q.ED..

The next two propositions show that in restricting partial identities with partial -
identities, left multiplication and intersection are interchangeabie.

Proposition 19 Iy ely =1y ;1y
Proof Iy =(1e(iy; %)) ; Iy (see Proposition 22 below)
By Proposition 18 we have, .
(12 (x soo))s Iy = 1y o (Ix ;°°)=1r,°(1x ;(1'*7))—“-
| L Iys(ix+1x;T)=1Ix o Iy
Q. E D.

Proposition 20 (Iysr)e(lysr)=(Ixely);r

12 For a discussion about different ways of internalising sets in a relational framework see
[Vel92).



Proof (Ixsr)o(Iysr) (1x+1 )i(xsr)e(lysr)=
(Ix;Ixs) 1x,1,,, +(IY,]‘(,r) (:,-(-;Iy;r)z
(Ix3r)e ((IX’JY (( ) r)°((lg;]y);r)=
(Ixsr)e((Ix31y)sr)=(Ix o 1y);r

Q. E. D.

In the sequel, we introduce some useful and necessary results for dealing with partial
identitics. Proposition 21 gives different ways of expressing 1, (recall Definition
12), while Proposition 22 shows in the abstract cnvnonmcnt IE)O obvious proper
algebraic result that any part of the identity relation is itself a partial identity.

Proposition 21 (r;rT)°1=(r;oo)°.l=(1Vr);n.

Proof »(l‘;°°)'1=(r;(rT+—r—f))01=(r;rT)-1+(r;;_T‘)OI
Recalling that FT_;J)M'T =0—>(r;;?)o]=0 (see [Tard1])
then (r;rT)e =(rjo)el :

Moreover,

(1Vr);7t=(IVr);(]Voo)Tz(r;oo)ﬁ
0.E D

Proposition22 dcl—1e(d;e)=d.

Proof ]s(d;oo)=1e(d (1+7))=10d+10(d;T)=d

Q. E. D

The next two propositions show that for a given relation r, the relation 11,0”(,) is
exactly its left identity. Proposition 23 states that given any relation, the partial
identity over its domain contains its left identity; while Proposition 24 shows that any

part of an identity relation which behaves as left identity of a given relation, contains
the identity over its domain.

Proposition 23 1,37 =T
Proof See [Sch91] page 20.

Proposition24 Iy ;r=r—>{r;e)elcly
P’OOf‘ By ; monotonicity Iy ;r=r—Iy;rjee=rjo

by o monotonicity (Iy 5r;ee)ed=(r;w)el

but (Iy 3r3e)ed c(Iyje0)e =1y ;1=1Ix then (ry=)elcly
Q. E.D. ' '



5.2 On Refinements

It is noticeable in calculating programs that cqu’mty is a too narrow substitution

criterion while inclusion is obviously too wide. What we neced is to introduce a

refincment order relation among relations. So, lct us state the following,

Definition 25 ra s iff 1, yircs and 1y, Clp,y

Its “programming” meaning is obvious, given two specifications (or programs) oy and

G,, we will say that o, is totally correct with respect to o, iff

» within its precondition, o, satisfies o, -not nccessarily with the same degree of
non-determinism, and

+ the set denoted by the precondition of o, is included in that denoted by the
precondition of o Formally, p[c,] @ plo,] (see figure (4)).

Proposition 26 is also obvious in Proper Relational Algebra, but we should prove it in

the abstract framework to be used 1ts<,lf in other proofs.

Proposition 26 Dom(r);eo =713

Proof (@) (r;m)OIcr;oo—)((r;oo)ol);ooc‘r;oo;oozr;co
®) ryeo=((ryee)el)sryeoc((rieo)el);ee .
. From (a) and (b) by monotonicity of ; and since r ;oo =00, we have
Dom(r);ee=r;e0 ‘ '
Q. E. D.

Proposition 27 shows how to relativize. via fork and projections.

Proposition 27 (rV s);m=1p,,y37. » v

Proof (rvs); = (s300)0r= (((s ;o) e 1) 353 oo) = /- by Proposition 23'
Let 1=(s300)0 10l Since for every
X, Yis Ix o1y =045 Iy 31y =0, itis clear that ((s;ec)e1);£=10
Momover : ’
(s+(s w)elo I) m-(s+(s oo+1) ) =(s+37;—7-301);oo_
(((s;oo)e]);s+s;oo01);oc:((s;oo+s;oc)-1).;(s+1);<>o=
(wol)s(s+1);o0=(s+1)j00=00
Therefore, :
(S, or—(( 1)-(s+t);oo)er:((‘(s;oo)ol);.oo)orz
((S, ) ]) r= IDam(.s)’

Q. E. D,

Finally, Proposition 28 and its corollaries are an example of a refinement valid under
certain conditions (this result will be used in the derivation presented in Subsection
5.5).



Proposition 28 a) Dom(r ; s) = Dom(r ; Dom(s))
b) Dom(r V s)=Dom(r) e Dom(s)

Proof (a) By Proposition 26 (r;s;)e /= (r,((s o0) o /)00 oI
(b) By Definition 12 Dom(r V s) = ((r Vs);(rVs) )0 1,
which by applying axiom (22) wé can write,
(r H rT) ° (s ; sT) o | = Dom(r) e Dom(s)

Q. E.D.

Corollary 29 1 Dom(s)=Dom(t) then
a) Dom(s V t) = Dom(s)
b) Dom(r; s)=Dom(r;1)

c) Dom(r ; 5)="Dom(r ;s V r ;1) =Dom(r; (s V 1))
Proof. Trivial using Proposition 28

Corollary 30 1f Dom(r ; s)=Dom(r;¢) thenr;(s V) e (r;s)V(r;1)
Proof  Trivial

5.3 Calculating Algorithms From First-Order Specifications Involving
Existential Quantifiers

One of the ways of translating first- oxdex specifications onto terms of the V Lxtended
Abstract Relation Algebra is by the simple and straightforward application of the
expressiveness Theorem 9. However, by doing so we obtain expressions that, from the
view point of algorithmic complexity, are extremely inefficient. The ability of
expressing quantifiers not by fundamental operations but by terms written from such
operations, in this cases, helps dealing with such complexity.

To illustrate this claim, let us calculate a very s1mple and “classic” program from a
non counstructive first-order specification, i.e., a program for deciding whether a
natural number n is of the form 2! — 1 for some i € Nat.

Let us first introduce some relational constants (recall that U is the universe of
discourse of the Proper Algebra), )

s zero= {(x, y):x elUnyeNatay= 0} i.e., the converse of the point zero .

+ suc= {(x, y):x,yeNatay=x+ 1}

. pred:{(x,y):x,yeNatAxvtOAy:x—l}

. pat2={(x,y):x,yeNatAy=2"}

o frue= {(x, y):x eUAnyeBoolay= T} i.e., the converse of the Boolean point T

v false= {(x y):xeUnyeBoolay= F} i.e., the converse of the Boolean point F



o and= {([x,y],z):x,y,ze BoolAz=xA y}

where Nat is the type natural numbers and Bool is the type Boolean.
Let us now give a first-order specification of our problem,

o(n) = (Bi){i eNatan=2! -IJ
o(n,i)
Recall that, by Theorem 9 is 7 ((3 y)(w(x y))) T T(w(x,y)); ©. Since, as it is
obvious, 7(a(n,i)) = (1 ®(por2; pred)) (1v ]) 3(1V 1), we can write Iprop (..,
the identity relation which interprets g(n)) as
Loy = g 3707 '(]®(p0t2'pred));(1 v ;(1Vi)m

prop .
But (IV J)T s(UV);e=(1V 1 (IIV N;(1Ve ) and by applying axiom (22),
we can write (1V 1)’ 57e00=(I1V 1) (1 V 1)". Thus, we have
L prop = a3 it (] ®(pot2 ; pred)) s(1V 1)
Now, for a reason that will become apparent soon, we will write

Dprop =1por 377 5 (1 ®(por2; pred)); (1V N strue

Let us leave now the calculation for a moment for introducing a new operation on
relations (i.e., let us do an extension by definition on the V-Abstract Relational
Algebra). The operation we have in mind will be denoted by r{is]] ~which we read as
the substitution of s into r. The result of applying r{[s] is the relation obtained by .
replacing the arcs of r beginning in points belongmg to the intersection of the domains
of rand 5 by arcs of 5 (see houre 5)

Vs ;o)

)

'
‘
‘
1

Ran (r) v Ran (s)

P Rt R e

(Dom (r) — Dom (s)) v (Dom (r) © Dom(s))
Fig. 5. r[s]

Thus, substitution can be expressed as, rls}= (r v s) p+ (r Vs; oo); .
Returning to our formal development, we can calculate a fotal predicate from the
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:Iprop (lNat ’ ﬂl[é()[[ prop]] ((]M” > f(ll?e) v )prop) pt ((]Nal ’ f(llS(,) prop > ) T )

which can be written

}prop =Iyg st 5 (1 ®(por2; pred)); (1V 1)T strue+ 1

Now, by taking into account that (Ji)(n=2'-1)e> (3i)(isnan=2"-1) and
defining the new rclational constant <n= {(x,y):x,y eNatay< x}, it is easy to
obtain the following equality

(1®(pot2; pred)); (19 N =(I®<n); (1®(pot2; pred)); (1V n’
Substituting we have

jp,ap =Ing ;T 3(IV<n); (1 ® (pot2; pred)) ;(1V 1)T strue+ 1 false

p‘ ; fulse

pro,

‘Which, by using (23) — Definition 11 -, we can wrile as

Fprop = Iyag 5 (17 o2)5 (1@ <035 (1@ (por2; pred)); (1V 1) strue+ o false

Notice that here we are in the crucial point of the derivation. Duc (o the fact that
projections —and as a consequence cylindrifications— are not fundamental operations,
we can write

(IVeo);(I®<n)=(1V <n)
thus restficting the combinatorial explosion produced by 7¥. Then, we have

jpmp =1y, 3(1V<n); (1 ® (pot2; prea’)) s(1V J)T strue+ ]W s false

Distributing now V over ® 13, we have
L prop = 1 nat 3 (1 V(<n;por2; pred)) s(1V ])T strue+ I ; false
But notice that < n = pred™, where pred’” is the transitive closure of pred. Then
Ip,o[, Iyat s (1 V (pred® ; por2; pred)) HIAY J)T strue+ I false
which is an iterative al gorlthm.

5.4 Some Counsiderations About Residuals and Relational Implication
For the subsequent derivation, some discussion about residuals will be useful.
Let s /r be the left residual and s/rthe right residual. Their relational expressions
can be calculated by means of Galois connections from the equations x;r < s and
r; X C s, respectively, by usjng Schr(ider rule, ie.,
xcsfrexyras @

. xcslresrixcs (28)
Since s /r and s/r are the greatest and the strongest solutions of equations x;rc s
and r;xc s, respectively, we can write s/r=5;rT and s/r=r7;3 (recall that
rts=r;5)
Now, notice that

V' =(55r) =H@ =757 9

(sjr)T = (E 7

13 General properties of V and ®, can be found in [Hac91].



then, by recalling the proper algebra definition of r § 5, we can write
(Vx)(V y)(x(sjr)T y e (Vz)(xFzvzsT y))
which can be rewritten as _ '
T
(Vx)(V y)(x(sjr) ye (Vz)(xrz—y sz))
This definition lead.us to introduce a new symbol for the converse of the left us:dual

-which in the sequel will be called relational implication— , namely, r =+ 5= (s / r) .
Notice also that

rT-rsT—-(T_/r ) (—_r.ﬁJT:rT;Ezs[r . (30)
Then, 17 = sT=sup{x:r;xcsh=rT {5, thus |
(Vx)(V y)(x rT - 5Ty (V z)(zﬁx v zsy)) (€3]
which can be rewritten as
(Y)Y y)(xrT = 5Ty e (V) (zrx—zs y)) (32)

5.5 Specifications Involving Universal Quantifiers - Formal Development of a
Constructive Specification of Quicksort from the Partial Identity over Ordered
Lists
As was done in the preceding section, translation from first-order formulae to terms in
V-Abstract Relational Algebra can be accomplished by the straightforward
application of the constructive proof of the expressiveness Theorem 9. Here we will
begin our formal development by doing another kind of translation, which we will ca]l
“by pattern matching”.
Let ¢, ¢1 and £) be lists, & (¢) a predicate whose truth-valie is true iff ¢ is an ordered
list and last and head the usual operations on lists. A first-order definition of &d could
be,
(Vo)) & (V4 )(V4 )t e L v e=4 # 4 — lasi(4) <head(s,))

which can be written in Proper Relational Algebra as »

(Ve ot Tes (V]4,6])(¢ € £ v 4. ]) enc £ = [4,4] (151 @ hd); I¢)pair)  (33)
where, '

o [}is the set of lists of length 1,

* [’is the sct of all lists,

» 1. is the identity relation restricted to the set of all lists,

o ] o is the identity restricted to the set of lists of length i or less,

» Ist is a relation which for cach list gives its last element,

+ hd is arelation giving for each list its head,

» ¢nc is a relation which given two lists of length 1 or greater concatenaies them to
form a new list!* and

» 1. is the partial identity over pairs pair of elements satisfying relation <.

4 Notice that cnc is a partial relation not defined on empty lists.



Comparing expressions (33) and (32) (sce figurc 6) it is cvident that both definicns
match. Then, replacing them by its definicnda we can write
(W)(Z Od Tes 1, +l(cncT — (st ® hd); ]S)T)pair) 34)
recalling that e (r ;<) is the identity over the domain of r, we can write
lyy =1 8(Ods00)=1,. e(lL, + (cncT = ((Ist ® hd) ; IS)T).; co)
distributing intersection over sum, we have |
lgg=1p00ly 410 ((cncT = ((Ist ® hd); IS)T) ; oo) (35)
[ e
p
Notice that the expression ((cncT - ((lst R hd); ]S)T ) H oo) is not defined over L}
Then, assigning to operation =+ angelic non determinism [Ber86], we can write the
following dcterministic expression
log=1p+10_p s((cncT - ((l&"t ®hd); IS)T) ; oo) 36)

2 (Land T & (V4 LDUelt v [4, 4] conct — [ll,lz],((lst®lzzl);1) pair)
. e~
(V)Y) xrT=sTy ¢ (Vz) ( zrx — zZ5y )
Fig. 6. Matching patterns between first-order predicate ¢ and Proper Relational Algebra
definition of relational implication between converses
Let us forget the trivial part /., and concentrate ourselves in the second non trivial
part of (36). Thus, calling 1, =14, — 1, and recalling (30) we can introduce the
right residual
Loys =1pe_p (st ® hd)s I [onc) s o) @7
- which is equivalent to A
loys=1, 9 (sup{x cencsx (st ®hd); 1} s oo) (38)
Notice that we must solve the equation sup{x rencyx (st ®hd); Js} over the set
of ordered lists. For doing so, we can introduce the following two lemmas:

Lemma 3l If Dom(x) is the set of lists ¢Zsatisfying <Zed T then
cncsx=(l,, ®1,,);cncsx. -

Proof (x500)0l=1y4, (I ®lgy)sencsx= (I, ®ly,)ienc;loy, ;X
but (1M®1M);cnc;lw=(1L.®JL.);cnc;1M

then (IW®IM);cnc;x=cnc;1M;xzcnc;x

Q.E.D. '

Lemma 32 sup{x:1,,, =1°(x;oo)/\cnc;xc(lst®lzd);15}=
ene 5 Iy ®1gy); (st ® hd); I



Proof {x:lw=It(x;W)Acnc;xc(lsl®hd);15}= :

={x:]w =lo(x300)A(lyy ®lyy)icnc;xc

(low ®1py)s (Ist®hd); 1}

by Leimma 31 this set equals

{X:IM =lo(x;o)ncncyxc(lgy ®10d);(lst®lzd);1;}
by ; monotonicity and since cnc is univalent we can wrile the above set as

{x:]M =lo(x;)axcenc’ (I, ®.IM);(lst®hd);15}
then sup{x i1y =1o(x;)Acnc; x (st ® hd); 15} =
C"CT;EIM®1a.4§3(15’®/’d);15 ' o
S0, enc’ oy ®1,y s{(Ist @ hd); 1, 1s an upper bound and since its

domain cquals the one of ¢hd
Q. E D.

Then, we can rewrite (38) as
logz =1, p o((cncT 3 (10w ®1M);(lst®}zd);15);oo>
whfch obviously equals . ‘ '
loys=1ay o((cn'cT s (Zow ®10d);(lst®lzcl);15);oo)
Now, recalling Proposition 21 we can write the above expression as

which obviously equals

cnc’;l ® [;] ® |51c
1,y hd )

But, by Lemma 32, the domain of cne’ ;(]M ®1w);(lst ® hd); 1 is the set of
ordered lists. Then, from the definition of V we have




Loy
enct3l ® |sene

164

encT5| ® |3 ® |51
1,y ) \Jid )

But from Propositions 26 and 28 and Corollaries 29 and 30 and Definition 25 we can
, Ky r;s
easily derive [o(rjs;o0)=1le(r;tyee)or;|V|a| V |, and since I, is
t rit
univalent, & is equivalent to =. Then, we can write

® is;cnc

=cnel ;s
lgy,=cnc’;

and then,

Loy =cnct; 3T 39

\ /
It is important to notice that what we have carried out was the construction of a
recursive refinement (39) for the unpiversal quantified relational expression
1. p of(cncT - ((lsr@ hd); JS)T) 5 oo}. In doing so, we could resort to the Galois
connection, )
xc ((lst ® Iid); Ig[enc) e cncs x < (Ist ® had) 5 1.

However. the intuition needed for stating equation cnc; x < (Ist ® hd); I is not
trivial. Notice also that the solution on x of this equation must be a relation with the
same domain as O:xd. Then, to guaranteeing the inclusion



xcencT;(lay, ©1s,); (st ®hd); 1, the domain of x must be the domain of
ordered lists. What we has done is 1o replace “clever intuition” by mere calculation,
Let us now continue with the calculation of our sorting algorithm. An obvious
specification for sort is,
sort = perms 1, 40)

which by trivialising and distributing it, and recalling that perm; 1, =1, we can
write :

sort = perm;(IL. +1'M'2)=perm;ILl +permily =1+ perm;loy,
By unfolding (39) on it we have ‘

1ot
sort=1y, +1,._p;perm;cnc’ ; vV i
‘ Ist
® ] o
hd
By applying now Proposition 27 we obtain '
Ist 14y
sort=!L,+IL._L.;perm;cncT; ® (1,300 001|351 ® |5enc
hd 1y )
which by commuiativity of identities we can rewrite as
Loy Ist
sort=1, +1,_p;permiencT;| @ [31]| ® [54g50 |01 |5enc
’ Loy hd

perm
But perm;cnc’ = permiyenct ;| ® | Substituting the right hand side in the last
perm
expression of sort we have i
perm\ {1gy Ist) .
sort=1Ll+1L._L.;perm;cncT; ® Ll ® |3 ® |31g300 |0] {5¢nc
perm ) \ 1 ou hd
Applying distributivity of © with respeét' to ;, we have
perm;ly, Ist
sort=1Ip+1,_p s permienc’ ; ® H ® |10 (0] |rene

perm;l,, \ hd
By unfolding (40) here, we have



sort Ist

sort=1,+1,._p, ;\perm;cncT; ® ;]| ® [51¢300 |01 |5cnc

sort hd
Ist
Rewriting | | ® |31 30 |o [ using fork
hd '
1)
®
sort 1y
sort=1L,+1L.mL.;perm;cncT; ® ;5| V 3 T CNC
sort Ist
® {31
hd
. \
Since sort is univalent we can distribute ; over V, and noticing that
sort) {1 sort '
® |31 ® |=| ® |, weobtain
sort ) \1;. sort
sort
®
sort
sort=1, +1,._ ;perm; cneT \% s T Cne
sort (st
® 5| ® |51¢
sort ) \hd
By distributing ® over ; in the inferior branch of the fork
sort)
s |
sort
sort=1, +1;._; ;perm; cne’; \% 37y ene
o sort ; Ist
® 31
sort 3 hd )

But noticing that sort; Ist = max and sort 3 hd = min and folding, we obtain



sort
®
sort
sort=1, +1,._, ;perm;enc’ ; v
max
® |3l
min
Finally, by applying Proposition 27 we obtain
1
sort=1p +1,._ 3 perm; cne’ % H
' max
® |3l
min )
!
Notice that if we do partition = perm:jcnc’ 3 \%
max
® |31
min
sort
sort=1pn+1p_ 113 part_ition; ®
sort

3705 Cne

sort
® |;enc
sort

s ene

@n

3 and fold (41) we have

which is obviously a specification of Quicksort. A sort algorithin can be derived by

calculating out of the specification of partition..

6 Conclusions

We have presented an alternative basis for relational programming calculi by
extending Abstract Relational Algebras with a fork operator. This operator, as well as
the direct product and the projections, has being used by other researchers. However,
they fail to formulate that the new algebra has the expressive power of first-order
logic!S. We introduce an axiomatization for the V -Extended Abstract Relational

15 Notice that as late as 1991 Maddux [Mad91] and Németi [Ném91] considered this problem

unsolved.



Algebra, compare it to “classical” algebras for first-order logic and, later, proved that
alternative axiomatizaiions tor fork and projections can be derived fromn our onc.

At this point we show, by formally calculating algorithms out of first-order
specifications of two “classical” examples, the advantage of having quantifiers
cxpressed by terms. We also show two ways of translating first-order expressions onto
relational terms. Two main points of this second part of the paper are the examples of
how to cope with the algorithmic complexity of the relational term expressing
existential quantificr and the proposed heuristic for deriving the equation on residuals
expressing universal quantificr.

A point to be emphasised is that we will have another indication of the fitness of this
algebra to underlay relational programming calculi, if it turns out by subsequent
research that the V-Exlended Relational Algebra is representable without the inclusion
of the extra axiom (26).

Future rescarch will be carried out along two main directions. The first one is the
exhaustive analysis of the V-Extended Relational Algebra as an algebraic structure.
The sccond one is the full development of a programming calculus. This involves
answering the question of whether or not we should deal not trivially with pactiality
(as discussed in Section 4 of {ae91]). After a conclusive answer to this question, we
will develop a typing system for our evolving relational programuining calculus.
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