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Abstract:

We present in this paper a new approach for the optimization of a quadratic function in 0-1
variables, based on the solution of a sequence of nested set covering problems. Each constraint
of the set covering problems is associated with a circuit in the implication graph derived from
the span of the quadratic function.

Keywords: Quadratic optimization, 0-1 variables, implication graph, circuits, set covering.

Resumo:
Apresenta-se neste artigo um novo enfoque para a otimizagio de uma fungao quadratica em
variaveis 0-1, baseado na solugido de uma seqiiéncia de problemas de recobrimento aninhados.

Cada restricao do problema de particionamento estd associada a um circuito do grafo de im-
plicagdo derivado do gerador da fungio quadratica.
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1 Introduction

We consider the problem of optimizing a quadratic function in 0-1 variables:

minimize f(z) = Zn: Y GiT;Ty
=y
subject to: = = (21,Z2,..-,%a) € {0,1}",

Several approaches have been proposed for this problem, such as branch-and-bound (10, 12},
cutting planes [4], linearization techniques [1], and reduction to concave programming [3}, among
others. We propose in this paper an exact algorithm based on the solution of a sequence of nested
set covering problems defined on the implication graph of the span of f(z).

The paper is organized as follows. In the next section, we first introduce some notation and
basic results. A decomposition technique [5] based on the construction of the implication graph
is described. We show how to identify persistency properties of f(z) directly on the implica-
tion graph. Following, we show in Section 3 that the minimization of f(z) is equivalent to the
elimination of some circuits in the implication graph and that the latter problem can be formu-
lated as a set covering problem. Two exact algorithms associated with different implementation
strategies to explore the implication graph are given. Some concluding remarks are discussed in

the last section.

2 Reduction and Decomposition

We first recall in this section how an arbitrary quadratic function f (z) can be transformed into
a posiform ¢(z,z). Following, we associate with ¢(z,Z) an implication graph. This leads to
a decomposition scheme of the original problem into smaller ones associated with the strongly
connected components of the implication graph. We conclude the section by proposing a new
procedure for variable fixation, in which the implication graph is used to detect persistent vari-
ables.

2.1 Properties and Definitions

We denote by X = {z1,...,%.} the set of binary variables and by X = {Z1,...,Zn} the set of
complemented variables (i.e., Zj = 1 — z;). A literal is any element of X UX. Every quadratic
function f(z),z € {0,1}", has a unique polynomial representation in the variables z,,..., 2,
called its canonical form. However, f(z) can always be rewritten by complementing some of the
variables as

f(z) = ¢(z,7) + C(4),
with »

#z,7) = ¥ aTi(@,7)

=1

and

Ti(z,z) = [ =,
JEN;
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where, for any 7 € {1,...,p}, ¢ is a positive real number, N; is the index subset of the two
literals in the i** monomial T;(z, %), and C(¢) is a constant which depends on the construction
of ¢(z,Z). All the monomials of ¢(x,T) are supposed to be distinct. For any j € {1,...,n}
and i € {1,...,p}, 23" = z; if ;s =1 and z;'”‘ =z; =1-1z;if aj; = 0. Let us denote
&;; = 1 — aj,. Such a function ¢(z,7) is called a posiform associated with the function f(z) and
is not unique in general. The boolean function

$(z,7) = Ti(z,T) V Tz, Z) V... VT(2,7)

is called the boolean span of f(z) (the monomials are here considered as boolean-valued, with the
convention false (0) and true (1)). We recall that (i) C(g) is a lower bound of f(z), and (ii) the
minimum f* of f(z) is equal to C(¢) if and only if the quadratic boolean equation ¢(z,%) =0
is consistent [11]. Consistency of a quadratic boolean equation can be checked in O(p) time (see
eg. [2]).

Given a set T = {Ty(z,%),...,Ta(z,T)} of products of literals (clauses) defined on X UX and
a weighting function ¢ : 7 — Z which associates with each clause T; € T a weight g, the (literal)
weighted mazimum satisfiability problem [8] consists in finding the smallest value of h such that
there exists z € {0,1}" satisfying ¥ ;es ¢; < h, where I={ief{l,...,n} | Ti(z,7) = 1} (i.e., we
minimize the sum of the weights of clauses which are satisfied). Then:

Theorem 1: (Simeone [11]) i
Given a quadratic 0-1 function f(z) = ¢(z,7) + C(¢) and its boolean span &(z,T), let ¢* be the

optimal value of the associated weighted maximum satisfiability problem. Then, the minimum

of f(z) is f*=¢"+C(¢)- .

Hence, the determination of the minimum of f (z) can be reduced to the solution of the
associated weighted maximum satisfiability problem.

2.2 Implication Graph and Decomposition

We consider the implication graph G = (X U X, E) associated with the boolean span é(z,T) of
the quadratic 0-1 function f(z), introduced by Aspvall, Plass and Tarjan [2]. The set of nodes
is X UX and the set of arcs is such that, with each monomial Ti(z,%) = 237z, of f(z) are
associated two arcs (z;‘"‘,zf"‘) and (z§*,2;"") of E. (In order to simplify the notation and the
presentation, we introduced a slight abuse of notation, in the sense that z; and Z7 denote both
0-1 variables and vertices of the implication graph. Accordingly, X and X denote both sets of

literals and subsets of the vertex set of the implication graph.) The following result holds:

Theorem 2:

Let f(z) be a quadratic 0-1 function written as a posiform ¢(z,%) + C(¢) and let f* be its
minimum. Then, f* = C(@) if and only if the implication graph G of f(z) has no strongly
connected component containing both z; and Z;, for some j € {1,...,n}.

Proof: From Theorem 1, f* = C(#) is equivalent to ¢* = 0. Then, the boolean equation ¢(z,¥)
is consistent. The result follows from Aspvall, Plass and Tarjan [2]. -

Let Ci,...,C, be the sets of vertices of each strongly connected component of G containing
both a variable and its complement. These components may be determined in linear time by



the depth-first search algorithm of Tarjan [13). Let Ge = (Co,Ur), £ € {1,...,q}, denote the
subgraph of G induced by C;. With each G, we associate the 0-1 function

f((l‘) = E q.-T.'(:c,I),

i|Ti(x, T)EM:

where M, is the set of monomials of f (z) whose (two) associated arcs in the implication graph
belong to Up. It is clear that for all (¢,j) € {1,....q}* ,i# 7, M;n M; =@. The following
result holds:

Theorem 3: (Billionnet and Jaumard [5])

Let f(z) be a quadratic 0-1 function written as a posiform. Let C = {Ci,...,Cq} be the set
of strongly connected components of the associated implication graph containing both a vertex
and its complement. Then, f* = v%_, f7, where f; is the minimum of fe(x) over {0,1}". .

From the decomposition result of Theorem 3, we can from now on restrict ourselves to the
case of the minimization of a quadratic 0-1 function such that its implication graph has a unique
strongly connected component containing both a vertex and its complement.

2.3 Persistency and Variable Fixation

Given an optimization problem, a variable is persistent if it has the same value in all optimal so-
lutions. Hammer, Hansen and Simeone [9] have shown that persistent variables for the quadratic
0-1 minimization problem can be detected through computations based on roof duality. Their
algorithm was later improved by Boros and Hammer [7]. More recently, Sutter [12] proposed
an extension of their approach, which in general allows the fixation of more variables, based on
the extraction of an appropriate constant from f(z) through the solution of the Lagrangian dual
followed by the recursive application of the technique proposed by Hammer, Hansen and Sime-
one to the resulting posiform. More recently, Billionnet and Sutter [6] proposed a linear time
algorithm for determining persistent variables from a best roof of the quadratic function. We
propose in the following an alternative procedure for variable fixation, in which the implication
graph is used to detect persistent variables.

We consider the set C' formed by all strongly connected components of the implication graph
G which does not contain simultaneously any vertex z; € X and its complement Z;. From
the construction of the implication graph, if some literals are in one of such strongly connected
components, their complements appear together in another strongly connected component (see
[2]). Let €' = {C},--- ,C!, Ty ,C.} where, for any literal v € X U X such that v € C} (resp.
v € C';) for some j € {1,...,7}, then T € C'; (resp. T € C}). We define the reduced graph
Gr = (Xr, Er), where Xp = {C}, .. .,C.,Ch,...,C,} and Ep = {(U,V) € Xp X Xgr13(u,v) €
E such that v € U and v € V}.

Theorem 4:

Let v € (X UX)NC] for some j =1,...,7. Then:

(a) v = 0 is a persistent variable if there exists a path in G from Cj to U;,
(b) v =1 is a persistent variable if there exists a path in Gg from C’: to Cj.

Proof: We first recall that there are two arcs (=57, z7*) and (73", z;"') in the implication graph

associated with each monomial Ti(z,%) = 23" zy". These two arcs may also be interpreted as
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conditional relations :r;"" < xf’v"’ and ;' < z?"‘. Then, a path p' in G from v € (X U X)ynC;
to 7 € (X UX)NC; means that v < T, ie,, v = 0. From the definition of the reduced graph,

to each such path p’ in G there exists an unique corresponding path in Gg. This completes the
proof of (a) above. The same proof stands for case (b). »

The computation of the transitive closure of the reduced graph Gr is a practical way to expjoit
the results of Theorem 4 above, resulting in an O(|XrP®) algorithm based on the implication
graph to detect a subset of the persistent variables. In the general case, Theorem 4 does not
allow the identification of all persistent variables. An appropriate choice of the posiform may
help to increase the number of variables fixed due to persistency properties.

As an example, consider the posiform f(z) = 7172 + T2T1 + T1Ts + 7421 + T2T3 + T2Tq +
z5T¢ + T6Ts, whose implication graph and its strongly connected components argﬁiven in Figure
1. We have C! = {zs5,26}, Cj = {Z3}, C3 = {z1,22,F4}, C, = {%s,%6}, C; = {3}, and
C, = {%1,T2,74}. Since thereis a path C) — C3 — C, — U, the following fixations can be

performed: T3=T1 =22 = Ty = 0.

| ’ A ] \ / 4 ¥
Zs Ty ———>12 T > I3 -Ts

C{ = {35’:’:6} C= {53} C."s = {ml’xﬁsf‘i} Cy= {:'1:'1,'272,.7,'4} U' = {33} Cll = {55356}

Figure 1: Implication graph and its strongly connected components.

3 A Solution Approach Based on the Implication Graph

We assume througout this session that f(z) is written as a posiform. The following decomposition
scheme based on Theorem 3 will be applied to the minimization of f(z):

Step 1. Construct the implication graph associated with the span #(z, %) of f(2).

Step 2. Let C' = {C},. .. ,C!,Chs - - ,C.} be the set of strongly connected components of
the implication graph which does not contain simultaneously a vertex and its complement.
Then, for each literal v € (XUX)NC; for some j = 1,...,r, fixv =0 (resp. v =1)if there
exists a path from C; to U; (resp. from U; to C}) in the reduced graph Gr = (Xr, ER)-

Step 8. Let C = {Gy, ... ,Cy} be the set of strongly connected components of the implica-
tion graph containing both a vertex and its complement.

Step 4. Foreach £=1,...,4, obtain the minimum f; of fi(z) using algorithms GQUAD1
or GQUAD?2 given below.

Step 5. Compute f* = Yj, f¢-



From step 4 above it follows that the minimization of f(z) amounts to the solution of ¢
smaller problems. Each of these problems corresponds to the minimization of fe(z) for some
¢=1,...,q. By construction, the implication graph associated with the span ¢e(z, %) of fu(z)
has only one strongly connected component containing both a vertex and its complement. Based
on the decomposition scheme above, we may assume without loss of generality that the impli-
cation graph G has only one strongly connected component containing both a vertex and its

complement.

We know from Theorem 2 that the minimum of the quadratic function f(z) written as a
posiform is f* = C(¢) if and only if the boolean equation #(z,T) = 0 is consistent, i.e., if its
implication graph does not have any strongly connected component containing both a vertex
and its complement. From Theorem 1 we know that if the boolean equation é)(z,’:f) = 0is
not consistent, then finding the minimum of f (z) is equivalent to solving a weighted maximum

satisfiability problem.

Now, let y; = 1 if the monomial Ti(z,%) is equal to one in the solution of the weighted
maximum satisfiability problem; y; = 0 otherwise. For any circuit « of the implication graph G,
let aY = 1 if at least one of the arcs associated with the monomial T;(z, ) belongs to v, a] =0
otherwise. Hence, the minimum of f(z) can be obtained as the optimal solution of the following

set covering problem:

- . . p
minimize Y qyi
1=1

P
(5C) subject to: Y aly; 21 for every circuit 7 of G
=1

y € {0,1}*.

Then, the following result holds:

Theorem 5:

Associate with each arc of the implication graph G the weight g; of the corresponding monomial of
the posiform ¢(z,T). Then, the associated weighted maximum satisfiability problem is equivalent
to the set covering problem (SC), i.e., to the determination of a minimum weighted set of arcs
which should be removed from G in order that the resulting graph has no circuit containing both

a vertex and its complement. =

The number of constraints of (SC) may be very large, i.e., almost as large as the number of
circuits in G. Instead of solving (SC) directly, we define a row generation scheme and we propose
in the sequel two algorithms based on the solution of a sequence of nested set covering problems,
each of which incorporating new circuit elimination constraints. Both of them determine a
minimum weighted set of arcs of the implication graph of f(z) which eliminate all of its circuits
once they are removed.

3.1 Algorithm GQUAD1

This algorithm consists in the search for new circuit elimination constraints, which are incor-
porated to those obtained during the previous iterations. At each iteration, a new set covering
problem is solved and its optimal solution is a minimum weighted subset of arcs such that



its elimination breaks all circuits already enumerated in the implication graph. If the circuit
elimination constraints already generated are not sufficient to eliminate all circuits containing
both a vertex and its complement, new circuit elimination constraints are identified and ap-
pended to those previously enumerated, and a new, extended set covering problem is solved.
The algorithm stops when the resulting graph has no circuits containing both a vertex and its
complement. Convergence is easily proved, since in the worst case all circuits of the implication
graph of the boolean equation ¢(z,7) =0 associated with f(z) will be enumerated.

Step 0 (Initialization):

0.1. Let G° = G = (X U X, E) be the implication graph associated with the span ¢(z,T)
of f(z).
0.2. Determine a subset of circuits of G°, each of which containing a pair {z:, 7;} of vertices,

for some z; € X.

0.3. Construct the corresponding set of constraints A'y > 1 and let (SC) be the initial
set covering problem:

minimize zp: Vi
1 i=1
(5C%) subject to: Aly >1
y € {0,1}"-

0.4. Set k « 1.

Step 1 (New solution):

1.1. Solve (SC*) and let y,(k) be its optimal solution. Let I = {i € {1,...,p}: y,(k) =1}.

1.2. Let G* = (X UX, E,), where E; = E'\ {(z3%,20*), (zo*,27") € E | i € Li}.

1.3. If G* has at least one strongly connected component containing both a vertex and its
complement, then go to step 2. Otherwise, stop: any solution of the consistent boolean
equation ¢*(z,Z) = 0, obtained from ¢(z,Z) by removing all monomials T;(z,Z) such that
i € I, leads to the minimum of f(z).

Step 2 (Determination of new circuits):

2.1. For each strongly connected component of G* containing a pair {z;,%;} of vertices,
for some z; € X, do:

9.1.1. Determine a subset of the circuits of the strongly connected component, each
of which containing both a vertex and its complement.

2.1.2. Append the corresponding constraints to the constraint matrix of the current
(SC*) set covering problem.



2.2. Let A1 be the new constraint matrix and (SC*1) the associated set covering
problem: '
2
minimize Y gy
k 1=1
(SC%) subject to:  Aly >1
y € {0,1}*.

2.3. Set k — k + 1 and return to step 1.

The finiteness of algorithm GQUAD1 follows from the fact that, in the worst case, all circuits
of G will be enumerated. In this case, the last problem to be solved is the full set covering problem
(SC). Correctness of the algorithm then follows from Theorem 5.

Several strategies could be used for identifying circuits in the implication graph G* at steps
0.2 and 2.1.1. The first one consists in finding short circuits in terms of the cost of the monomials
corresponding to their arcs. One way to proceed is: (i) select a vertex v appearing together with
its complement in the same strongly connected component of G; (ii) find a shortest path in G
from v to T and another one from ¥ to v, with the lengths of the arcs of G corresponding to the
costs of the corresponding monomials; (iii) combine these two paths to form a circuit passing
through v; and (iv) repeat these steps to find (at least) one circuit passing through ea/ch vertex
appearing together with its complement in the same strongly connected component of G. A
second strategy would consist in finding short circuits in terms of the number of monomials
corresponding to their arcs. A similar procedure could be defined by replacing (ii) above by the
computation of shortest paths with respect to the number of arcs.

As an example, we take f(z) = #(z,T) = 8z123+ 62173 +3T1z3 + 1173+ 22475 + 112475 +
3%,z5 + 16Z,4T5 + 22,22 + 0.5T223 + TaTs, whose associated implication graph G° = G is given
in Figure 2.

NN

|V Y4

Figure 2: Implication graph G° = G.

Two circuits are identified at step 0 by the first strategy:

e Circuit 4%, containing z; and Z;: path 2y 2 T2 =+ T3 = T (length 8.5) followed by path
Ty — Tg — Ts — T4 — Ts — T3 = T3 (length 13), also containing literals z3, T3, s, and
Ts; and



e Circuit 42, containing z, and 7 pathz, = T = T3 = 25 = 24 = Ts = T3 = &1 = T3
(length 17) followed by path T — T3 — zs — 24 = Ts = I3 = T2 (length 8), also
containing literals 4 and T,.

The binary variables y; € {0,1}, 2 = 1,...,11, are indexed in the same order in which the
corresponding monomials of f(z) appear. We obtain the first set covering problem:

( minimize f(z) =

8y1 +6y2 +3ys +1lys +2ys +1lye 4+3yr +16ys +2y9 +0.5y10 +yn
bject to:

SCI subD]

( )7 y2 T3 +ys +y7 +¥9 +y0 +tyn 21

y3 +ys +y7 +¥9 +y10 +ynn 21

l ¥i € {071})i= 1?"'5117

whose optimal solution is yﬁ,’ =1; y,(l) =0, i # 10. The boolean equation e (z,Z) = 0 obtained
from ¢(z, ) by removing the monomial Tyo(z, T) is not consistent. The new implication graph G*
contains all arcs of G° except (Z2,%3) and (23, T2), which are those associated with the monomial
Tio(z, ¥); see Figure 3. Two new circuits containing both a vertex and its complement are now

identified in G? at step 2.1.1:

e Circuit 93, containing z; and Z;: path z; = T3 — %1 (length 14) followed by path
T, T3 T Ty E T3 T (length 18), also containing variables z3, F3, 5, and

Ts.

e Circuit v*, containg 74 and Zy: path z4 = T5 — T4 (length 13) followed by path T, —
z; — x4 (length 19), also containing variables z; and Ts.

NN
VARV

Figure 3: Implication graph G*.

Two new constraints associated to circuits > and v* are appended to (SC'), defining the
new set covering problem (SC?):



[ minimize f(z) =
8y1 +6y2 +3ys +1lys +2ys +11ve +3y7 +16ys +2y9 +0.5y10 +yn

subject to:
(5672)ﬁ Y2 +¥3 +ys +y7 +¥o +y10 +¥u1 >1
Y3 +ys +y7 +y9 +y10 +ynn 21
v1i  +y2 tus +9s +y7 4+y1n 21
>1

Ys +ye Y7 +ys

| vi€{0,1},i=1,...,11,

The optimal solution of (SC?) is g = 1; y@ =0, i # 5. The new implication graph G?
contains all arcs of G° except (z4, Ts) and (s, Z4), which are those associated with the monomial
Ty(z,); see Figure 4. The following circuit containing both a vertex and its complement is

identified in the implication graph G? at step 2.1.1:

e Circuit 4°, containing z; and T;: pathzy = T2 2 T3 = T1 (length 8.5) followed by path
T, — 3 — 7; (length 14), also containing variables z3 and T3.

-t 5

I\ I\

Ty —tp—— T}

VRV

Figure 4: Implication graph G

A new constraint y + y3 + ya + Yo + y10 = 1 (associated with %) is appended to (SC?),
generating the new set covering problem (SC?). The optimal solution of (S C3)is y§3) = yﬁ’,) =1;
y,(s) =0,i=1,2,3,4,6,7,8,9,11. A new circuit containing both a vertex and its complement is

found in the implication graph G?; see Figure 5:

o Circuit 7%, containing z; and Fi: path 2y — 23 = &1 (length 14) followed by path
7; — T3 — 1 (length 14), also containing =3 and 3.



Figure 5: Implication graph G°.

The new constraint y; +y2+y3+ys = 1 (associated with %) is appended to (S C3), generating
the new set covering problem (SC*):

( minimize f(z) =
8y, +6y2 +3ys +llys +2ys +1lye +3yr +16ys +2ys +0.5y10 +yn
subject to:
y2 +y3 +¥s +y7 +Yo +y10 +yun 21
(Scd) 4 Y3 +¥s +y7 +¥Yo +y10 +y11 2 1
n ty2 ¥ +ys +y7 4y 21
Ys +ye +y7 +¥s >1
2 tys U +Yo +Y10 21
hn e ty +un >1
| g €{0,1},i=1,...,11

The optimal solution of (8CY) is y;(;) = yg) =1; y,w =0,i=1,2,4,6,7,8,9,10,11. The
algorithm stops, since the new implication graph G* does not have any circuit containing both
a vertex and its complement; see Figure 6. Using Theorem 4, we then have z} =0, 2 = 23 =
Ty=z=25=1.

AN_ N
VY

Figure 6: Implication graph G*.

Ty
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3.2 Algorithm GQUAD2

The algorithm described here follows a backtrack strategy. At a given level of the search tree,
circuit elimination contraints associated with the current implication graph are generated and
a set covering problem is solved. If the solution of the set covering problem breaks all circuits
containing both a vertex and its complement, then the current subproblem has been solved and
the circuit elimination constraints associated with it are appended to those of the subproblem in
the immediately higher level of the search tree. Otherwise, each strongly connected component
(containing both a variable and its complement) of the resulting graph generates a smaller
subproblem at the immediately lower level. A depth-first-search strategy is used to explore the
search tree and, as long as the algorithm does not backtrack, the set covering problems associated
with the new subproblems gets smaller (in terms of the number of variables and constraints).

Step 0 (Initialization):
0.1. Let G° = G = (X UX, E) be the implication graph associated with the span ¢(z,7)
of f(z). Set components(0) « 1 and scan(0) « 1.
0.2. Set k « 0.

Step 1 (Branching):

1.1. Let Cy be the node set of a non-scanned strongly connected component of G con-
taining both a vertex and its complement.

12. Let G’ = (X' UX', E") be the subgraph of G* generated by Cy, with X’ C X and
X' C X, and set scan(k) « scan(k) — 1.

1.3. Set k — k+ 1.

1.4. Determine a subset of the circuits of G, each of wich containing a pair {z;,Z;} of
vertices, for some z; € X' (the same strategies described in Section 3.1 for Algorithm
GQUADI may be used). Let AF be the corresponding constraint matrix.

Step 2 (Solving the subproblem):

2.1. Let (SC*) be the current set covering problem associated with level k:

minimize f: qYi
k =1
(5C%) subject to: Afy >1
y € {0,1}".

2.2. Solve (SC*) and let y* be its optimal solution. Let I = {i € {1,... P} v =1).

agi agi Gy

2.3. Let G* = (X UX, E}), where E; = E'\ {3, 24"), (z¢*',2;>") € E' | i € Ii}.

2.4. Let components(k) be the number of strongly connected components of G* con-
taining both a variable z; and its complement Z; for some z; € X' and set scan(k) «
components(k).

11



2.5. If components(k) # 0, then go back to Step 1.
Step 8 (Backtracking and termination):

3.1. If k =1 then stop.

3.2. Append the constraint matrix A* to AF1
3.3. Set k «— k —1.

3.4. If scan(k) # 0, then go back to Step 1.
3.5. Otherwise, go back to Step 2.

We consider the same example given for the first algorithm. The first set covering problem
solved in the first level of the search tree (step 2.2) is the same problem (SC?) solved by algorithm
GQUADI. Its optimal solution is y%) =1; y,(l) =0, i # 10. The resulting graph (step 2.3) is the
implication graph G! already shown in Figure 3, which has two strongly connected components
containing both a vertex and its complement: {z;,%1, %3, %3} and {24, %4, 75, T5}.

The first set covering problem (SC?) solved at the second level of the search tree is that
associated with the circuit £; — T3 — F; — 3 of the first strongly connected com(ponent of G?
2
Y

containing both a vertex and its complement, whose optimal solution is y:(f) =1; ¥ Y =0, #3.

minimize f(z) =
8yi +6y2 +3y3 +1lys
(5C*){ subject to:
n 2ty ty 21
yi € {0,1},i=1,...,4.

Since the graph G? obtained at step 2.3 does not have any strongly connected component
containing both a vertex and its complement, the algorithm backtracks appending constraint
w1 + Y2 + Y3 + ya > 1 to those already appearing in the first problem (SC?).

A new set covering problem (SC?) is solved at the second level of the search tree, associated
with the circuit 4 — Ts — T4 — 5 of thesecond strongly connected component of G" containing
both a vertex and its complement. Its optimal solution is y?’ =1; y,(z) =0,1#35.

minimize f(z) =
2ys +1lys +3yr +16ys
(5C?*){ subject to:
ys +ve +yr  +ys 21
y;i € {0,1},i=1,...,4,

Once again, the graph G? obtained at step 2.3 does not have any strongly connected compo-
nent containing both a vertex and its complement. Then, the algorithm backtracks appending
constraint ys + ye + y7 + ¥s = 1 to those already appearing in the first problem (SC?). At this
point, another set covering problem (SC") has to be solved (step 2.2) at the first level of the
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‘search tree. The constraints of this problem are the same of the first problem (SC*), plus those
originated from the two problems (SC?) solved at the second level of the search tree:

( minimize f(z)=
8y, +6y2 +3ys +1lys +2ys +11ye +3yr +16ys +2ys +0.5¥10 +yn
subject to:
(sCh) y2 Y3 +s +y7 +y9 +y10 +yn 21
ﬁ Y3 +ys +y7 +Yo +y0 tyn 21
v oty tyz s ‘ 21
ys tye +yr  t¥s 21
|y {01}, i=1,..,10,

The optimal solution of the new set covering problem (SC?) is ygz) = y?) =1;y® =0,i=
1,2,4,6,7,8,9,10,11. The algorithm stops, since the new resulting graph G? does not have any
circuit containing both a vertex and its complement. Again, the optimal solution is 2] = 0,
:z:;::z;::v;::c;:x;:l.

It can be noticed that algorithm GQUAD?2 is based on a more agressive strategy, successively
breaking circuits of graphs which get smaller until the algorithm does not backtrack. When the
algorithm backtracks, all constraints enumerated in the current node of the search tree are
appended to those already appearing in the set covering problem solved at the previous level.

4 Concluding Remarks

The algorithms presented in the previous section may be viewed as row generation schemes, ie.,
a cutting plane method. The first algorithm is a pure cutting plane method, while the second one
is a combination of branch-and-cut and backtrack strategies. The number of variables appearing
in the set covering problems is at most equal to the number of terms of the quadratic 0-1
function to be optimized. In turn, the latter is equal to the number of variables appearing in
the linearization techniques used in other cutting plane methods (see e.g. Barahona, Jiinger and
Reinelt [4]). Further research should be pursued, with the goal of investigating the relationship
between the underlying polytope and the cuts used by algorithms GQUADI1 and GQUAD?2, i.e.,
the circuits which contain both a vertex and its complement.

It should be noticed that the set covering problems appearing at each iteration of both algo-
rithms do not have to be solved exactly every time. Indeed, they should be approximately solved
by some efficient heuristic procedure. Only if the approximate solution leads to an implication
graph without circuits containing both a vertex and its complement, then in that case an exact
algorithm should be used to check the optimality of the heuristic solution.

We also remark that, in practice, many constraints will be redundant. Hence, in order to
avoid solving large redundant set covering problems, it should be useful to consider constraint
elimination rules. Redundancy may also be reduced by the use of other strategies for finding
circuits in the implication graph containing both a vertex and its complement.
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