ISSN 0103-9741

Monogroflos em Ciéncia da Computagdo
ne 16/93

"An Open Hypermedla System with Nested
Composﬂe Nodes and Ver5|on Control

Luiz Fernondo G. Soares
Noemi de La Rocque Rodrigues
Marco A. Casanova

~ Departamento de Informdatica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22453-900
' RIO DE JANEIRO - BRASIL

PUC RIO - DEPARTAMENTO DE INFORMATICA ISSN 0103-9741

Mon'ogrofics em Ciéncia da C'ompu’roc;do, N2 19/93
Editor: Carlos J. P. Lucena , June, 1993

An Op'en Hypermedia System with Nested Composite Nodes
| | - _and Version control * .

Luiz Fernando Gomes Soares |
Noemi de La Rocque Rodrigues
- Marco A. Casanova ** '

* This work has been sponsored by the Seére’r_orio de Ciéncia e
Tecnqlogic da Presidéncia da Republica Federotivo do Brasil.

“** |BM Brasil, Rio de Janeiro, RJ

In charge of publications: -

Rosone Teles Lins Castilho

‘Assessona de Biblioteca, Documen’rog:oo e Informoc;oo
'PUC Rio — Depcrtcmem‘o de Informdtica

'Ruo Mcrques de S&o Vicente, 225 — Géavea

22453 900 RIO de Janeiro, RJ

Tel +55-2]-5299386 Telex+55-21-31048 | Fox+5521-511 5645
E-mail: rosane@inf.puc-iobr ;

'An Open Hypermedia System with Nested Composite
‘Nodes and Version Control

- Luiz Fernando G. ’So'arés‘ Noemi L. R. Rodriguez -~ Marco Antonio Casanova
Depto. de Informatica, PUC-Rio . Depto. de Informzitica, PUC-Rio Centro Cientifico Rio, [BM Brasil
" R. Marqués de Sdo Vicente 225 = R.Marqués de Sdo Vicente 225 Caixa Postal 4624
22453-900 - Rio de Janeiro, RJ 22453-900 - Rio de Janeiro, RJ ~ 20701-001 -Rio de Janeiro, RJ
- Brasil _ Brasii ' Brasil .
E-mail: fgs@inf.puc-rio.br E-mail: noemi@inf.puc-riobr ~ E-mail: casanova@vnet.ibm.com
Abstract

This paper presents a conceptual model for hypermedia that, among other features, supports

versions sets, permits exploring and managing alternate configurations, maintains document

histories, supports cooperative work and provides automatic propagation of version changes.

The concept of version context is used to group together nodes that represent versions of the

same object at some level of abstraction. Support for cooperative work is based on the idea of

public hyperbase and private bases. The automatic propagation of versions uses the concept of

current perspective to limit the proliferation of versions. All of the proposed facilities have as a

goal the minimization of the cognitive overhead imposed on the user by version manipulation. '
The version control discussion is phrased in terms of the Nested Context Model, but the major

ideas apply to any hypermedia conceptual model that offers nested composite nodes.

The paper also presents a generic layered architecture for hypermedia systems with four major
interfaces. The explanation of the layers and interfaces will be followed by a discussion about
object organization and a discussion on how it relates to the concepts of the Nested Context
Model introduced in the paper.

Keywords: hypermedia, versioning, cooperative work

1 - Introduction

Many application domains, such as education, training, office, business, and sales, have seen an
explosion of multimedia services in the last few years. In this context, many multimedia
applications will be designed to run on heterogeneous platforms, or to be interconnected to
offer more sophisticated multimedia services. These services will use large quantities of
structured multimedia objects, which can be either locally stored on a workstation, or retrieved
from remote sources through a communication network. Since this multimedia data may
represent a significant investment, it becomes vital to ensure that this information is not lost due
to incompatibilities in data structures supported by the different applications. ‘.

However, most hypermedia’ systems have been developed as self-contained applications,
preventing interoperability, information interchange, and code reusability between applications.
Some exceptions must be mentioned in this context, such as the Neptune system [DeSc86],
HyperBase [ScSt90], MultiCard [RiSa92], Hyperform [WiLe92] and HyperProp [SoCC93].
‘HyperProp provides not only a conceptual hypermedia data model, the Nested Context Model,
but also an open architecture, with an interface model which separates the data and object
exhibition components. Among other advantages, this allows the constructions of interfaces to-
be independent of the exhibition platform, as well as the adaptation of the storage mechanism to
the performance and bandwidth requirements of particular applications. This architecture is
described in [SoCC93]. , - B

One issue which was not covered in the original description of the Nested Context Model
[Casa91] was version control. Even though the need for this facility in hypertext systems has
long been recognized, the complexity of its interaction with all the other requisites in this kind
of application has apparently postponed the work in the area. ' ' o

We then describe in this paper an extension of the Nested Context Model which, among other
features, supports version sets, permits exploring and managing alternate configurations,
maintains document histories, supports cooperative work and provides automatic propagation
of version changes. The facilities we propose for. version manipulation are designed so as to
impose a minimum of cognitive overhead on the user. Although the version control discussion
is phrased as an extension to the Nested Context.Model, the major ideas apply to any
hypermedia conceptual model offering nested composite nodes. DI

This paper is organized as follows. Section 2 reviews the Nested Context Model. Section 3
extends the model to support versioning and cooperative work. Section 4 presents the
HyperProp architecture and shows how it accommodates the concepts introduced in previous

sections. Finally, section 5 contains the conclusions. ‘ ‘

2 - The Nested Context Model
The goal of the construction of Hyperprop system is to provide an environment for the

construction of hypermedia applications, through a library of classes which reflect the
conceptual model. The following deseription of the basic Nested Context Model is thus a

2 .

description of these classes and their functionality, without version control. For the sake of
completeness, a comparison with related work is also included. . '

2.1 - The Basic Model

The definition of hypermedia documents in the Nested Context Model (NCM) [Casa91] is
based on two familiar concepts, namely nodes and links. Nodes are fragments of information
and Jinks interconnect nodes into networks of related nodes. ' ' :

The model goés‘ xfurther and distinguishes tho_, ba_sic clasées of nodes, called terminal and
composite nodes, the latter being the central concept of the model. Figure 1 illustrates the is-a
hierarchy proposed.

Figure 1 - NCM Basic Class Hierarchy

A terminal node contains data whose internal structure, if éuiy, is application deperident and will
not be part of the model. The class of tevnninal"‘nod_‘es‘ may be specialized into other classes (text,
audio, image, etc.) as required by the applications. B : ’

A composite node groups together entities, called components, including other composite
“nodes. The components may be ordered. This will be very useful for several navigation
‘mechanisms, as will be seen later. The components do not necessarily form a set, because an
entity may be included more than once in the composite node. The class of composite nodes
may be specialized into other classes, including the class of context nodes. '

A context node groups together sets of links, terminal nodes and context nodes. It permits
" organizing, hierarchically. or not, sets of nodes. It thus offers a mechanism to structure

documents that helps lessen the so-called “Jost in hyperspace” problem [Hala88]. For example;
“to organize a textbook one may first define a context node B that contains a set of nodes
’ %tanding_ for the chapters of the book and a set of links indicating the chapter interdependencies,

W o not necessarily induce a linear sequence for the chapters. Similarly, for the ith chapter,

efine a context node C; that contains a set of nodes standing for the sections of the
set of links indicating the section organization, and soon.

A link basically connects nodes. Since the content of a node may have an arbrtrarrly complex
internal structure, links either anchor on whole nodes or indirectly indicate regions where. they
touch the nodes. A region may correspond to an icon item; for text nodes a region may
~ correspond to a character string within the text; for 2D images it may be determined by a pair
of coordinates that define a rectangle; and for context nodes, a region may be inside one of its
component nodes as deﬁned in the next paragraphs .

The informal notion of “region” is descrlbed in the model by an anchor Each node has a mask
that acts as the external interface of the node. That is, links will actually indirectly refer to
regions inside the content of the node by addressmg entries in the mask, called anchors.
Anchors encapsulate the definition of regions. Changes to the content of a node can thus be
transparent to links that touch the node, if the anchors are adequately defined. As an example,
consider a link with a target end point defined on the second paragraph of a text. If this end
point were to be defined simply as a displacement measured in bytes, the elimination of the first
paragraph in the text would result in an erroneous definition. With the use of anchors, the target
point can. be made to 1dent1fy the desrred 1nformatron no matter what happens to the
surrounding text. - :

Different classes of anchors may thus be deﬁned for drfferent classes of nodes The system has
no understandmg of the mtemal representatron of an anchor except in the case of context
: nodes as wrll be seen below

To summarize, a node is an’ object w1th several attributes, mcludmg a content and a mask,
which is a set of anchors. The exact deﬁmtrons of content and anchors depend on the class of
the niode. In what follows, we glve more pre01se deﬁmtrons for the key. concepts “of entity, link -
and context node

An. entzty (refer to figure 1) allows attnbute/value pairs to be attached to all objects Every
entity has a unique identifier (UID) and an.access control list (ACL). Each entry in the ACL
associates a user! or user group to his access rights for each attribute. Questions such as: "May
all users create links?" "May any user delete a link?" "May any user edit a node?" "May a user
“delete-a node referenced by other users?" among others, may be answered by the access rights
mechanism: Each entity also has an enfity presentatzon specification. Although it is not used by
~the structural conceptual model, the entity presentation specrﬁcatron, as in the Dexter model
"[HaSCQO] ‘contains’ mformatron for the: presentatlon model about how an entlty should be
presented to the user. - o rhd : . S -

“In conformance to the Dexter Model every anchor has an assocrated 1d and value As drscussed
above it:is not possible to’ descnbe anchors for generic nodes. Nevertheless every. class of

1 The word user in the context of this paper has multiple meanings: it means an user in the sense of a person, an
application process and an application programmer. That is, anything or anybody that makes use of the services
defined at the several interface layers of HyperProp &

anchor has a special value, denoted by A, representing the whole node on which the anchor is
defined. ' ‘ ' ‘

A link contains a source end point and a sequence of destination, or target, end points.
Multiple destination end points allow the definition of one-to-many connections, which is
intended to support applications where, for example, the selection of a link can lead to the
simultaneous exhibition of several nodes. '

Each of the end points of a link is defined by a (pbssibly unary) list of nodes (Ng,..., Ny, N;) and
one anchor, which must belong to the mask of N;. The node N, ; must be a context node and N,
must be contained in N, ;, for all i €[1,k). The node N}, is called a base of the link. Links are

always directional, although they can be followed in either direction.

The list of nodes in each end point allows the definition of links connecting information not
directly contained in the same composite. As an example, consider a context E, defined ina
work document of a Drama Research Team, representing a study of English Poetry in the XVI-

Century. Inside this context, there may be one context S grouping plays by Shakespeare and
another context M grouping sonnets by Cristopher Marlowe. It may well be that the group
wants to document a connection between a specific play by Shakespeare, say Hamlet, stored in
anode H in S .and a specific play by Marlowe, say Dr. Faustus, stored in a node F in M (such a
link could be used, for example, to document a connection between plays where the main
theme is conflict). This link may be defined in context E, and its end points will be defined by
lists (S,H) and (M,F). The anchors will allow the connection to be made more precisely, for
instance, marking the sentences where the common concept first appears. '

Although it is not part of the structural conceptual model, but of the presentation model, links
also have a set of node presentation specifications, as in the Dexter model, which contains
information for the presentation model indicating how a referenced node should be presented to
the user. ' ERC - -

A link has also associated to it conditions and actions, in conformance with the MHEG
proposal [MHEG93]. The actions defined within the link are processed on the indicated target
nodes only if the conditions are satisfied. A trigger condition is associated to a variation of the
evaluation of values of attributes of the source end point of the link. Additional conditions may
be defined on the current evaluation of values for attributes of the same or another entity.
Actions define spatial-temporal relations between the source end point and the target end points
of a link. One example of an action could be: at the end of the presentation (condition) of entity
Y (source end point) present entity X (target end point) in a window specified by the
coordinates (x,y); or even at the beginning of presentation of Y prepare for p_resentation (pre-
fetch) of entity X, We are assuming in these cases that the entities X and Y have an attribute
which specifies their exhibition state (sleeping, prepared, running, etc.). S

Similar to links, as an extension of the MHEG pr_oposal,"the Nested Context Model associates -
conditions and actions to the anchors of a node. As an example, a composite node X may have
an anchor with value (N,i) (as will be seen later), corresponding to a specific region (described.
by i) in a node N, contained in X, and an associated action specifying that this region must be

5

presented 10s after node X begins to be presented. Link and anchor conditions and actions are
discussed in further detail in [SSCC94]. ‘ : -

A context node C is a composite node which groups togéther:
1. asetS of terminal or context nodes. Nodes in S are said to be contained in C.

2. aset L of links, such that each link / in L has the base nodes contained in C. Links in L are
- also said to be contained in C. '

For each node in S there is an attribute where a node presentation specification may be defined.

In the specific case of a context node C, the value of an anchor may be the special value A,
representing the entire node; a subset of the nodes contained in C; or a list of nodes (Np,..., N,
N;) and one anchor, which must belong to the mask of N;. In this last case, the node N,,; must
be a context node, N, must be contained in N, ;, for all i €[1,k), and N; must be contained in

As an example, let E be again a context node that contains another context node S, containing
in turn two nodes, H and M (storing, for instance, Hamlet and Macbeth). Since § contains A
and M, a link connecting these nodes may, in principle, be defined in'S as (<M,i>,<H,j>), where
i and j are valid anchors for M and H. If one wants to create a link in £ connecting M and H,
one may define the link as (<(S,M),>,<(S,H),)>). Note the difference between defining the link
in S or in E. A link defined in S will be seen by every document which includes S (the context
node grouping plays by Shakespeare will probably be shared by several documents), while a link
defined in E will be seen in S only by the readers of document E. The same link may yet be
defined in E as (<S,(M,i)>,<S,(H,j)>). In this case the source and end points of the link would
be node S, but the anchors (M,i) and (H,j) would specify the “effective end points”. The
different possibilities for specification of the link in E allow more flexibility in specifying how a
node should be presented, making this specification dependent on how the user navigated to the
node. ‘ ‘ o 8

A hyperbase is any set of nodes H such that, for any node N € H ifNisa composite node,
then all nodes contained in A also pertain to H. o e

To conclude, NCM also permits extensions to accommodate the notion of virtual structures ’
(node contents, anchors and links), that is, structures that result from the evaluation of some
expression. A virtual node may have its content and anchors computed when they are selected
during the navigation process. In particular, an anchor will be computed when a link that points
to it is traversed. Similarly, a virtual link will have its end points computed when selected. The
importance of these concepts to our versioning mechanisms is discussed in Section 3. ’

2.2 - Issues on the P_resentatiOn‘Model
The‘ structural éohceptual rhodel of NCM treats hypermedia as an essentially passiVe data

structure. A hypermedia system must, however, provide tools for the user to access, view,
manipulate and navigate through the network structure. This functionality is captured by the

"6

presentatidn’ mddel, which is closely related to versioning in NCM. This model is brieﬂy
described in this section. : - _

The Nested Context Model allows different composite nodes to contain the same node and
composite nodes to be nested to any depth. Thus, we need a way of identifying through which
sequence of nested composite nodes a given node is being observed. This is captured by the
notion of perspective of a node. B : ’

A perspective for a node N is a sequence P = (N,,....,N,,), withm =1, suchthat N, =N, N, is
a composite node and &, is contained in N, for i € [1,m). Since N is implicitly given by P, we
will refer to P simply as a perspective. Note that there can be several different perspectives for
the same node N, if this node is contained in more than one composite node. The current
perspective of a node is that traversed by the last navigation to that node. - '

The user's interaction with a hyperdocument is modeled in conformance. to the Dexter Model
(DM). The fundamental concept in the runtime layer of DM is the instantiation: a presentation
of the component to the user. The instantiation of a node also results in instantiation of its
anchors. In DM a function called instantiator is responsible for returning an instantiation given a
component and its presentation specification. Instantiations exist within a DM session. Work
sessions are modeled in NCM' by private bases, which will be discussed in section 3. An
instantiation in NCM is just a version created in a private base. For now, it suffices to say that
the creation of instantiations in NCM, like in the Dexter Model, is based on a presentation
specification. ' o .

The notion of presentation specifications has already been. mentioned in section 2.1.
Presentation specifications contains information for the presentation of an entity. In particular,
they define methods for exhibition or edition of entities. These methods can be any program,
and in particular, any editor. The Nested Context Model provides specific methods for editing
system attributes, and browsing and editing the contents of context nodes. One must note that
browsers and editors in NCM are seen as methods associated to the nodes and not as objects,
as, for instance, in NoteCard. - '

The presentation specifications can be stored as an attribute of entities, or alternatively, as a
type of terminal node. When presenting a node, the presentation specification defined explicitly
by the user bypasses the specification defined by the context node (as seen in the definition of
context) that contains the node; this in turn bypasses the node presentation specification defined
by the link used to reach the node, which bypasses the node presentation specification defined
within the node. Each node type has a presentation specification default, that is used if none of
the presentation specifications presented above was defined.

T_he links that touch an instantiation in NCM can be defined in any context node present in any
perspective of the node. The notion of visible link is used to determine which links actually
touch a node instantiation. . o ' C

If N, is a node and P = (N,,....,N,,) its perspective, then a link / is visible from P by N, with an
anchor identifier /, ,if and only if

e lisin N, and (N},i) is one of the end points.of I; or

« 7is visible from P by N,with an anchor identifier i, and the anchor value of the anchor
~identified by- i, is a pair (V},7)). : : :

A link ! is visible from P by N, if and only if

« N, is in the node path of one end point of /, and /is in N, ,orN, 45+ OTN,; 0r

o lis visible from P by N, with some anchor identifier.

A_'pres‘entation issue already mentioned in section 2.1 is the. -spatiél—terriporal presentation
relationship, specified in links and anchors. This topic is discussed in detail in [SSCC94], which
presents the HyperProp presentation model. o

Each hypermedia application | may recjuire specific forms of naVigation, ‘which can be
programmed using presentation primitives offered by HyperProp. Besides, the system offers

support for some navigation mechanisms.

‘We call depth navigation the action of following the nesting of composite nodes: This allows
the user to move up and down the composition hierarchy. Navigation through links is essential
to the idea of hypermedia, and is also provided. The model also provides navigation through
queries. A user can arrive at a specific node by describing properties this node satisfies. - ‘

Browsers for contexts (and for the subclasses of ,dbntexts“described'in section 3) show a
pictorial view of a hyperdocument (or of parts of it). Navigation in' browsers is another
predefined form of navigation in NCM. ' '

The system also supports navigation through trails, allowing users to follow tracks established
in previous sessions or defined as default tracks in the document itself. A trail is a specialization
of a composite node that contains an ordered list of nodes (and the corresponding perspective),
including trails. A node may be in the list in more than one position. -

A trail may only represent tracks within a specific context. We say that the trail is aissociated to
the context. A context may have, for instance, an attribute listing all the trails that are
associated to it, or the most important ones. -~ E ' '

After starting navigation over a trail, a user can.issue a next command that will automaticaily
jump to the next item of the ordered list of components. The previous command gives the
previous component and the home command gives the first component of the list. Among other
things, trails are useful in constructing a linear document from a hyperdocument. Like
Intermedia [YaMe85] a special system private base trail keeps track of all navigation made
‘during a session, so that a user can move at random from node to node, and go back, step by
step. Note that this can be one way to create a trail.

2.3 - Related Work

The concept of context node generalizes the. homonym concept introduced in the Neptune
system [DeSc86,DeSc87], which was in turn based on some ideas from PIE [GoBo87]. It also
‘generalizes Intermedia's webs [Meyr86], Notecard's fileboxes and browsers [Hala88], and the
»hier_afchy structures made from Tree items of KMS [AKCY88]. PR

The use of a NoteCard browser as a composition mechanism is not appropriate. It does not
permit, for instance, the inheritance of the links of its several components. This limitation and
others come from the fact that NoteCard does not associate any semantics to the browser
nodes. Fileboxes present similar problems. For instance, NoteCard does not differentiate a
reference link from a Filebox inclusion link, treating link navigation as depth navigation.
Context nodes allow depth navigation in nested composition and, through the notion of
perspective of a node, allow inheritance of links, thus subsuming the functionality of NoteCard's
Browsers and Fileboxes. - : FRNTE

Tree items in KMS allow the structuring of hierarchical documents. The inclusion relation of a
context node in NCM is far more general, allowing hierarchical structures among other benefits.
Context nodes allow the partitioning of networks thus subsuming the functionality of Neptune's
contexts. Nesting in context nodes generalizes Intermedia's webs functionalities.

The HyperPro [Oste92] context and the HyperBase [ScSt90] composite obj'ect,are very similar
to NCM context nodes. It is not clear, however, how they address the problems of a
perspective of a node and the anchoring in nested nodes. ' :

As for anchoring, NCM provides the same facilities as Intermedia and Neptune, ‘a‘llowing the
definition of anchoring regions inside the nodes, both source and target nodes. In KMS,
NoteCard and HyperCard the target anchor is a whole node. :

In Intermedia, attributes can be attached to links and anchors. Attributes in NCM, like in HAM
(Neptune's storage subsystem), give semantic to the objects, but can be attached to nodes and
links. Anchors are attributes both in NCM and HAM. Anchors in HAM are attributes of links.
Anchors in NCM are attributes of nodes, thus allowing that changes in a node do not imply
changesinlinks. . P

None of the related work mentioned above supports presentation spéciﬁcations for objects, or
spatial-temporal relationships between objects, such as those defined in NCM. '

'3 - Versioning

This, section is organized as follows:. We first define, in section 3.1, some requirements for
version control mechanisms in hypermedia systems. We then extend, in section 3.2, the Nested
Context Model. to include versioning. Finally, in section 3.3, we compare our versioning
approach to related work. ‘ - ' 3 -

3.1- Some Versioning Issues in Hyper}media

We adopt as the metric for our versioning mechamsm the remarks posed in [Hala88,Hala91], in

' [Oste92] and in [Haak92]. By analyzing mostly the first reference, we may indeed 1dent1fy the

followmg requirements (the-original sentences are 1ncluded in 1talrcs)

RL

R2.

Exploration of Alternate Conﬁguratlons —"4 good verszomng mechamsm will also allow
users to szmultaneously explore several alternate conf guratzons for a single network"

Conﬁguratlons Management "Ina software engineering context it should be possible 0

- search for either the version that zmplements Feature X or the set of changes that

1 lmplement Feature X" ‘

- R3.

R4.

Mamtenance of Document History — "A good verszonzng mechamsm wzll allow users to.

- maintain and mampulate a history of changes to their network".

Automatlc Update of References — "In particular, a reference to an enttty may refer to a

 specific version of that entity, to the newest version of that entity along a specific branch

of the version graph or to the (latest) version of the. enttty that matches some partzcular

: descrzptzon (querjy

RS

Support for Versnons Sets — "Although mamtamzng a version thread for each individual
entity is necessary, it is not a complete versioning mechanism. In general, users will make
coordinated changes to a number of entities in the network at one time. The developer
maythen want to collect the resultant tndtvzdual verszons into a smgle version set for

i future reference

By analyzmg [Oste92] we may add the followmg requlrements

R6

R7.

Sma.ll Cogmtlve Overhead in Version Creatlon— "Explicit » verszon creation will result in a

~large cogmtzve overhead How can version creatzon be made manageable 2",

'Immutabrhty of versions — "In hypertext it mtght be too szmplzsttc to have verszons of
.. nodes to be completely tmmutable While it is obvious that the contents of a version

: - should be 1mmutable zts is less clear how llnks and (other) attributes should be treated"

RO,

Vers1omng of Lmks — "One must also cons:der a separate verszomng for links".

Versions of structure —n It is destrable fo have a notion of versions of the structure of

 the hypertext. Szmzlarly, bezng able to return to a prevzous state .of the entire. hypertext is

just as deszrable as returnmg o a state of a smgle no

_ RlO Support for exploratory development v "If we want to support exploratory development

" the problem is how to freeze a state. Ihe entzre structure the author is workmg with needs

to be frozen".

By analyzing [Haak92], we may add the following requirements:

10:

R11. Tailorability — "Versioning must be tailorable by applications".

R12. Support' for Alternatives — "It must be possible to maintain alternatives. Reviewers and
authors want to maintain explicit alternatives of sub-parts of a document".

In addition to these requirements, we believe that the notion of version should also cover two
other situations: ‘ . : E

R13. Distinct Representation of the Same Information — when distinct objects represent the
same piece of information, such as the written and spoken versions of a speech, or two
texts prepared by different text formatters, they should be treated as versions of that piece
of information. ' . | : o

R14. Concurrent Use of the Same Information — (temporary) copies of the same piece of
information, used by distinct running applications, can be usefully treated as versions of
that piece of information. This extended use of the notion of version, coupled with a
notification mechanism, provides a good ‘basis for cooperative work. Indeed, this
generalizes the previous requirement. ' LT

Finally, we observe that, in order to save space, rather than storing each module of the version
group in its entirety, only differences between the modules may be stored; a mechanism known
as delta technique. The disadvantage of this technique is that retrieving a specific version
requires computation - starting from a whole element, and applying changes. Another problem
comes from the fact that delta algorithms are media specific; the same algorithm will not be
efficient for both text and audio. We believe that memory saving ‘techniques, such ‘as
representing only changes rather than wholes, is a task for the storage layer, through its storage
 algorithms, and should not be part of the data model. Thus, delta techniques will not be
considered a requirement of the versioning mechanism. : ' ‘

32- Extending the Nested Context Model to Include Versioning

3.2.1 - Preliminaries

The basic Nested Context Model already meets Requirement R1 for version control

‘mechanisms. Indeed, the problem of exploring alternative configurations of a document is
trivially solved by creating alternative user context nodes over the same set of nodes, reflecting
distinct views of the same document tuned to different applications or user classes. Returning to
our example about a book structure, the authors may define different chapter organizations for
distinct classes of readers by defining different user context nodes containing the same nodes
(the same chapters), but with a different set of links. All such user context nodes can be seen as
different views of the same book. ' 7

- The basic NCM hierarchy, shown in Figufe 1, should be extended in order to address the other
requirements posed in section 3.1 by adding new entities for versioning and cooperative work.
Figure 2 describes the extensions we propose, which are explored in detail in sections 3.2.2,

11

3.2.3, 3.2.4, 32.5 and 3.2.6. Context nodes are subclassed; originating five new: classes:
annotation,’ publzc hyperbase private base, version context, and user context. User contexts
must ‘be used in the sahe way as the context nodes were used in the basic model, as a facility
for generic provision of views, nesting, and hierarchy. The difference is that a user context can
only contain terminal nodes, and user context nodes, whereas context nodes may contain any -
type of context node, terminal nodes and trails. Context nodes, as previously defined, now -
constitute an abstract. class, in the sense that no instances of it may be defined. This class
remains in the hierarchy because it factors out common behavior of the classes beneath it.

Figure 2 - NCM Class Hierarchy

In NCM, only terminal nodes and user context nodes are subject to versioning, as seen in white
background in the figure 2. Each attribute (including content) of a user context or terminal node
may be specified as versionable or non-versionable. The value of a non-versionable attribute
may be modified without creating a new version of the object. Modifications on versionable
-attribute values have to be made on a new version of the object, if it is already committed, as
.will be detailed i in 3.2.3. As stated in R7, “in- hypermedla it might be too simplistic to have
versions of nodes to be ‘completely immutable... It is not clear how links and attributes should
be treated”. It is not even obvious that the contents of a version should ever be immutable.
Versionable and non-versionable attributes' thus ‘help to meet R7. of course, some: kind of
notification mechanism will be needed to enhance vers1on support spec1a11y in the case of :
concurrent update of non versmnable attnbutes ' : : i .

The possibility of addmg new attnbutes to a node, ‘without creatlng new Vers1ons is also

attractive. Assume that, after the node was created, a new tool was introduced into the system.
The tool might want to store some speclﬁc information in the nodes. In NCM, the user may

specify if the addition of new attnbutes is permitted without creating a new version of the

object (also helping to meet R7).

12

Finally, we have not included link versioning in our model, since we believe that this. facility
adds more complexity than functionality to a system, and that, if necessary, can be modeled
through user context node versioning. It remains to study if this facility becomes important
when actions and conditions are associated to links. T L

3.2.2 - Version Contexts

To address the problem of maintaining the history of a document, we extend the Nested
Context Model with a special class of context nodes, called version context.

A version context V' groups together a set of user context or terminal nodes that represent
versions of the same object, at some level of abstraction, without necessarily implying that one
version was derived from the other. The nodes in ¥ are called correlated versions, and they
need not belong to the same node class (helping to meet R13). The derivation relationship is
explicitly captured by the links in V. We say that v, was derived from v, if there is a link of the
form (<v,,i;>, <v,i,>) in V. The anchors in this case simply let one be more precise about
which part of v, generates which part of v,. A version context induces a (possibly) unconnected
graph structure over all versions. There is no restriction on links (helping to meet R12), except
that the "derives from" relation must be acyclic.

Tt should be noted that version context node can contain user context nodes, since these nodes
can be versioned. This provides us with an explicit versioning of the document structure, thus
meeting R9. ' : : :

A user may either manually add nodes (to explicitly indicate that they are versions of the same
object) and links (to explicitly indicate how the versions were derived) to a version context, or
he may create a new node from another by invoking a versioning operation, which will then
automatically update the appropriate version context. - - '

An application has several options to define the node it considers to be its current version in a
version context ¥, according to a specific criteria. One of them is to reserve an anchor of V' to
maintain the reference to the current version. Other anchors may specify other versions
following other criteria of choice. Specifically, in the extended model, which includes virtual
entities based on a query language, the reference may be made through a query. The query does
not need to be part of the anchor of the version context, since it may be defined in a link (see
section 2.1) and even in a more general way (helping to meet R6 and R4), as we will see when
we discuss private bases in section 3.2.4. It should be noted that the query which defines the
current version may return several versions (for example, “all versions created by John”), which
can be interpreted as alternatives and presented as a user context (a version context view).
Therefore, version contexts meet R4 since they provide an automatic reference update facility.

‘In the basic model of NCM, we defined an end point of a link contained in a user context node
C, and in a similar way, a possible anchor's value of a user context node C, as being a pair
consisting of a list of nodes (Nj,..., N2, N)) and an anchor o, such that:

o o belongs to the set of anchors of N}.)

13

. F oralli €[l k), the node N 1s a user context node, N must be contamed in N,+ b and Nk ,
" must be contained in C." : '
In the extended model, N; must be either a termmal node or a user context node (as in the basrc
‘model) or a version context node, in which case, we say that. N , does not contain N, but ,
contains the node specified by the anchor a. : :

The browser ofa version context node, as in any composite node, shows a pictorial view of the
components that may not have any relation to their ordering. For example, the browser of a
version context node can exhibit the versrons ordered in time and not as a derivation graph.

An application may use version contexts to maintain the history of a document d (R3) as well
as for automatic reference update (R4), for example, as follows. Suppose that d has a
component ¢ whose versions the. apphcatlon is. interested in. Let C be the version context
containing the nodes Cj,...,C,, that represent the versions of c. The application will refer to C,
and not directly to any of the C s, in the user context node D it uses to model d. All links in D
touchmg C will point to the same anchor of C, which will always. point. to the node: C; the
,apphcatlon considers to be the current version. -If the application wants. to recover previous
.versions of d with respect to ¢, it s1mp1y nawgates inside C. Indeed, since version contexts are
just a speclal class of context nodes users may; in principle, navigate through the document
history using the basic nav1gatton mechamsms of NCM (see [Casa9l, Soar92]). Alternatives of
the sub-part ¢ of the document can be accessed for example by 2 query, which may return a -
set of alternatlves meetmg R12 ‘

Version contexts also help meetmg R2. In Soﬁware Engmeenng there are two levels of
versioning. The lowest level corresponds to the dtfferent modules that make up the programs
Naturally, all versions of a module may be grouped in a version context node. The other level is
the configuration, that is, the description of which modules the program is made from, and tow
the modules should be put together to compose the program. A configuration can be modeled
by a user context node. The nodes in the user context node' will correspond to the software
components (modules) of the system and the links to the various dependencies between the
components, such as the dependency between source and object code. The match between
conﬁguratrons and user context nodes is quite reasonable because drﬂ"erent conﬁgurattons may
 share the same ‘components as different user context nodes may share the same nodes ‘but the
r relatlonsh1ps between components are specxﬁc toa conﬁguratlon, as: lmks are pnvate to a user
_context node.: Conﬁguratlons can also be mterpreted as versrons of the same ob]ect and group
together ina versron context, helpmg to meet R2. :

'__A set of selected ver51ons for a conﬁguratron is often referred fo as a baseline: Stmply stormg
‘the. conﬁguratlon does not mdrcate how a system has evolved over time, since the selection
criteria for a current version in a version context can dehver different versions at different times.
It is therefore 1mportant to be able to record ‘a static configuration, where each reference is
made to a specific version: of a node and not a version context. Support for this will be provided

by the private base concept, defined in section 3.2.4.

14

323- Consistency

‘We introduce the notion of state of a terminal node and a user context. node to. control
consistency across interrelated nodes, to support cooperattve work and to allow automatlc
creation of vers1ons (see a.lso Section 3. 2.4). ‘ :

A terminal node or a user context node N can be in one the followmg states commttted
uncommitted or obsolete. N is in the uncommitted state upon creation and remains in this state
as long as it is being modified. When it becomes stable, N can be promoted to the committed
state either explicitly at the user's request, or implicitly by certain operations the model offers
(helping to meet R6). As an example of implicit change of state, an uncommitted user context
or terminal node N becomes committed when a primitive for version creation is applied onit. A
committed node cannot be directly updated or deleted, but the user can make it obsolete
allowlng nodes that reference 1t or that are denved from it to be notlﬁed

‘The concept of a node state is in fact only relevant. for user context and terminal nodes that
have versionable attributes. Therefore when we say, for example, that committed nodes cannot
be modified, we mean that the versionable attributes cannot be. modified.- We also observe, as
stated before, that in NCM the user may specxfy if the addition of new attributes to a committed
node is permitted without creating a new version of the object. In what follows, we give more
premse deﬁmttons for the states of a user context node and of a terminal node.

A user context or termmal node in the comm1tted state, called a committed node has the
followmg characteristics: :

o the verswnable attnbutes of the node cannot be modified (whlch means that expl1c1tly
defined attributes cannot be modified, as well as quer1es if the node is virtual); -

* it can contain only comnntted or obsolete nodes if it is a user context node;

e it can be used to derive new nodes;

¢ it cannot be directly deleted;

. 1t can be made obsolete, but not uncommltted

A user context or termmal node in the uncommltted state, called an uncommltted node has the
followmg characteristics: , : o :

all its attributes can be modified;
it can contain nodes in any state, if it is a user context node;
it cannot be the source of derivation of new nodes
it can be directly deleted; ‘
e it can be made committed, but it cannot be made obsolete

* . o o o

‘A user context or termmal node in the obsoletc state,. called an obsolete node has the followmg
; charactenstlcs : : . v S

. .;;all its. attnbutes cannot be modtﬁed (which means that explicitly deﬁned attnbutes cannot be
v modnﬁed as well as queries, if the node is virtual);

e itcan contam only committed or obsolete nodes if it is a user context node

e it cannot be used to derive new nodes;

15

¢ it is automatically deleted by the system, through a garbage collection process, when no
longer needed (for example, when it is not referenced by or included in any node);
«. it cannot change state. - ‘ ‘ ‘

It follows that, if a node ¥ is directly or transitively derived from W, then W is either committed
or obsolete: We also stress that these restrictions guarantee that a committed or obsolete user
context node contains only committed or obsolete nodes, which in turn implies that: (i) it also
- contains only links whose end nodes are committed or obsolete nodes; (ii) the query that
defines its content returns a set of committed or obsolete nodes, if it is a virtual context node;
and (iii) the queries in its links and anchors always result in a set of committed or obsolete
‘nodes. However, these restrictions do not imply these properties. for an uncommitted user
context node. DR L ‘

The corollaries mentioned in the previous paragraph may seem excessively stringent at first
sight. One could, for instance, consider it useful to have virtual committed user context nodes
grouping nodes which are ‘possibly uncommitted, in order to reflect recent work, eventually
resulting in the presentation of uncommitted work. However, it is important to remember that,
every user context node, even if virtual, still represents a grouping of other nodes. Hence it
makes no sense to consider a grouping committed when some of the grouped entities are not
committed. Moreover, we will see in the next section that committed nodes can be made
available for“public- accéss, while uncommitted nodes ‘cannot. . Thus, allowing -virtual user
context nodes to return uncommitted components would imply in public nodes with non-public
components, which also does not makes sense. - IS I : :

It ‘may also’ seem rather restrictive not to allow an uncommitted node to be the source of
derivation of new nodes. This possibility would make it very hard for the system to guarantee
consistency of version history. Nevertheless, it is worth rioting that an application may easily
offer an interface where asking for the creation of a new version of an uncommitted node N
~ automatically implies in the creation of a new version of the committed node from which N was
derived. L ' | o o '

As mentioned in section 3.2.2, derivation links can be explicitly created by a user. The creation
of derivation links automatically cause the predecessor object to be committed in order to
preserve consistency. ' ’ R ‘

3.2.4 - Public Hyperbase and Private Bases

3.2.4.1 -'B:a;_sic Definitions SRS '

'In general, a cooperative environment must ,a'110wv;usersjtov shafrq inforr,ri;ati'on,“pr_wides some
form of private information for security reasons and permits fragmentation of the hyperbase into
smaller units to reduce the navigation space. Cooperative authoring is understood here as the

process of creating or modifying the hyperbase, or a subset of the hyperbase, by a group of
users. - , ; S L ‘ :

16

The notion of context node can be used to support cooperative work, Consider the set of all
user context nodes and terminal nodes to be partitioned into several subsets. One and only one
of them will form the public hyperbase, denoted Hg, that corresponds to public, stable
information. The other subsets will form the private bases, used to model the user's interaction
with a hyperdocument, according to the paradigm (work session) proposed by the Dexter
Model. ‘A private base may contain other private bases, permitting organization of a work
session into several nested subsessions. Note that one specific (version of a) terminal or user
cbntext node can‘perta‘in to one and only one of these bases (public or private).

More precisely, we define the public hyperbase as a. special type of context node that groups
together sets of terminal nodes and user context nodes. All nodes in Hg must be committed or
obsolete and, as in all hyperbases, if a composite node C is in Hp, then all nodes in C must also
belong to Hg. - i o ' :

We also define a private base as a special type of context node that groups together any entity,

except the public hyperbase and version context.nodes, such that: .

i) a private base may pertain to at most one private base; R : 3

ii) - if'a composite node N is contained in a private base PB, its components are either contained
in PB or in the public hyperbase or in any private base of a private base nesting contained in
PB,and - S ‘ , :

iii) if a link is contained in a private base, its source base end point must be an annotation node.

Intuitively, a private base collects all entities used during a work session by a user. -

3.2.4.2 - Version Operations in Private Bases and in the Public Hyperbaée.

A user may move a user context node or a terminal node from a private base into the public
hyperbase through the use of the check-out primitive, as long as the node is committed. If a
committed user context node C is moved into Hp, then all terminal and user context nodes in C .
must also be moved into Hg. S - 7 =

Note that moving a new version into the public hyperbase need only take place when some
modification has been made to the original node. Suppose, for instance, that the user creates a
‘node V' in a private base as a version of a node N of the public hyperbase. Suppose also that V' is
not modified. Then, when he moves ¥ to the public hyperbase, V" is simply destroyed, - since
there is no-need to duplicate information. However, any composite node in the private base that
contains ¥ must be updated to now contain N. Likewise, if 7' is an unmodified version of A, all
versions created from ¥ must be transformed into versions of N in the version context node.

The user context and terminal nodes of a private base PB can be moved in block to the public
hyperbase through a special primitive, shift. In this case we say that the private base was shifted
to the public hyperbase. When the shift operation is applied, all user context and terminal nodes
of the private base are committed and moved to the public hyperbase, and all its private bases
are recursively:shifted to the public hyperbase. At the end of this process the private base PB
that was shifted will contain only trails, annotations (and associated links) and private bases,
which contain only trails, annotations and private bases, recursively. - ' B

17

A user cannot move a user context or terminal node N from the public hyperbase to a private
base, but he may create a new node N’ as a version of N in the private base. In HyperProp,
work on a document implies in the creation of new versions of all visited user context or
terminal nodes in the current private base. These new versions may be derived from committed
nodes or correspond to the creation of completely new information (the first node in a version
‘context node). As mentioned in section 2.2, these versions correspond to instantiations in the
‘Dexter Model. ' R ' ‘ :

In HyperProp presentation model, as in the Dexter model, a function called converter is
responsible for returning a node version given a node and its presentation specification (helping
to meet R13 and R14). This function is also responsible for the conversion of an anchor to its
visible (or audible) manifestation: When a user wants to store modifications made in a new
version, an inverse function of the converter is used to convert it back to the format in which it
will be stored in the public hyperbase, as a committed node.

Two primitives, open and check-in, are available for the creation of a new uncommitted version
of a user context or terminal node N in a private base PB. They differ when N is a user context
node. In this case, open creates an uncommitted version N' of N in PB, as well as of each of the
components in N, and so on recursively. N” will contain the new versions of the components in
N, and its links will be created so as to appropriately reflect links in N. If a committed
component pertains to more than one context, only one uncommitted version will be created for
this node. On the other hand, check-in creates an uncommitted version N’ of N, in PB, that
contains the original nodes contained in N. ' ' :

Interesting consequences arise from the different behavior between the open and check-in
primitives. Let N” contains nodes C, and C,, that in turn contain the same node M. If N is
created through the check-in operation, and node M is modified through the two perspectives,
C,and C,, two different versions, M’ and M"; will be created. On the other hand, if N is created -
through the open operation, a single new uncommitted version M’ will be created and will suffer
modifications through both perspectives. : ‘ :

The recursive creation of new versions, associated with the open operation, does not
necessarily occur at the moment the operation is applied. Versions of the nodes (contained in a
context node) can be deferred and created only when such nodes are visited. For example,
consider a context node C containing nodes /, H and M. When an application wants to access
C, a version C' of C is created in its private base, which in principle contains the same nodes as -
C. If the application selects H, for ‘example, a new version H' of H is then created in the same
private base, as discussed above, which then replaces H in C'. If I and M are not accessed, 10
new versions are created for them. -

Committed versions in a private base PB can be used to derive versions; or be included in a user
context node, in all private bases that contain PB, and in all private bases containing these
~bases, and so on recu'rsively.‘ This is reasonable, since they represent a state of work consistent
from the point of view of the job being performed in some private base. Uncommitted versions
are only accessible for manipulation in the private base PB where they reside. -

18

A user can remove a node N from a private base PB through a delete primitive. If N is a trail or
an annotation node (this concept will be introduced later), it is simply removed from the private
base and destroyed. If N is a user context or terminal node, the result depends on the status of
N. If N is uncommitted, it is effectively destroyed and deleted from its version context; if N is
committed, it will be made obsolete. When a committed node is made obsolete, it is transferred
from the private base in which it is contained to the public hyperbase. If it is an obsolete user
context node, all its node components are also transferred.

A private base PB can also be deleted. In this case, all its nodes, including private bases, are
also deleted, recursively. The private base PB is then destroyed.

3.2.4.3 - Additional Remarks

Some systems avoid the cognitive overhead of version management by creating new versions
implicitly, either at regular time intervals, or as a side effect of other commands. The problem
with timed version creation is that a lot of versions, which do not represent a consistent step in
the evolution of a work, are created. The same problem may happen with version creation as a
side effect of other commands. Using private bases, versions can be implicitly created in a
controlled manner. ‘ SRR S : : : :

Just as tasks in [Haak92], private bases may guide automatic. version creation and version .
identification (helping to meet R6 and R4). Each time a committed node is modified through a
private. base, ‘an uncommitted version of this node, where the modifications will be made, is
automatically created in the same private base, through the use of the check-in operation
previously described. The creation of the new version may then trigger the version propagation
algorithm, explained in section 3.2.5. ' ' R

In section 3.2.2, we discussed how to specify current versions in a version context nodes.
Selection of a current version based on a query language is a powerful technique, but increases
the cognitive overhead for the user, who has to specify a selection criterion-each time a link is

created. In order to avoid this cognitive overhead, every version context node has two special

anchors, defined by default queries, for retrieval of a current version. One of these default
queries is specified in the version context itself. The other one is specified in a more general
way (helping to meet R6 and R4), in an attribute of the private base. When a link is created, the
destination node is examined. If the node is 2 component of a version context not explicitly
specified by the user (either directly or through a query), the link will be created using the
selection criterion defined in the private base PB which contains the context node where the
link is in. If this quety is not specified in this private base, the link will use the default query
defined in the version context. - : |
Any of the navigation mechanisms offered by HyperProp can be used to visit a node.
Frequently; navigation is based on a query. If each time a query was resolved, for instance in -
depth navigation, a new version was created in the private base, the work session would soon
become a profusion of versions (consider the case when the user is navigating up and down a

19

given perspective). To avoid this, once a query is resolved in a private base, its result becomes
permanent for that base (intuitively, this means “for the rest of the work session").

Typically, a hyperdocument will be a highly dynamic entity, having several components defined
through queries. It is sometimes necessary to record a static configuration (a snapshot facility),
helping to meet R5 and R9. As previously mentioned, when a query is resolved in a private base
PB, the resulting version becomes the permanent result for that query in PB. When nodes in PB
are moved to the public hyperbase, the user may choose to store the static configuration (with
"the mentioned queries resolved) present in PB instead of the original dynamic configuration
(stored by default). R S L § .

32.5- Version Propagat'ion

In any system with composite nodes, one may ask what happens to a node when a new version
of one of its components is. created. A system is said to offer automatic.version propagation
when new versions of the composite nodes that contain a node N are automatically created each
time a new version of N is created. - R Lo el :

In our system, a node may be contained in many different user context (composite) nodes.
Thus, version propagation may cause the creation of a large number of often undesirable nodes.
Figure 3 illustrates this problem. The initial hyperbase, schematically shown in Figure 3(a), has
a node DO that belongs to user context nodes E0, B0 and F0; E0 is in turn in C0 and B0 in A0.
The creation of a version DI of DO generates five new user context nodes, as shown in Figure
3(b), if exhaustive version propagation is applied. gEy BT .

» .. Figure 3 - Proliferation of ve ons L “lFr‘gme4‘;Prppagaﬁbn‘gnidedby"peispéctive ‘

As a solution to this problem, we propose to let the user decide whether he wants automatic
version propagation or not, and to limit automatic propagation to those user context nodes that
belong to the perspective through which: the ‘new -version was created. We also limit
_propagation to those user context nodes that are committed, in line with the restriction that an
*uncommitted node cannot be used to derive versions. This amounts to providing a mechanism
' that supports sets of coordinated changes, thus meeting R5, R6 and R10. -

20

Figute 4 illustrates these points. Assume that the initial hyperbase is the same used in Figure
3(a), and that the current perspective is (D0,50,40). If BO and A0 are committed nodes, then
new versions of these two nodes are created, as in 4(b). On the other hand, if A0 and B0 were
uncommitted, then no new version of these two nodes would be created, but rather B0 would
be altered to include D/ (40 would be left unchanged).

The user may be asked to interfere in situations where the system does not have sufficient
elements to decide whether or not to propagate versions. '

3.2.6 - Annotations

Facilities for users to annotate recent work (of others or their own) are important for
cooperative and exploitative development. An annotation consists of a comment (in any format

or media: text, sound, etc.) and holds references to the versions it annotates and references to

the versions that are considered replies to the statement contained in the annotation.

We define an annotation as a specialization of a context node that groups together sets of links,
terminal nodes, user context nodes and trails. Intuitively, one or more nodes in this context
node contain the remarks made by the user; private base's links from these nodes to different
points in the same private base indicate the nodes. being commented and nodes containing
replies to these comments. Annotations can only be included in private bases.

Annotations 'avlilow‘ the inttoduction of new remarks referring to committed nodes, without the
creation of new versions, thus helping to meet R7. ‘ :

To conclude, we observe that the version support mechanisms we described may be tailored by
the applications. Versions can be either automatically created or created by explicit commands.

‘These can be used by the applications to implement various versioning policies, thus meeting
Ri11. ‘ ' - o

'3.3 -Related work

Versioning has been investigated especially in software engineering and- design databases.
‘Several models have been proposed in the literature to describe . the: organization and
manipulation of documents in environments for cooperative work, specially in areas such as
CAD [KaCB86] and Office Automation [Zdon85]. Detailed approaches to the problem of

handling object versions can be found, for example, in [AhNa91, ChKi86, KaCB86, Katz90,
' Kim87, WoKL86, DiMa91]. Some work has also been done on version support in hypertext
systems [DeSc87, Oste92, Haak92]. This section compares the NCM solution mainly with
respect to these last mentioned works. SR I o

In PIE [GoBo87], a layer groups changes of several components into an identifiable unit.
Layers can be put on top of each other, with the top ones dominating the lower ones, to
combine changes to a version of the system. Layers are collect into PIE contexts. Note that the
concept of context in PIE is totally unrelated to the concept of context in NCM. The notion of

21

context as used in thlS paper closely resembles the notion of contexts in Neptune. Like in
HyperPro [Oste92] and CoVer [Haak92], only the final result of layers superposition are
‘represented in NCM. We believe that the memory savmg techniques, such as representing only
‘changes rather than whole versions is a task of the storage layer, and should not be part of the
data model. Besides, the retrieval of a specific configuration always requires computation. In
PIE, it is also possrble to shuffle layers in arbitrary ways, which might result in inconsistent
combinations. The model does not offer selection of nodes based on quenes and it 1s not easy
to see how this facility could be provrded :

In the extended version of HAM [DeSc87], a link pomts to a specific version, or to a current
element; this is always the newest element in a version group. There is no freedom to specify
the notion of current version, as in NCM. We say that HAM supports a fime based versioning
mechanism. In NCM versions are orgamzed in a graph, and can be selected independently of the
time of their creation. In Neptune, it is ot possible. to track the derivation history; if a new
version is not derived from the current version, but from an older one, this derivation cannot be
“recorded anywhere HyperPro organizes versions in a tree-like structure, and is therefore more
general than HAM. In NCM, version context structures are organized as acyclic graphs as in
CoVer. This, in conjunctron with the prov1sron of explicit link inclusion, allows for the
representation of derivation of a version from multiple nodes. Explicit link inclusion can also be
used to add derlvatlon information that cannot be automatically mferred by the system. '

Like CoVer, HAM supports link versromng, although it is not clear in either system how
versioned lmks appear to the user or how to navxgate in a version group of links. In our first
prototype we do not cons1der versioning of links, since we believe that versioning of context
nodes will be enough. The problem with versioning of links is whether links should be
considered as 1ndependent objects or as values of a relation maintained by the context node.
One- advantage of treatmg links as attributes of context nodes is to avoid the cogmtlve overhead
~ of naming links. With the addition- -of actions, condltrons and synchromzatlon information to
- NCM hnks lmk vers1omng may become 1nterestmg and is one of the toplcs for our future
research : : L

In Neptune new: versrons are created at each edltor save. One problem w1th this approach is
that a lot of ve sxons, which do not represent consistent steps in the. evolution of the- hypertext
are created: NCM provides several mechanisms to avoid useless prohferatlon of versions, such
-as version propagatron, pnvate base deﬁmtron node status deﬁmtton, two drfferent version
"creatron prnmtlves etc. . oy o ~

Our commrtted and uncomnntted states are very. snmlar to the "frozen“ and "updatable“ notions
used in HyperPro and CoVer. However, in HyperProp, these states are used in several
decisions that ‘aid automatic version creation, dlﬁ‘erently from those versioning models In
addition, the inclusion of the obsolete state seems to be very useful i in system management this
isan open 1ssue that we will treat in the near future »

“In HAM nodes are classrﬁed as archzved nonarchrved or append-only Changes in an archzved '
* hode create a new version of the node. Changes in a non archived node do not create a new
version. When an append-only node is modified the new content is added to the previous

22

content. NCM, like HyperPro, permits the change of some attribute (defined by the user) values
without creating new versions (in our understanding, CoVer does not have this facility).
HyperPro provides this facility associating the immutability aspect to the type of the node. For
each entity type it specifies which attributes can be mutated after an entity has been frozen, for

"nodes it also specifies which types of links can be attached to a frozen node. NCM goes further.
Type immutability specification is only a default definition that can be bypassed in a particular
instance of a node. We believe that the content of a node gives more information as regards its
immutability than its type; for instance, what is the difference between a node content presented
(versioned) as a text node or as an audio node, through some conversion process? We also
believe that the definition of the links that can be attached to a frozen node is a responsibility of |
the user context node where the link is included. If a new version of some entity will be created
by a change in a link, or by the inclusion of a link, this entity will be a user context. Therefore,
for consistence, user context nodes must define the immutability of its links. It should be noted
that, in NCM, links are attributes of context nodes, which is consistent with our solution.

NCM also allows. the inclusion of annotations in a private base without creating any versions.
CoVer annotations are more general than ours. CoVer integrates annotations into the task
structure: it records which task has produced an annotation, and if anybody has already set up a
task to work on the annotation. o ’ :

In HyperPro, a context provides a place to attach the selection criterion used by its generic
version links. The default selection criterion selects the newest version from the version group
the link refers to, though not newer than the cut-off date that is set when a context is frozen.
Selection criteria in NCM may be other than time based. Like CoVer, the selection criterion is a
query that can return more than one alternative (for example: all the versions created by Jane).
It is not clear from [Oste92] how HyperPro treats selection criteria other than its default. We
also believe that sometimes we want to use different. selection criteria within a context,
therefore we also allow the selection criterion to be attached to a link, or to an anchor value of
the version context node, with higher priority of resolution than the selection criterion defined
in a composite node (in our case the private base and not the context). However, we agree with
HyperPro that having the possibility to define a selection criterion in a more general way (in
contexts in HyperPro, and in private bases and version context in NCM) can be of great vaiue
in lowering the cognitive overhead. CoVer lacks this facility. - :

We also believe that the selection criterion provided by HyperPro contexts may still result in a
great cognitive overhead in documents with many nested contexts, since the selection criteria
must be defined in each_context. A related problem arises when we want to change the selection
criteria of a whole work session. In HyperPro, we will have to change the selection criterion of
each context, and maybe create a new version of each context. Take as an example a document,
with many nested contexts, accessed by John and Mary. In her work session, Mary wants to
work with the newest versions edited by her. On the other hand, John wants to work with the
‘newest versions edited by him. Shall we have ‘versions for all the contexts, with the different
criteria defined by John and Mary? One solution to the two afore mentioned problems is to
allow the inheritance of the selection criteria in a nesting. Our solution is to attach the selection
criterion not to the context node, but to the private base node. '

23

Neither mobs in CoVer nor version groups in HyperPro (concepts similar to NCM version
context) allow the maintenance of queries for dynamic references as version contexts in NCM
do. In NCM, queries can be specified in anchors. This facility is very important, once it allows
the - definition of several different selection criteria as we navigate inside a nested context.
Queries specified in anchors also allow the- definition of a general default query for all links
(independent of the context in which they are included) that refer to a specific version context.

HyperPro (and CoVer) allows the creation of new versions of its atomic nodes (concept similar
to NCM terminal nodes), as well as of its contexts. Asin NCM, if a HyperPro context node or
Cover composite node is made ‘committed, all of its node components are also made
committed. In HyperPro and CoVer, however, just the check-in primitive of NCM is provided.
There is nothing similar to the open primitive, which is very important in limiting version
propagation, as mentioned in 3.2.4. In HyperPro, there is no implicit version creation, except
the operation of freezing a context. In CoVer and NCM, it is possible to let the system play a
more active role in the generation of new versions than in HyperPro. Like tasks in CoVer,
' private bases in NCM can guide automatic version creation. Each time a committed node is
edited in a private base, an uncommitted version of this node, where the modifications will be
-'made, is automatically created in the same private base, as in CoVer. : '

~ To support exploratory development we have to solve the problem of how to freeze a specific
state. The entire structure the author is working on needs to be frozen. This should not be done
manually, entity by entity. NCM provides several ways to freeze sets of nodes. We can commit
user context nodes and thus commit all of its components. A private base can also be shifted to
the public hyperbase. All these operations subsume facilities found in HAM, HyperPro and’
CoVer to support exploratory development. ’ ‘ - : ERRI SR

When a query is resolved in a private base PB, the resulting version becomes the permanent
result for that query in PB. This enables the storage of static configurations, where each node is
2 specific version and not a version context node, an unsolved problem in HyperPro, and not
" even mentioned by the other systems. - : ' o : o

To support sets of coordinated changes, several notions are included in NCM that we cannot

find in HAM, HyperPro and CoVer. Among these we can ‘include the open primitive and

~ version propagation. Automatic version propagation guided by the perspective is a very
ortant mechanism to avoid useless proliferation of versions. S o ,

“imp

“Intermedia [Meyr86] provides concurrent access. to-the hypermedia network. The facility is
“however very simple and does not represent any real support to cooperative work. To support
cooperative work; an-authoring environment must naturally allow, users to share information.
However, the environment must also provide some form of private information, for security
reasons as well as to allow fragmentation of the hyperbase into smaller units so as to reduce the
navigation space. HyperPro does not supply facilities for cooperative work, in opposition to
private bases and the public hyperbase in NCM and tasks in CoVer.

24

NCM provides the Sarﬁé support for trail navigation as Intermedia which has, indeed, influenced
our decisions ‘about trail creation and navigation. Our trail concept, however, extends

Intermedia's, providing nesting when we treat a trail as a special type of composite node.

' 4 - HyperProp Architecture

\

We introduce in this section a brief description of the HyperProp architecture. The explanation
of thie layers and interfaces will be followed by a discussion about object organization and a
discussion on how it relates to the concepts of the nested context model introduced in earlier
sections. The reader must report to reference [SoCC93] for more details.

The architecture comprises three layers and four interfaces, as shown in Figure 5.

Application Léyer .

v Data Objects Répréseﬁtation
‘ i Objects

' Presentation Layer

— MHIO
Storage Layer

Figure S - Layeréd Hypermedia Architecture

From the point of view of the layered architecture, the notions of public hyperbase and private
‘bases of the NCM should be understood as follows. In general, all node objects managed by the
~ various layers correspond to nodes in different bases. The storage layer manages all nodes in
the public hyperbase, whereas the presentation layer creates nodes in the applications' private
bases (application layer) and moves nodes from a private base to the public hyperbase.

‘The storage. layer implemerits persistent storage objects, that have a unique identifier and a
specific type, as well as other attributes (in NCM these objects make up the public hyperbase
"and version context nodes). It offers an interface for hypermedia data interchange, called the
~ multimedia hypermedia interchangeable objects interface (MHIO Interface). '

The MHIO interface is the key to providing compatibility among applications and equipments,
since it establishes two points at which the storage and the presentation layers must agree: (1)
the coded representation for the multimedia objects to be interchanged, which corresponds to
the ISO MHEG standard [MHEG93]; and (2) the messages, requests, confirmations etc., used
by these layers to ask for the required object, content or action. These two points together are
 the subject of the ITTU T.170 series of recommendations (not yet provided) that will include the
I1SO MHEG standard as its T.171 recommendation. Special applications and other hypermedia
systems may:difectly use this interface. ' ‘ " :

25

The application layer introduces the data objects and representation objects (similar concepts
can be found in [PuGu91]). A data object is created either as a totally new object or as a local
version of a storage object, adorned with new (non-persistent) attributes that are application-
dependent. It contains methods to manipulate the new attributes, as well as methods to
manipulate information originally pertaining to the storage object, if it is the case. The storage
_format of a data object corresponds to an internal concrete representation of an MHEG object.
A representation object class is a specialization of a data object class with new methods to
exhibit the multimedia data contents in the format most appropriate to that particular use of the
data. A representation object therefore acts as a new version of a storage object, derived from a
data object, as defined in R13 and R14 of section 3.1. Representation objects are also directly
accessible to the applications and offer, in a sense, different views of data objects (in NCM
these objects make up the private bases). - - ‘ ' o o

The application layer offers two interfaces for hypermedia data manipulation, called the
- multimedia hypermedia data objects interface (MHDO Interface), and the multimedia
hypermedia representation objects interface (MHRO Interface), which contain the methods
associated with the data and representation objects, respectively, among others. Typical
- applications will directly use just the MHRO interface, while special applications may use both

interfaces. R ’ : - -

The main purpose of the presentation layer is to convert to and from the storage format of the
data objects used by particular applications and platforms and the storage format of the storage
layer, or the coded representation for the multimedia objects defined by the MHIO interface.
We note that the presentation layer does not implement any of the methods associated with data
objects. B T :

Therefore, to access multimedia data, an application proceeds roughly as follows. Using query
or navigational facilities of the hypermedia system, it first indirectly identifies a storage object
Containing the: desired data and. requests -the creation of-a data or representation object
corresponding to it.

The architecture of HyperProp provides a framework for building monolithic hypermedia
systems; ‘as-well asfor introducing hypermedia features into, a given application. It guarantees
flexibility, for example, by letting an application interact through interfaces at distinct levels and
by isolating the'storage ‘mechanisms, which can then be tuned to specific applications. It also
increases interoperability by offering an MHEG object.interchange interface.

To conclude this section, figures 6 and 7 show a generic model for a client server

implementation that leaves the application layer and the presentation layer on the client side and
the storage layer and again the presentation layer on the server side.

26

‘Application B Storage System
Presentation Presentation
Fragimentation and R« bl ;JfObjeas Fragmentation and Re-assembly of Objects
Layers 1 to 5 of Layers 1 to'5 of
OSI Model . 0S| Model
Figure 6 - Client Architecture Figure 7 - Server Architecture

5 - Conclusions

The Nested Context Model with versioning is the conceptual basis for the hypermedia project
" under development at the Computer Science Department of the Catholic University of Rio de
Janeiro and the -Rio Scientific Center of IBM Brazil. A single-user prototype system
incorporating the basic Nested Context Model has been concluded. Currently, some
applications run on this prototype. A second prototype, conforming with the MHEG proposal
and including versioning, is nearly completed. The goal of the project is to create a toolkit for
the construction of document processing applications. The toolkit comprises a set of object
classes in C** for increased portability and flexibility. :

The model is being extended in several directions. First, we plan to cover virtual objects, which
involves the difficult task of defining a query language to specify the virtual nodes, links,
regions, etc. We are also designing a notification mechanism to enhance version support.
Finally, we are studying the inclusion of link versioning, in much the same way as we treat node
versioning, which becomes interesting when links carry actions, conditions and synchronization

information. -

We are also working on other aspects, such as system and data management, protocols, storage
and retrieval of multimedia objects, spatial-temporal composition of multimedia objects, etc.,
although we do not address these issues in this paper. They will be treated in more detail in
future works. S : o o

To conclude, we again observe that the version supporf rhechahisms we described in this paper,
although based on the Nested Context Model, may be adapted to any model offering nested
composition nodes, such as HyperBase [ScSt90], HyperPro [Oste92]. '

Acknowlédgments: |

The authors wish to thank Guido Souza, Maria Julia Lima, Paulo Juca, Sérgio Colcher and
Thais Batista for their contributions to the ideas here presented. The implementation work they
conducted, jointly with other students, permitted the ‘continuous refinement of the Nested
Context Model. : = ‘

27

- REFERENCES

[AhNa9 1
[AkCY88]
[CaGoss]

[Casa91]

[ChKi86]

[DeScSé]

[DeSc87]

[GoBo87]

 [GRAQII]

[Haak92]
[Hala88)
[Ha1a9.l I

[HaSc90]

' [KaCBS6]

:[Katzéwo]f. |

" [Kim87]

[Meyr86]

Ahmed, R.; Navathe, S.B. "Version Management of Composrte Ob]eCtS in CAD Databases”, ACM
SIGMOD, Vol 20, No.2. June 1991, pp 218-227.

‘Aksscyn, RM.; McCracken, D.L.; Yoder, E.A. "KMS: A Distributed Hypérmedia System for
Managing Knowledge in Orgamzatrons" Communications of ACM, Vol.31, No. 7. June 1988.

Campbell, B.; Goodman, JM. "HAM: A General Purpose Hypertext Abstact Machine".

Commumcatrons of the ACM. Vol. 31, No. 7. July 1988, pp. 856- 861

‘Casanova, M A.; Tucherman, L.; Lima, M.J.; Rangel Netto, J.L.. Rodrlguez NR Soares, L.F.G.
"The Nested Context Model for Hyperdocuments" Proceedmgs of Hypertext *.91, Texas.
December 1991.

Chou H.T. e Kim W. "A Unifying Framework for Versions in a CAD Env1ronment" Proceedmgs
of the International Conferenceon Very Large Data Bases. August 1986, pp. 336-344.

Delisle, N.; Schwartz, M. "Neptune: A Hypertext System for CAD Applications". Proceedmgs of
ACM SIGMOD '86. Washington, D.C. May 1986.

'Dehsle N.; Schwartz, M. "Context A Partrtlomng Concept for Hypertext" Proceedmgs of

Computer Supporteed Cooperatzve Work December 1986

: Goldstem 1.; Bobrow, D. "A Layered Approach to Software Desrgn" lnteract:ve Programmmg

Enwronments McGraw Hill, pag. 387-413. Nova York. 1987.

Ghandehanzadeh S Ramos, L.; Asad, Z:; Qureshi, W. "Object Placement in Parallel
Hypermedia Systems". Proceedings of Hypertext '91 Texas. December 1991. s

Haake, A. "Cover: A Contextual Version Server for Hypertext Applications". Procceedmgs of
European Conference on Hypertex, ECHT'92. Mllano December 1992. , _

Halasz, F.G. "Reflexions on Notecards:. Seven Issues ‘for the Next Generation of Hypermedia
Systems“ Commumcatzons ofACA/[Vol3l No. 7. July 1988.

‘Halasz, F.G. "Seven Issues Revisited". Fmal Keynote Talk at the 3rd ACM Conference on

Hypertext San Antomo, Texas December 1991.
Halasz, F.G., Schwartz, ‘M. "The Dexter Hypertext Reference Model" NIST Hyperrext '

_Standardization Workshop. Gaithersburg. January 1990.

Halasz, EG,; Moran TP Trigg, T.H. "NoteCards in a Nutshell". Proceedings of the ACM

' ’Conference on Human Factors in Computmg Systems Toronto, Canadd. April 1987. . -

“ l Katz RH Chang, E Bhate_la, R "Version Modelmg ‘Conicepts for Computer-Arded Desrgn v
- DataBases". Proceedmgs of the ACM SIGMOD'86 Internatwnal Conference on Management of
Darg, Washington, D.C.. May 1986, pp. 379-386.

, Kata RH. ,Toyvard a U

' 1ed FrameWork for Versron Modelmg in Engmeenng Databases" ACM
Computmg Surveys Vol 22 No4 December 1990 pp. 375-408 P

Kim W.; Baneqee I Chou H T Garza J F Woelk D. "Composrte Object Support inan Object- :
Onented Database System" Proceedmgs of the Second International Conference on Object-

" Oriented Programming Systems, Language ‘and Applwatzons Orlando FL. October 1987 pp.

118-125.

‘ Meyrowrtz N. "Intermedia: The Architecture and Construction of an ObJect-Onented Hypermedia

System and Applications’ Framework". Proceedings of the Conference on Object-Oriented
Programmmg Systems, Languages and Applzcattons Ponland, Oregon. September 1986

28

[MHEG93}

[Oste92].
[PuGuS0]
[Rise92]
[ScSt90]

[SoCa93]
[SoCC93]

[SoCR93]

[SSCC94]

[WiLe92] -
[WoKL86]

[YaMe85)

[Zdon85]

MHEG. "Information Technology Coded Representation of Multimedia and Hypermedia
nformation Objects - Partl: Base Notation. Committee Draft ISO/IEC CD 13522-1. July 1993.

dsiéiﬁye K. "Structural and Cognmve Problems in Providing Version Control for Hypertex
Procceedmgs of European Conference on Hypertex, ECHT'92. Milano. December 1992.

Puttress, J.J.; Guimardes, NM. "The Toolkit 'Approach to Hypermedla" Procceedmgs of
European Conference on Hypertex, ECHT'90. 1990.

Rizk, A.; Sauter, L. "MultiCard: An Open Hypermedla System". Procceedings of European
Conference on Hypertex, ECHT'92. Milano. December 1992.

Schiitt, H.A.; Streitz, N.A. "HyperBase: A Hypermedia Engine Based on a Relational Database
Management System". Procceedmgs of European Conference on Hyperiex, ECHT'90 1990.

~Soares, LF.G.; Casanova. "Modelo de Contextos Aninhados com Intercimbio de Objetos MHEG

em Arquiteturas Distribuidas". 4nais do XI Stmpészo Brasileiro de Redes de Computadores.
Campmas, Sdo Paulo, Brazil. May 1993. : :

Soares, L.F. G Casanova, M.A.; Colcher, S. "An Architecture for Hypermedia Systems Using
MHEG Standard Objects Interchange". Proceedings of the Workshop on Hypermedia and
Hypertext Standards. Amsterdam, The Netherlands. April 1993.

Soares, L.F.G.; Casanova, M.A.; Rodriguez, N.L.R. "Um Modelo Conceitual Hlpermldla com Nos
de Composicdo ¢ Controle de Versoes“ Simposio Brasileiro de Engenharza de Software. Rio de
Janeiro, Brazil. October 1993.

‘Sousa, G.L.; Soares, L.F.G.; Casanova MA Colcher S.; Sousa, C.S. "HyperProp Presentation

Model". Research Report Departamento de Informatzca, PUC-Rio. Rlo de Janeiro, Brasil..
Submitted.

Wwiil, UK.; Leggett, J.J. "Hyperform: Using Extensibility to Develop Dynamlc Open ‘and

Distributed Hypertext Systems". Procceedings of European Conference on Hypertex, ECHT 92.

Milano. December 1992.

Woelk ‘D.; Kim W.; Luther W. "An Object-Oriented Approach to Multimedia Databases".
Proceedings of the ACM SIGMOD Conference on Management of Data. Washington D. C. May

1986, pp. 311-325.

Yankelovich, N.; Meyrowitz, N. "Reading and Writing the Electronic Book". /[EEE Computer.
October 1985.

Zdonik, S.B. "An Object Management System for Office Apphcauons Languages for
Automation, ed. S.X. Chang, Plenum Press. New York. 1985, pp. 197-222.

29

