ISSN 0103-9741

Monografias em Ciéncia da Computagdo
n°19/93

Working Results on Software Re-Engineering

Julio Cesar Sampaio do Prado Leite

Departamento de Informatica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22453-900
RIO DE JANEIRO - BRASIL

PUC RIO - DEPARTAMENTO DE INFORMATICA ISSN 0103-9741

Monografias em Ciéncia da Computacdo, N° 17/93
Editor: Carlos J. P. Lucena July, 1993

Working Results on Software Re-Engineering *

Julio Cesar Sampaio do Prado Leite

* This work has been sponsored by the Ministério de Ciéncia e Tecnologia
da Presidéncia da Republica Federativa do Brasil.

In charge of publications:

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentag¢do e Informagdo

PUC Rio — Departamento de Informdatica

Rua Marqués de Sdo Vicente, 225 — Gavea

22453-900 — Rio de Janeiro, RJ

Brasil

Tel. +55-21-5629 9386 Telex +65-21-31048 Fax +55-21-511 5645
E-mail: rosane@inf.puc-rio.br

Working Results on Software Re-Engineering

Julio Cesar Sampaio do Prado Leite
Departamento de Informatica
Pontificia Universidade Catélica do Rio de Janeiro
R. Marqués de S. Vicente 225 Rio de Janeiro 22453
Brasil

e-mail:julio@inf.puc-rio.br

Abstract

We view software re-engineering is a new approach to software maintenance. Instead
of performing maintenance at the source code of systems, we work on high level abstrac-
tions. From these abstractions we procceed in a forward manner reusing the available
implementations, when it is the case. As such, we view re-engineering as centered on
design recovery. We have been working on methods for re-enginnering and applying
them to real cases. Our studies are centered on the idea of using JSD [Jackson 83] as a
way of casting the recovered design. We worked with two small systems and a complex
one. Our objective here is to highlight our approach, report on what has been done and
point out what was learned.

1 Introduction

We understand maintenance as a broad activity embracing not only corrections on the software
but also modifications needed for software evolution. Although there are authors that believe
that maintenance is part of the development effort, we believe that in most cases of existing
software artifacts that view can not be applied. That is, in most cases the artifacts are already
dissociated from the processes that created them. As such, maintenance has to be performed
independently. Re-Engineering is a well suited approach for situations where maintenance is
independent of the process that created the artifact.

The idea of maintenance as a re-engineering process has been pointed by Parikh [Parikl
88] and Chikofsky [Chikofsky 90]. Several researchers have been working with a combination
of reverse engineering and forward engineering to enhance the productivity of maintenance
tasks. A growing community is devoting research efforts towards methods and tools that help
soltware engineers perform maintenance [Biggerstaft 89] [Baxter 90] [Rugaber 90].

Our group at PUC-RIO! has been working on the idea of software re-engineering for some
time now [Leite 90] [Souza 91], [Leite 91]. [Klajman 92], [Prado 92]. Work has been centered

Lpontificia Universidade Catdlica do Rio de Janeiro

RECOVER METHOD

EXISTING
DOCUMENTATION,
RECOVERED DESIGN
SOURCE_CODE, RECOVER
SOFTWARE
RECOVER T REPRESENTATION
i TECHNIQUE
Y
SPRCIFICATION
UNIVERSE OF DISCOURSE SPECIFY
(LITERATORE, SIMILAR SYSTEMS ...)
SOFTHARE
SPECIFICATION
TEAM REPRESENTATION
TECHNIQUR REUSABLE
COMPONENTS
RE-DESIGN NEW _DESIGN
—— SOURCE CODE
sormmT rmmszmr:on
DESIGN TRAM TECHNIQUE
NEW SOURCE CODE
——SOURCE CODE RE-IMPLEMENT |~ >
IMPLEMENTATION PROGRAMING
TEAM LANGUAGE

Figure 1: Re-Engineering Method

on methods and not much has heen invested on tool implementation. The techniques that
we developed had contributed to the effective re-engineering of two software systems and the
recover of another one.

Our approach to software re-engineering is based on a meta process which considers that
there are four main sub-processes to be performed when re-engineering an artifact. The sub-
processes are: recover, specify, re-design and re-implement. The SADT model of Figure
1 describes the way in which those sub-processes communicated. The aim of using such a
process is that it makes it possible to handle maintenance at the design level and creates
opportunity for reuse, since re-implementation is guided by the previous re-design.

Recover is based on recovering designs and casting them in JSD. JSD views software
development as a forward engineering activity, but we are using it backwards in order to
recover designs. We have found that JSD is well fit to perform this task mainly by its uniform
way of handling abstractions.

JSD is an operational specification method that uses the concept of independent and long

|3

running processes. Processes appear naturally in JSD as one encapsulates entities of the real
world with its actions. Actions are real world responses to events. JSD main idea is that
one has to model the problem and not the functions that a software system has to perform.
Functionality appears in JSD after the problem has been modeled. We could consider the JSD
method as composed of three phases: the identification of entities and actions, the specification
of original and functional processes, and the implementation of processes as processors.

We have had used this meta process with different instantiations, ranging from the solely
use of JSD to the combination of other methods such as Fagan’s inspections and the use of
Draco domain based descriptions. We will organize this report by the different experiences we
have performed. Section 2 will report on the re-engineering of a hypertext system. Section 3
will report on the recover of a business system. Section 4 will report on the re-engineering of
Draco, a complex software development tool. Section 5 will report on the experience in using
a re-engineering approach in a large organization. We conclude, Section 6, summarizing what
we have learned and pointing out what we believe should be better worked out to make it
easier the task of re-engineering.

2 A Hypertext System

This case study involves a small hypertext system designed by a team of students [Maciel
90] on a software project course. The system implements a special hypertext that supports
the Language Extended Lexicon a structure developed by us [Leite 89] to represent application
vocabulary. The original system, around 5,000 lines of Pascal code (Turbo Pascal 5.5), was re-
designed and re-implemented in the Unix environment in ¢ and Sunview by a graduate student
[Leite 91]. The result is HyperLex, a system that has been used in vocabulary acquisition.

The process used for this case was a specialization of the general method presented at the
Introduction. It is described by the SADT model in Figure 2. Observe that, in this case,
JSD is used both forward and backward. At the recover step JSD is used to represent the
vecovered design.. At the specification step JSD is used to represent the entities and actions
of the desired new hypertext system. At the re-desing step the recovered design and the new
specification are put together to see what can be reused, in terms of design, and to draw the
new design.

The method used for recovering the design can be described by the following steps:

o Creation of an Indexr. The Index should put together the important objets perceived
from code analysis. This code analysis is performed manually with the help of a cross
analyzer. Below we described some of the heuristics used to create the Index. Observe
that the heuristics are dependent on the structure of the language used.

— each module of the system (.PAS file) will be an entry.

— for each entry list: unITs and INcLUDES referenced in that entry, PROCEDURES
pECLARATIONS and runcTIons included in that entry, and the TYPES and vARE-
ABLES defined.

— in the case of existing a TYPE declared as an oBJECT, list, after the type declaration,
the instances variables, the ProcEDURES and the FuncTions of that osJecT.

RECOVER METHOD

SOURCE
CODE
——=| RECOVER

STRUCTURED TEXT

SO!‘TWARET
RECOVER Jsp

SPECIFICATION DIAGRAM

IMPLEMENTATION DIAGRAM

TEAM TURBO
PASCAL 5.5
LIST OF ENTITIKS

USE OF HYPERTIES AND ACTIONS
LITERATURE ON HYPERTEXT SPECTFY
USE OF THE SYSTEM BEING FUNCTIONALITY
RECOVERED T T

SOFTWARE J8D

SPECIFICATION

TEAM

SOURCE CODE

RE-DESIGN

NEW IMPLEMENTATION
DIAGRAM

—NEW STRUCTURED TEXT

SO!‘TNARET

Lo

-DESIGN TEAM

REUSABLE
COMPONENTS

NEW SPECIFICATION
DIAGRAM

NEW SOURCE CODE
RE~IMPLEMENT [———%

ormas | |,]

SUNVIE
IMPLEMENTATION w

TEAM

Figure 2: JSD oriented Re-engineering

e C'reation of the Implementation Diagram. The Implementation Diagramis the JSD final
design representation, where the process are allocated to processors. Below we list some
of the heuristics used for its creation.

Each object becomes an implementation process.

Each unit becomes an implementation process.

The object in which the m AN is declared becomes the scheduler.

Each file in the system becomes a state vector file in the diagram.

The system’s inputs are grouped together in one data stream which is read by the
scheduler.

The system’s outputs are the reports or the error messages.

e Creation of the Specification Diagram and its Structured Teats. The Specification Di-
gram is a network diagram of processes. In JSD, this processes are originated from the
-processes presented at the initial model, which pictures the problem, and from functions
added later to support the system desired behavior. It is important to observe that
following the guidelines, we will obtain a text that is an abstraction of the original code.
Below we list some of the heuristics we have used.

Each process in the implementation diagram has its logic stated as an structured
text using the basic components: sequence, interaction, selection.

|

Each call to a procedure or function becomes a write command to a data stream
linking the calling process to the called process.

Acess to files are represented as state vector access.

The output data streams are kept as the same.

|

The inputs are divided in several data streams and attached to the relevant process.

The specification part of the re-engineering process was conducted using JSD. For each
entity, found to be important, a list of actions was established. As we can see on the SADT
diagram of Figure 2, the information used for the specification was drawn from several sources:
the use of Hyperties, readings from the literature and the use of the system being recovered.
At this step we also made a short description of the intended functionality.

Re-designing was more rewarding than we first planned. It turned out that we managed
to reuse a large amount of the software. In particular we reused most of memory management
and the hypertex navigation. Overall we followed the directions listed below.

o Identify in the recovered JSD specifications parts that would match the entities proposed
for the new system.

e Fxamine the structured text of the matching parts trying to identify what could be
reused.

o Identify where the interface functionality is present in hoth specification diagrams?. Cut
the design such that the functions are completely separated from the original processes.

e Replace the functions with the new functions.

e Replace parts of structured text with the new requirements expressed by the list of
entities and actions.

o Identify the reusable components.

In the case of HyperLex, since we were using a new target programming language, there
was a need to port components written in Pascal to C. Although we had to rewrite the
components, we just translated from Pascal to C, preserving as much as possible the data
structures and the logic used in each module. The student who performed this task was
surprised and convinced that she had saved time by re-engineering the system, instead of just
re-doing everything.

3 A Business Allocation System

This case study was performed by a student as a term project. The student used as an
example, the system she was working on her job at a computer manufacturer. The system,
about 3000 lines of REXX code, aims at controlling the type of financial plan used by each
client in -buying or leasing computers. '

The method applied in this case was basically the same as the one described in the case
of the Hypertext. The first step was the creation of the Index. Using the basic components
of REXX (Exec, subroutine, input file, output file), we decided that each Exec would bhe an
Index entry and for each Exec there would be a list of:

e the Execs called,

o the subroutines called,

e the files used,

e the import and export variables.

The next step was the creation of the JSD implementation diagram. We have assumed
that the code itself was the structured code, so we draw the implementation diagram using
the Index and the following assumptions:

o cach Exec becomes a process,
e the main Exec becomes the scheduler,

o the files are the state vectors files in the implementation diagram.

?We have to understand that in JSD there are two ways of handling functions: functions that are itself
processes and implicit functions. Implicit functions are embedded in a process structured text at the time of
designing the JSD specification diagram.

e the scheduler handles the interface and one data stream handles all the inputs.

Using the Index and the implementation digram, it was possible to write down the struc-
tured text for each process. This description was an abstraction of the original code, and a
step towards the specification diagram, the final representation of the recovered design.

Regarding validation; we read the specification digram and believed it was coherent with
the general idea of the system. In the context of the term project, the student also performed
an informal validation with the original designer of the business allocation system. After
explaining to the person the idea and the details of JSD, the student asked if the specification
diagram was realistic. The designer, who hadn’t work on that system for a long time, agreed
that, overall, the recovered design was realistic. The student herself believes that the exercise
helped her a lot in performing her tasks of maintaining the system, although it is not clear if
she will continue to use the JSD method or not.

4 Draco-PUC

This case study is more complex and a more elaborated work [Prado 92]. Prado proposed an
instantiation of the re-engineering method shown in Figure 1 in such a way that it could use
the domain structure proposed by Neighbors [Neighbors 80] to re-design software. Neighbors,
on his work on Draco, puts forward the idea that it is possible to produce software by reusing
high level abstractions implemented as component libraries. The strategy proposed by Prado
[Prado 92], Figure 3, is composed of four activities: recover, specify, re-design, re-implement.
Departing from the source code, the method combines inspections [Fagan 90] and JSD to
recover the design. Using the recovered design, the observations made to it and performing
a more detailed study of the problem area, one can specify the desired changes. In the next
step those changes are used to re-design the artifact, representing this new design as a Draco
domain. Finally the design is re-implemented in a executable language, that can be different
from the original implementation language.

The Draco machine can be viewed as a application generator generator, that is a meta
generator. As such it has two distinguished parts, one that build the generators, called
domains, and other that uses the domains to build software systems. In order to build a
domain, it is necessary to build:

e a parser,

e a prettyprinter,

e a component library and
¢ a transformation library.

Once a domain (generator) has the parts listed above built, it is possible to construct
software systems in that domain. Four main subsystems are responsible for the software
construction process. Following we describe them.

o Parse: the subsystem responsible for domain programs analysis and the creation of the
Draco abstract syntax tree (DAST). DAST is the basic Draco representation.

7

RECOVER HEURISTICS AND INSPECTION TECHNIQUES

l

RECOVERED DESIGN (JSD DESIGN, OBSERVATIONS)

(3)

EXECUTABLE LANGUAGE

VALID
INPUT
o . VALID OUTPUT FROM PROTOTYPE
Sorack PROTOTYPE
T (BNF'a) DOMAIN
SOFTWARE JSD/SADT BUILDING TECHINIQUES
RECOVER
TEAM EXECUTABLE —
LANGUAGE
(1)
SIMILAR ..__,] SPECIFY
SYSTEMS
SOFT. ENG. SADT/EDITOR
PORTED
COMPONENTS
Lo RE-DESIGN
T T (2)
(1) NEW FUNCTIONALITY AND SOFT. ENG. FRONT END Y
CHANGES
RE~IMPLEMENT
(2) DOMAIN DEFINITIONS PROGRAME .
(3) .DPP - PRETTY PRINTER T
.TLB - TRANSFORMATION
.RLB ~ COMPONENTS
.TCT - TATICTS
.EXE - PARSER SOFT. ENG.

Figure 3:

FRONT END + YACC/LEX + XFMGEN + REFGEN + PPGEN + TACGEN

Prado’s Re-Engineering Strategy

e Prettyprinter: the subsystem that displays the contents of the DAST using the original
syntax of a given domain.

e Transform: this subsystem applies the transformation rules performing manipulations
on the DAST. Those transformations are horizontal, that is they are intra domain.

o Refinement: with this subsystem it is possible to perform vertical transformations of the
DAST. These transformations are inter domains. Guiding these refinements we have a
set of tactics that help automate the process of translating one domain description into
other domains.

Although Draco has been discussed and evaluated in different occasions [Neighbors 34].
[Arango 86], [Freeman 87] [Arango 83] [Neighbors 91], the Draco prototype itself has been
basically the same as the one built in 1980. Most of the work around Draco has heen on the
ideas surrounding it, and not on empirical work of trying to use it. Our research strategy is
centered on the hypothesis that the Draco idea is sound. As such, our research agenda is built
around the Draco machine.

Pursuing our goal of having a usable Draco, we have re-engineered Draco into what we call
Draco-PUC. Draco-PUC version 0.1 was the result of a design recovery process [Leite 91]. It
is basically a port from the original UCI-Lisp code, except for a new interface. Version 0.1 was
written in Scheme. Draco-PUC version 1.0 has several re-designed parts. The major re-design
was in terms of the structure of the parsing mechanism. Draco-PUC v.1.0 uses an off-the-shelf
parser generator, Yacc, and has an Draco-Yacc editor that helps domain construction.

The recovered procedure used by Prado is similar to the one described in the previous
examples, but with a substantial difference. In this case, an inspection process [Fagan 90] is
used to help code understanding and to validate the design being recovered. The inspection
process has the following steps.

e Preparation: the moderator describes the overall area and the main and intermediate
goals to be achieved. The participants read the code, plus any other extra material, and
the designer is responsible for representing the recovered design using JSD structure
diagrams. The level of abstraction chosen for casting the design depends not only on
the implementation language, but on the problem itself.

o Inspection: the designer describes each recovered structure diagrams and the implemen-
tor and the moderator ask questions. These questions are based on existing checklists
and in some recover heuristics. The questioning process tries to discover any existing
mistakes, errors or problems.

o Correction: the problems are fixed and a new version of the diagrams are produced.

e Validation: the moderator makes sure the new version is correct. If there is no agree-
ment, then the whole process is repeated.

Ounce the design of each of the subparts are recovered, it is time to integrate each of
these subparts in a JSD system specification diagram, the network model used in JSD. In
this representation, the processes (subparts) interface between each other by means of data
stream or state vector. Arguments are usually seen as data stream and global variables are

9

transformed in a fictitious process, globalvar, from where access can be made by state vector
or data stream.

In the activity specify (see Figure 3) changes and improvements are represented in SADT
and in text descriptions. Analysis of the recovered design together with the study of similar
systems, or the requirements for changes, are the main sources to the specification process.
Controlling this activity we have the Draco domain representations.

In order to represent the new design, we use the Draco domain’s four parts: the parser,
the set of transformations, the components and the prettyprinter. As pictured in Figure
3, the specification of changes, the recovered design and the techniques for Draco domain
construction are determining the way the re-design is performed. There are 5 big steps in the
process of re-design:

I. grammar definition
2. components and tactics definition
3. porting

4. transformation definition

5. prettyprinter definition

Besides defining a domain for the software being re-engineered, it is necessary to have
defined and implemented the target domain, here understood as an executable domain. In
order to have a target domain, for instance C or Pascal, we need a parser for that domain.
and a prettyprinter. A transformation library, although recommended, is not mandatory.

It is interesting to observe that by using the idea of Draco domains to the realm of pro-
gramming languages, we can port systems without understanding its semantics. That is, we
can write grammars for two executable languages and express the language semantics by com-
ponents written in the other language. An exercise like this was executed by porting Draco
itself [Arango 88].

In order to re-implement we need to build a Draco domain. As such we have to make op-
erational, the parser, the prettyprinter, the component library and the transformation library
of the chosen domain. The Draco-PUC machine has an editor that helps the construction of
the domain parts. Once the domain is available the software engineer can use it as a generator,
and as such improves the possibility of different specifications for that artifact, but reusing
the same implementations of the original artifact. One needs to specify a set of programs to
represent the new artifact (see Figure 3). These programs would be read by the machine and
will produce the needed software in the target language of the implementor‘s choice.

Draco re-engineering followed the method described here. Several modifications were per-
formed, altering the design of Draco. The subsystems for building the transformations and the
tactics were written as domains and as such their coupling with the whole system was made
weaker. The subsystem for building the component library was split in two: one for creating
the library and another for filling the library. The re-design of the parsing mechanism used in
Draco was its central change. By being able to cut the design, that is separate the parts in the
recovered design, we managed to replace parts of the machine by other parts and to maintain

10

old parts running with those new parts. The substitution of the Draco parsing mechanism
and the Draco interface was a clear sign of the success of our re-engineering strategy.

Draco-PUC is a hybrid system. It has parts in C, parts in Scheme, parts in Assembler and
uses the Yacc system. Its interface is similar to Borland’s compilers interfaces and has a Yacc
oriented editor that helps the creation of grammars for Draco domains. Draco-PUC is about
90 K lines of code (without Yacc), much different from the original Draco 4 k lines of Lisp.
Much of the lines comes from the new interface.

5 Organizing Maintenance in a Large Organization

Another related experience was the proposal of a maintenance process for a very large organi-
zation. This organization is a large mining company, and has a Jarge investment on software
for corporate information systems. A member of the company’s technical staff developed
his master’s thesis [Souza 91} within our group in order to describe a process to organize
maintenance arounding the idea of re-engineering.

In Figure 4, a datagram [Ross 77] shows the main entities involved in such a process and
the actions that create or use them. There is the need for the company to settle on some
standards, for instance on requesting changes or to the organization of the desing library. Of
course there is the need for a plan on how and when to tackle users requests. The use of the
design library is such that it is in accordance with the configurator control that keeps an eye
on what is changing and why. Centering the re-implementation on using the desing library,
has made it clear to the company that it is important to have a good design library and second
that it is worth using the library.

The company is implementing the process and finding out that it can be done, but has
encountered the usual roadblocks: lack of support from upper management, pressure for quick
fixes, and lack of supporting tools.

6 Conclusion

We have reported on ongoing research on software re-engineering. Our work has been oriented
towards experimental case studies in order to stablish processes and methods to perform
software re-engineering. Our process, which divides the re-engineering task in four sub tasks,
recover, specify, re-design and re-implement has been applied in three different cases with
good results. The methods used have been based on the use of JSD as a way of representing
the recovered design.

Jackson in his justification of JSD pointed out that modeling the real world would make
it easier to implement changes, if those changes were at the functionality level, for instance, a
new report or a different combination of data in the system. As such J SD has means of differ-
entiating between aspects pertaining to the problem and aspects related to the functionality
of a given system. Although it is very hard to make the difference as one recover the design,
it is true that once it becomes clear what is related to functions and what is related to the
real problem, JSD representations easily handle the difference.

We have noticed, on the two small examples, that as pointed out by Jackson, most of the
maintenace relates to functions. In hoth cases the interface was easily identified, and in the

11

ESTABLISH

STANDARDS
—

INFORMATION USERS

STANDARDS

ESTABLISH RE-ENGINEERING STANDRDS

7

ORGANIZE REQUEST
BY TYPES

SYSTEMS
DEPARTAMENT

ESTABLISH
POLICE FOR
PLANNING

PLAN

INFORMATION T T
SYSTEMS
NT USERS

ESTABLISH

PRIORITIE

ASK FOR MAINTENANCE————%|

W

- EXECUTE
REQUESTS | MAINTENANCE

USERS

DESIGN
P STy LIBRARY

SOFTWARE
ENGINEERING
DEPARTMENT

ADD NEW COMPONENTS

CONTROL CONFIGURATION —*

RE-ENGINEERING
DESIGN COMPONENTS

IMPLEMENT
CHANGES
———

SOFTWARE T TSUPPRT
DEPARTMENT DEP.

Figure 4: Organizing Maintenace as a Re-Engineering Activity

12

case of the hypertext system completely replaced by a complete new interface. We also noted
this in the Draco re-engineering. In the case of the hypertext it was also the case that some
of the reports were changed and others added, again changes performed on the functionality.
With Draco the identification and substitution of the interface was made simpler by the use
of JSD.

Using Draco domains for representing re-designs has been showed to be much more com-
plex. It is not easy to deal with representations that requires a lot of detail and deep knowledge
of grammar writing, which is not trivial. Nonetheless, we believed tha much can be done, an
example is Draco-PUC interface, to make this task easier. We have to keep in mind that
as re-designing system as a means of Draco domains we will have the additional benefit of
possible reuse, being this reuse already in the Draco format.

We observe that using the inspection approach to the taks of recovering is an effective way
of guarantying quality and improving the understanding of the system. We will pursue on
this idea, trying ot apply it for other complex cases.

As stated in the Introduction our work is centered on method support for the manual
Jabor of software engineers. We should however start to look for possible ways, besides cross-
referencing, to automate parts of our process. Although it is debatable if our JSD based
proposal is better for instance than one that would use object oriented representations, we
believe that we should keep doing experiments since this case studies will provide us with
more information for designing useful re-engineering automation procedures.

References

[Arango 86) Arango G., Baxter ., Freeman P., Pidgeon C., A Trans formation-Based Paradigm
of Software Maintenance, IEEE Software, Vol. 3, pp. 27-39, May 1936.

[Arango 88] Arango G., Evaluation of a Reuse-based Software Construction Technology, Proc.
Second IEE/BCS Conference on Software Engineering 88. The British Computer
Society, July 1988.

[Baxter 90] Baxter, I. Tmnsfornmvtimwl Maintenance by Reuse of Design Histories. PhD.
Dissertation, University of California, Irvine, USA; Nov., 1990.

[Biggerstaff 89] Biggerstaff, T. Design Recovery for Maintenance and Reuse, IEEE Computer,
22(7), pp- 36-49, Jul. 1989.

[Chikofsky 90] Chikofsky, E. e Cross 11, J. Reverse Engineering and Design Recovery: A Taron-
omy, IEEE Software, pp. 222-240, Jan. 1990.

[Fagan 76] Fagan, M., Design and Code Inspections to Reduce Errors in Program Develop-
ment , IEEE Software, pp. 222-240, Jan. 1990.

[Freeman 87] Freeman, P. Software Reusability, IEEE - Computer Society, March 1987.

[Jackson 83] Jackson, M. System Development, Prentice-Hall International; 1933.

[Leite 89] Leite, J.S.P., Elicitation of Application Languages. In Monografias em Ciéncia

da Computagdo, PUC-RIo, no. 30, 1989.

13

[Leite 91]

[Leite 91]

[Parikh 88]

[Maciel 90]

[Neighbors 80]

[Neighbors 84]

[Neighbors 91]

[Prado 92]

[Ross 77]

[Rugaber 90]

[Souza 91]

Leite, J.C.S.P.e Prado, A.F. Design Recovery - A Multi-Paradigm Approach, First
International Workshop on Software Reusability, Dortmund, Germany; Jul., 1991.

Leite, J.S.P. Franco, A.P.M., Re-Engenharia de Software, um Estudo de ('aso, In
V Simpésio Brasileiro de Engenharia de Software, Ouro Preto, Out. 1991.

Parikh, G. Technics of Program and System Maintenance (2a. edi¢io), QED In-
formation Sciences, Inc., 1988.

Maciel, G., Costa, J. e Baccar, J. Editor de Léxicos, Trabalho de Fim de Curso
de PSS, Departamento de Informmatica, PUC-RIO, Mar. 1991.

Neighbors J., Software Construction Using Components, PhD. Dissertation, Dept.
Of Information and Computer Science, University of California, Irvine, 1980.

Neighbors J., The Draco Approach to Constructing Software from Reusable Com-
ponents, IEEE Trans. on Software Engineering, SE-10:564-573, September [984.

Neighbors J., The Evolution from Software Components to Domain Analysis,

. Simpdsio Brasileiro de Engenharia de Software, Ouro Preto, M, Out. 1991.

Prado, A.F., Estratégia de Re-Engenharia de Software Orientada a Dominios,
Tese de Doutorado, Departamento de Informdtica, PUC/RIO, 1992.

Ross, D. Structured Analysis (SA): A Language for Communicating Ideas. In
Tutorial on Design Techniques, Freeman and Wasserman (ed.) IEEE (atalog
No. EHQ 161-0(1980), 107-125.

Rugaber, S., Ornburn, S. e Le Blanc Jr., R. Recognizing Design Decisions in
Programs. In IEEE Software, 7(1), Jan., 1990.

Souza, A. Manutencio de software sob Enfoque de Re-Engenharia, Dissertacdo
de Mestrado, Departamento de Informatica, PUC-RIO, Mar. 1991,

