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Abstract - Most of the current general design methodologies do not capture the cognitive nature of design.
The present paper proposes an approach based on an evolving theory of the design process inspired on a
cognitive interpretation of design. This approach provides a pragmatic guideline for developing and
evaluating design methodologies used in connection with CAD and CASE systems. Furthermore. it seems
that several current design models are interpretations of the proposed theory.

Keywords: design, CAD, CASE

Resumo - Atualmente a maior parte das metodologias gerais de design njo captura a natureza cognitiva de
design. Este artigo propdc um tratamento baseado em uma teoria evolutiva do processo de design inspirado
cm uma interpretagdo cognitiva de design. Este tratamento prové uma orientagdo pragmdlica para
descnvolvimento e avaliagio de metodologias de design usadas em sistemas de CAD e CASE. Além do
mais, € sugerido que vdrios modelos atuais de design sio interpretagdes da teoria proposta no prescnte

trabalho.
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L. INTRODUCTION

Many design models and design methodologies have been proposed during the last thirty
years of work in design research. Cross (1984) contains one of the most complete collections of
papers in design methodology. Jones' work (Jones 1963, 1970, 1977, 1981) is a remarkable
example of a steady flow of contributions to that area. Some of the literature attempted to provide a
cognitive interpretation of design. The work by Jeffries et alii (1981) and Akin (1979) exemplify
this type of approach.

Despite all the above mentioned efforts progress in design automation has been kept

behind expectations. This fact manifests itself in the proliferation of proposals which either do not

| address the complete process of design (they focus only sub-parts of the process such as

preliminary design) or face design as a strict problem solving activity (e.g.: design as planning and
design as constraint satisfaction).

The present paper proposes the basic ideas for a theory of the design process based on a
cognitive interpretation of design. In fact, what is proposed here is a meta-theory, since it can be
instantiated to become a theory of a particular design process (and associated methodology) when
particular methods for synthesis, analysis and evaluation are provided.

- The figure below (Figure 1) illustrates the phases involved in moving from a
characterization of the nature of design to a Particular methodology and its associated CAD/CASE
working system.

s=b! WORKING
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Fig.1 Design from abstractions to working systems

2. DESIGN ACTIVITY

In a sense, our work is a followup on the work by Goel and Pirolli (1989) who have
proposed a characterization of the design problem space based on invariants of the design task
environment. Firstly their characterization of design points out that design is not a ubiquitous



activity (e.g. playing chess is not a design activity). Secondly they characterize design activity as
what Lakoff (1987) calls a radial category, that js a category in which a "central, ideal, or
prototypical case exists as well as some unpredictable but motivated variations”. Design activity as
a radial category means that there is no chap boundary between what is and is not a design activity.
thirdly they analyse the task environment of a few prototypical design professions to be able to
describe the design task environment on the basis of the following set of invariants (here stated in a
simplified way): invI= Many degrees of freedom; inv2 = Limited or delayed feedback from the
world; inv3= Input consisting substantially of goals and intentions and output is a specification of
an artifact; inv4= The artifact must function independently of the designer; invS = The specification
and dell very of the artifact are temporally separated; inv6 = Costs are associated with every action;
inv7 = Answers are neither right nor wrong only better or worse; inv 8= Problems tend to be large

and complex.

We adopt the above definition of design activity and consider it the class of problems to be
modelled, i.e.

Def. A Design Activity is a radial category of problems whose task environment is
characterized by the set of invariants inv;

3. A MODEL OF THE DESIGN PROCESS

Goel and Pirolli (1989) examined a number of designers at work to reconstruct their
problem space and make an "explanatory connection” between the features evident in their problem
spaces and two other invariants: the invariants of the design task environment (inv.) and the
invariants of the information processing system (Pi). The invariants of the inflammation processing
system are: pl = Limitations on the expressive power of the language of thought; p2= Sequential
processing; p3= STM (Short Term Memory) capacity. They came up with a set of eight features
that are "entailed" or "enabled" by the invariants envoy and Pi. Goel and Pirolli (1989) claim that
these features are invariants in the problem spaces of désign situations and collectively constitute a
DPS (Design Problem Space). The notion of design by Goel and Pirolli (1989) is motivated within
Newell and Simon's (1972) information-processing theory. The DPS invariants proposed by Goel
and Pirolli (1989) are clearly inspired by the paradigm of problem solving.

We find that Goel and Pirolli's (1989) DPS invariants are a major empirical finding since
it adds a new cognitive perspective to the current studies of the design process. However, we have a
different view of them. i.c.: firstly we call them characteristics of the Design Problem .Space
second]y we simplify them (as presented in Table 1) and finally we see them as an informal model
of the design process. Strictly speaking, we take them to be an informal interpret anon of a design
theory (a language and a deductive apparatus) associated to it. All the axioms of this desi gn theory



interpret to true in this interpretation (i.e. an interpretation C is a model for a theory if each axiom
Axj of the theory is true under C (Manna & Waldinger, 1985)).

¢l = Exiensive Problem Structuring;

That is: there is an extensive process of finding missing information. The following steps proposed by
Goel and Pirolli (1989) are used by designers: studying the design brief; soliciting information and
clarification; applying legislative constraints (e.g. design codes); applying technical constraints; applying
pragmatic constraints (e.g. money, resources at hand); applying personal knowledge constraints;
negotiating constraints (to fit personal ideas).

¢2= Extensive Performance Modelling,
Mainly: idealized cognitive models (e.g. the concepts one has about what a draughts man is), scenario
immersion, pictorial models, mock-ups, mathematical and numerical models and computer simulations.

¢3= Personalized Stopping Rules; i.e.: rules which are used to tenminate a design process or sub process;

¢4= Evaluation in Three Contexts;
A generated or focused component may be evaluated in three contexts: local context; current context (of
the current stage of the design); future context (i.e. projecting the complete artifact in its final stage).

c5= Making and Propagating Decisions (or Comunitments);
Decisions must be made, recorded and propagate in order to produce an antifact description.

¢6= Solution Decomposition;
As pointed out by Goel and Pirolli (1989), this process should consider the interconnections between
entities at a functional and/or physical level.

¢7= Abstraction Hierarchics; .
That is: working with entities - functional and physical attributes - at various levels of detail. Descending
too svon or not descending at all this hierarchy is a common mistake by novice designers.

¢8= Use of Symbol Systems;
For instance: bubble diagrams, rough sketches and natural language.

Table 1 Characteristics of the Design Problem Space

We propose the following definitions:

Def. A Model of the Design Process is a set of characteristics C supported by a Design
Cognitive structure.

Def. A Design Cognitive Structure for a set of characteristics C of the design process is
determined by a design paradigm and the following entailment relations: K = INV
xCand [ = P x C, where INV is a set of invariants of the task environment and P
is a set of invariants of the information processing system.



We adopt the paradigm of problem solving and the following relations K and 1 which are
determined by the "explanatory connections" suggested by Goel and Pirolli (1989):

K= {<invl.cl>,<inv,c2>,<inv3,c7>,<inv3,c5>,<invd,c2>,
<inv$§,c4>,<inv5,c2>,<inv6,c2>,<inv7,c3>,
<inv8,c6>,<inv8,c7> , < inv8,c8>};

I= {<pl.c8>,<p2,c8>,<p2,c4>,<p3,c8>,<p3,c6>,<p3,c7>,<p3,c4>).

4. THE PARADIGM OF PROBLEM SOLVING

Design was first identified with problem solving in Simon (1969). According to his
approach, a state space represents all possible states of the problem (i.e. all possible problem
descriptions) that need to be considered when a solution is attempted. Besides, he claims that it is
practically computable to cover all the space.

Traditional problem solving are search processes within a state space. In this context,
design knowledge is to be expressed in terms of goals and operators. Nevertheless, as Maher (1990)
points out, "search does not directly address some of the intricacies and idiosyncrasies of the design
problem”. The difficulties are related to the variation of goals during the problem solving process
and to the problem of predetermining the relevant operators. In conclusion, the notion of design as
problem solving needs to be discussed in a broader scttmj,, that is. one that sees it as more than a
traditional search process.

In the present work we adopt the view of problem solving proposed by Minsky (1988).
According to his view, machines can be made to solve any problem whose solution we are able to
identify (Minsky's Puzzle Principle). The basic ways to improve upon blind trial-and-error search
are: the progress principle (i.e. the ability to detect when progress is being made), goals and
subgoals (i.e. the decomposition procedure that reduces the problem space) and the use of
knowledge (i.e. "The most efficient way to solve a problem is to already know how to solve it.
Then one can avoid search entirely").

Also the notion of goal needs more elaboration. The difference engine scheme proposed
by Minsky (1988) contains a description of a desired state and a set of subsystems (agents) that are
aroused by various differences between the desired state and the actual situation. Each subsystem
must act in a way that tends to decrease the difference that arouse it. The idea of a
difference-engine embodies the main ingredients of goal: (1) to have some image or description of
a wanted or desired state; and (2) persistence (in pursuing the desired state). The well-known GPS
(general Problem Solver) by Ernst & Newell (1969) and Newell & Simon (1972) is the classical
Implementation of a difference-engine. Minsky (1988) claims that the difference-engine scheme
remains the most useful conception of goal, pileups, or intention yet discovered.



Our idea here is to focus on the set of subsystems of a difference engine given the
impossibility of having, in a design environment, a set of well defined operators in the traditional
GPS sense. However, in the present paper we abstract the way in which difference between goals
and actual situations are ultimately implemented. This issue belongs to the methods of synthesis,
analysis and evaluation and does not need to be specified by the proposed design theory.

5. ELEMENTS OF DESIGN CONSIDERED IN THE THEORY

In the present section we are going to discuss three important aspects that we will try to
capture in the semantics of the design language to be proposed as part of the forthcoming design
theory: a representation of the states of the design space; the synthesis/analysis/evaluation process
of design (the SAE process); and the role of short term and long term memories (STM/LTM).

5.1 The Representation of the States

The concept of goal discussed in the previous section is closely related to the question of
decomposition (goals into sub-goals - i.e. problem into sub-problems). From the design process
point of view, goals can be decomposed in terms of structures (physical or conceptual ones - which
are always represented by a set of attributes) or functional specifications (i.e. description of the
functions to be performed by the structures). The question of decomposition based on the
structure (form) versus functional decomposition may pose a dilemma in terms of design
knowledge representation: the knowledge base would need a different organization for each case of
goal decomposition.

As discussed by Maher (1990), in a problefn solving approach to design this situation does
not occur because representations of goals may capture both the notions of fail ill and function. We
propose here to represent goals by means of design entities. The properties of those entities are
described both in terms of functional specifications and attributes. i.e.

Def. We say that a design entity is a-pair E = (F,A) where E
stands for an entity, F for a set of function specifications
and A for a set of attributes.

The notion of entity as introduced above represents goals, sub-goals and partial solutions.
A partial solution is a resolved goal. i.e.: a solution to a sub-problem or a sub-problem which
requires no further decomposition or transformation. Consequently, a state in the problem space of
a design problem may be defined as the union of a number of such goals. sub-goals and/or partial
solutions. Figure 2 presents the evolution of states schematically.



Fig.2 Evolution of states within a Design Problem Space

In the context of the present work design is an evolutionary process that starts with a set of
input specifications, Ty, generates a kernel idea in the early stages of the process and refines it
towards the artifact description Ty, i.e.: Tp -> T, -> ... -> Tp. Relationships between entities as
well as constraints within or across the entities may be defined both in terms of F and A.

The sequence of states <Tp, Ty, ...> represents one of the many trajectories through the
design problem space. This sequence may enter the design problem space, get lost and never arrive
to an artifact specification. In this regard, constraints are needed to navigate in the problem space.
We shall use the DPS characteristics to explain movements in the problem space and support the
evolution of the states T,

5.2 The SAE Process of Design

The evolution of the states T; is carried out by a recursive process of three sub processes
Synthesis-Analysis-Evaluation, which are themselves recursive processes (Figure 3). These sub
processes represent a decomposition of the design problem and each of them has a particular
method of reasoning. Furthermore, they are organized in levels of abstraction. The completion of a
S-A-E design cycle at any level of recursion and at any level of abstraction corresponds to a change
of state Tn -> Ty, by asserting or refuting any particular belief (for example, the acceptance of a
value for a physical attribute of a given entity).

Examples of processes at different levels of abstraction are the generation of a kernel idea,
which is a higher level process, and detailing which corresponds to a lower level process. In the



case of structural engineering design. the following processes can be identified: conceptual design,

preliminary design, structural analysis and detailing.

The process SAE should also contemplate the decomposition of entitles in terms of
functional specifications and Physical attributes Moreover. the process SAE should be able to
consider the three contexts of' design, i.e. local context, curent context (of the current stage of the
design) and future context (the complete artifact in its final stage).

Fig.3 The Recursive Process SAE

5.3 The Role of STM/LTM

The role of short term and long term memory in the process of design is inherent to the
information processing system which underlies the cognitive interpretation of any activity of mind.
A theory of the design process should consider interactions with those two types of memory.

Very few models are general, in the sense that they cover both types of interactions.
Schneiderman’'s (1980) Syntactic/Semantic model for software development is a remarkable
example of a general model. A design system based on Anderson's (1989) spreading activation
memory in ACT* has been reported by Steir (1990).

6. TOWARDS A FORMAL THEORY OF DESIGN

We consider the set of characteristics C above mentioned as an interpretation (i.e. a
model) of a design theory dt:



dt = (dl,dp)

where dl is a design language and dp is an associated deductive apparatus. The design language is

given by:

dl = (alphabet.syntax,semantics)

6.1 The Design Language

The alphabet of the design language dl is the following set of symbols:

alphabet= { #.[, ], (, ), nil, Ty ), Ty Y, ...}

wherex=S8,A,Eandy=0,1,2,3, .., m.

The syntax of dl can be expressed through the following simple syntactic metalanguage:

wil= design_abstractions, #;

design_abstractions= {process_SAE | process_SAE, design_abstractions];

process_SAE= Ts'ilcf"'(proccss_SAE), TA'i'c"’l(proccss__SAE), TEJ'“"(proccss_SAE) I nil |

design_abstractions;

i= integer;

level= integer,

integer=011121..;

This syntax is illustrated by the following example:
wlf2= lTs_()O()TA‘()O()TE‘OO()

Ts. MTs2' 0T 2 0TE 2! OITA 1 '0TE, 10
Tg.320T A 320Tg 3201 #:

where () denotes nil (i.e. an empty list).

il

i2.

3.

i4.

i5.

6.

The semantics of the design language is given by the following assertions:

The well-formed formulas (wff) represent the Design Problem Space (DPS);

Tx/ is a state in DPS and is represented by a set of entities e/(F,A);

T,/ is a state derived by the application of a method of x (S for synthesis, A for
analysis and E for evaluation) on the previous state (at least one new entity is
created).

T,/ is a state within the j-th level of abstraction and the i-th cycle of
Synthesis-Analysis-Evaluation;

Ts 0, also called Ty, represents the INPUT SPECIFICATION;

"(...)" denotes levels of recursion in the process SAE and "[...}" denotes a set of
abstraction levels;



i7. “()" denotes an empty sub process (a recursion stop);

i8. # is a stopping criterion for the design process;

i9. Entity decomposition can only be performed by a synthesis process S;

i10. Tg /(...)Tg, is a change of abstraction level (j to /) determined by an evaluation
process;

ill. An abstraction level is not supposed to be changed by either a synthesis process 6r

an analysis process;
il2. Every state is supposed to be consistent with the previous one.

‘This semantics captures the nature of the design process.

6.2 The Deductive Apparatus

The two components of a deductive apparatus are the Axioms and the Inference Rules. In
what follows we give the flavour of our theory by presenting two axioms, one inference rule and a
theorem. The theory is currently evolving and we shall provide more details about it in a
forthcoming paper. We assume the reader will be able to assess its power by figuring out, as an

exercise. a few candidate axioms.

Axl. [ SA;.. . Tg JOSA; T 0. . .
within the same set of fcvcls of abstractnons and where SA =Tg X)Tp ) (Y)and X, Y
and Z stand for arbitrary SAE processes;

Ax2. ..[. Tg, TSki v i k>
within the same set of levels of abstractions.

R1I. if XITE,ij(Yl)Zl and X2TE'kl(Y2)Zz are wffs and TE.ij = TE'kl
then X, Tg;1(Y,)Z, and X,Tgi(Y|)Z; are wffs.

According to Ax] any evaluation state can be next to higher levels of specification. This
is, in essence, an evaluation in different contexts (characteristic ¢S5 of the meta-model). Ax? allows
the return to previous levels of abstraction. In essence, this is problem structuring (the
characteristic ¢/ of the meta-model).

The following theorem allows a formal interpretation of artifact specification:

Teo. If [Tg,...TE,"Ol#; is a wif then [HT,]#; is a wff
where  H=T,,.. TE 2™ is called DESIGN HISTORY and
Ty=TyTap (X)TE 270 is called ARTIFACT SPECIFICATION.
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7. THE SAE METHODS

The methods of synthesis (S), analysis (A) and evaluation (E) to be used by a specific
methodology should conform to the proposed design theory.

Table 2 is a general template to guide the implementation of a particular methodology.
This table presents the main tasks and operations associated with SAE methods. However, this is
not a strict classification, since the recursive nature of the design process makes the characteristics
of each method to overlap (e.g. strictly speaking, what is the analysis process of an evaluation
process 7).

SYNTHESIS
Tasks: Creation
Exploration
Induction
Decomposition
Case-Based Reasoning (mainly analogical reasoning)

Operations: Generation of Kemel Ideas
Generation/decomposition of Functional Specifications
Generationdecomposition of Physical Attributes
Functional Specifications =» Partial Solutions
Functional Specifications = Performance Specifications
Performance Specificahons = Partial Solutions
Combination of Partial Solutions

ANALYSIS

Tasks: Simulation
Modelling (generating behaviours)
Case-Based Reasoning (bchaviour of retrieved solutions)

Operations: Physical Attributes = Actual Behaviour

Entities = Actual Behaviour
EVALUATION

Tasks: Judgement

Case-Based Reasoning (test of retrieved solutions)
- Diagnostic

Modelling (comparing behaviours)
Deduction .
Test of Kemel Ideas
stopping rules

Operations: Actual Behaviour <> Performance Specifications
Altenative Solutions <> Performance Specifications
Artifact Specification <> Performance Specifications

Note:"A = B" denotes "B is obtained from A", "<>" denotes "compared with”; A Perfoumance Specification is a
value (or a range of values) which provides a measure of the behaviour that an artifact is expect to produce in terms
of a particular functional specification; Actual Behaviour is the actual measure of the behaviour of an artifact in
terms of attributes;

Table 2 General Tasks and Operations Associated with SAE Methods
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Synthesis is the crucial question in design. The degree of artificial intelligence of a
CAD/CASE system is proportional to the degree of independence that each process of synthesis has
from human intervention.

Interactive computer graphics and intelligent user interface techniques can be understood
as the link between the incomplete artificial synthesis (null in conventional CAD/CASE systems)
and the external human synthesis (Figure 4). Human synthesis is considered one of the methods to
be used in the implementation of any methodology based on the present theory.

In the context of the present work, automation means the substantial replacement of
human action by machine action without removing the human interference in the key stages of the
- process. This concept discards any attempt of pursuing total automation, which is, as a principle,
undesirable, technically (and pérhaps theoretically) unattainable and, above all, renders the concept
of professional liability difficult to apply in law (British Computer Society, 1985). From a
cognitive point of view, total automation is unattainable because of the following facts: (1)
knowledge that is not open to introspection has been reported by several researchers and, as far as
design is concerned, Goel and Pirolli (1989) report this sort of knowledge in both general and
domain specific levels; (2) there is evidence that specialists do not need to have formalized
representations in order to act (Winograd and Flores, 1986, p.99); (3) Dreyfus and Dreyfus (1985)
argue that expertise cannot be captured in any collection of formal rules.

Fig.4 Human and Artificial Synthesis

8. EVALUATION OF SOME DESIGN METHODOLOGIES

It is not the intention in this short evaluation of current design methodologies to prove
that the proposed design theory is a totally new approach to design. The idea here is to show that
there is a common root for some of the well-known design methodologies and, moreover, that it
can be formalized.
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The following design methods were evaluated by the authors in the light of the framework
proposed in the present paper: Jone's (1963) Analysis-Synthesis-Evaluation Model;
Formulation-Synthesis-Evaluation Model, Decomposition Model, Case-Based Reasoning Model
and Transformation-by-Grammar Model of Design Synthesis prcsenicd by Maher (1990);
Propose-Critique-Modify family of methods proposed by Chandrasekaran (1990); IICAD
methodology built around the General Design Theory (B.Veth, 1987 and Veerkamp et alii, 1989);
Gero's Design Prototypes Model (1987, 1990); Coyne's (1988) Logic Model. A common fact
amongst these models is that they lack a cognition basis. However, they can be recast as instances
of the meta-theory proposed here of which they constitute particular methodologies. The following
remarks are worth being mentioned: Jones' proposal misses the recursive nature of design and
Coyne’s formalism for a design language associated with logic is based on particular aspects of
first-order logic and shape grammars.

9. CONCLUSIONS

In a sense, the present work is a follow-up on the work by Goel and Pirolli (1989) who
suggest that their analysis should be pushed further toward a process model of design. We adopt
the paradigm of design as problem solving and propose a model that supports a theory (a
meta-theory) of the design process. The formal system is far from completion but it proved itself to
be feasible and useful. The proposed theory captures the cognitive foundations and the recursive
nature of design. Furthermore, the theory seems to represent a common root for some of the
well-known models of design. Also the theory represents a pragmatic guideline for the
investigation of ways in which design methodologies can be built and CAD/CASE systems
enhanced.

The set of characteristics C represent cognitive needs of the designer that have to be
satisfied by every CAD/CASE system. The ideal system should satisfy all those characteristics.
However, current CAD/CASE systems only satisfy one or two of those cognitive needs.

Specific SAE methods yield to specific technologies. In this regard, we believe that
hypertext tools might support probiem structuring (c}), object-oriented languages might help the
implementation of ¢4, ¢5, ¢6 and ¢7, and intelligent user interface techniques might help in the use
of symbol systems (c8).
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