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Abstract

Fork algebras provide a useful basis for relational calculi for
program derivation; they arise as extensions of relational algebras
with a new operator, called fork, which enables the introduction,
by definition, of projections. In this paper we examine some
fundamental issues concerning fork algebras, presenting the
proofs of expressiveness and representability and discuss and
illustrate their inportance for program derivation.
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Resumo

Algebras de “fork” fornecem uma base apropriada para calculos
relacionais para derivagio de programas: elas aparecem como
extensOes das algebras relacionais com um novo operator de
bifurcagao, “fork”, que permite a introducdo, por defini¢do, de
projecdes. Este trabalho examina algumas questdes fundamentais
acerca de algebras de “fork”, apresentando demonstragdes dos
resultados de expressividade e representabilidade, bem como

discute e ilustra sua inportancia para derivacdo de programas.
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Abstract
Fork algebras provide a useful basis for relational calculi for program
derivation; they arise as extensions of relational algebras with a new
operator, called fork, which enables the introduction, by definition, of
projections. In this paper we examine some fundamental issues concerning
fork algebras, presenting the proofs of expressiveness and representability
and discuss and illustrate their inportance for program derivation.
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Representability.

1. INTRODUCTION

Fork algebras provide a useful basis for relational calculi for program derivation.
In this paper we examine some fundamental issues concerning fork algebras and
their use in program derivation. Fork algebras arise as extensions of relational
algebras with a new operator, called fork, which enables the introduction, by
definition, of projections. The abstract calculus of fork algebras manipulates fork-
relational terms without variables, free or bound, over individuals. This calculus
provides our formalism for program derivation.

Two basic issues concerning a formalism for program derivation concern its
formal aspects (such as soundness and completeness) and its adequacy for
reasoning and deriving programs from specifications. We, accordingly, address
both issues. |

The (meta-)mathematical aspects of soundness and completeness of a calculus are
connected to the limits, in principle, and there lies their importance. These are
settled by two fundamental results, namely expressiveness (which shows that
fork-relational terms have the expressive power of first-order formulas) and

1" E-mail armando@inf.puc-rio.br or veloso@inf.puc-rio.br. Fax: +55 21 511-5645. Telex: +55
2131048 PUCR BR



The structure of this paper is as follows. Sections 2 and 4 address fundamental mathematical issues, section
3 connects them to program derivation, and sections 5 and 6 illustrate the use of our formalism in some
concrete issues and examples of program derivation.

The next section reviews Boolean and relational algebras [Tar41, J6n52] and introduces fork algebras
together with their theories and calculi. Section 3 provides an overview of our approach, by arguing that we
can view specifications and programs as relations and why this viewpoint is useful for program derivation.
Section 4 contains the central mathematical results. In it we prove the fundamental results of expressiveness
[Vel91a] and representability [Bau92, Fri93a] and go on to compare our algebras with other classical
approaches to algebras of first-order logic [Eved46, Hal62, Hen74]; this comparison suggests that the main
difference resides in the fact that quantifiers and projections in our approach are constructed, rather than
primitive, monolithic concepts, which leads us to compare our approach to projections with some others
- [Ber91, Bac92]. Section 5 concerns the advantage of relations, over functions, as basic concept for
program derivation, which is supported by some general arguments of de Moor [deM92] and illustrated by
an example of program inversion suggested by the work of P. Harrison, handled by means of symmetric
quotient [Ber89]. Section 6 examines some advantages accrued from representability, namely that we can
use input-output intuition provided by the proper algebras while using the abstract calculus for reasoning
without variables over individuals, and some refined uses of expressiveness. This is illustrated by four case
studies, namely an analysis, and internalization, of Méller’s composition and join [M6192); how an
algebraic operation of substitution can be used to convert programs with filters (partial identities) into more
program-like terms with if_then_else; how we can cope with complexity and universal quantifiers by a
combination of proper-algebra intuition and abstract-calculus manipulations. Finally, section 7 provides
some concluding remarks as well as indication of on-going and future work.

2. ABSTRACT AND PROPER FORK ALGEBRAS

In this section we introduce some basic definitions concerning fork algebras. These are extensions of
relational algebras, which in turn extend the well-known Boolean algebras. For this reason it is convenient
to examine the progression from Boolean algebras, first to relational algebras, and then to fork algebras.
We shall be interested in both concrete (or proper) and abstract versions of fork algebras: much as Boolean
algebra provides an abstract theory of set-theoretical operations, relational algebras (and fork algebras)
correspond to abstract theories of operations on (structured) relations.

2.1. BOOLEAN AND RELATIONAL ALGEBRAS

Consider a set W. We have the usual Boolean (set-theoretical) operations on subsets of W, namely union
U, intersection M and complement * (with respect to the universe W), in addition to special sets, namely
the empty set & and the universal set W. As usual, by a field of sets we mean a structure
F=(F,un, ,Q,W), where F is a set of subsets of W, containing the empty set & and the universal
set W, which is closed under the Boolean operations union \, intersection A and complement ‘. The
abstract version of a field of sets is a Boolean algebra: a structure B =(B.v,, *,0,U) satisfying the well-

known axioms. Recall that on a Boolean algebra B we can define a binary relation < giving a lattice



structure to it. Also, an element @ € B is called an atom iff for every element x € B such that
0# x c a, we have x = &; and Boolean algebra B is aromic iff every non-zero element contains an atom.
By Stone’s representation theorem every Boolean algebra B is isomorphic to a field of sets, where set-
theoretical inclusion € corresponds to the abstract partial order c.

Consider now aset VW xXW, i. e. a set of ordered pairs of elements of W . Then, we have some natural
Peircean (relation-theoretical) operations on subsets of V, namely transpose * and composition | (defined,
respectively by means of p'={(u,v)e W xW :(v,u) € p} and
pla={(u,w)eWxW:(uv)e pand(v,w)eq, for some veW}) and the special diagonal relation
A={{u,v)e WxW: :u= v}. A proper relation algebra is a structure PRA = <P.u,m,l, ',*.J,@,‘U). such
that the reduct (P.u,n, *, @&, U) is a field of sets and P contains the diagonal A and is closed under
composition | and transpose *. The abstract version of a proper relation algebra is a relational algebra: a
structure RA = (A.+.2;,".7,1.0,%) such that

(1) itsreduct (A,+,%,7,0,>) is a Boolean Algebra with 0 its zero element, o its unit element and c is

the lattice natural order called relational inclusion.
(2) (A, 1) is a monoid.
‘B) riscreFjrcIeot;scr Schrider rule
Notice that in relational algebras we can introduce a new constant (diversity §) and a new operation
(relative sum @ ) by definition: o =Tand rts=7;5
We shall call a relation algebra atomic iff its Boolean reduct is so. We shall often be concerned with simple

relational algebras, which are those satisfying
4) r#20—>e=;irjeo=cforeveryre A - Tarski rule

2.2. ABSTRACT AND PROPER FORK ALGEBRAS

Let us now turn our attention to fork algebras, first the proper and then the abstract ones.

Consider a set U equipped with a binary injective operation *:UxU — U (which we view as
constructing pairs [y,z]of elements?) and a set V c U xU. We now have another natural operation on

subsets of V', namely (proper) fork, defined by r as = {(x,[y,z]) ((x.y)era(x,z)e s}. A proper fork
algebra is a structure PSA = (5,@,@,!.«. ’1.4,0, ‘U). where the reduct <5,63.®,|, ‘1 A0, ‘U) is a proper
relation algebra such that S is closed u: der fork <. The abstract version of a simple proper fork algebra is
an abstract fork algebra: a structure R§A = (A.+,.;,V.",” 1.0,00) such that:

(5)  (A+.25".7.10<) is a relational algebra: satisfying

(6) r#0—>c;r;o=cforeveryre A Tarski rule

and the following axioms hold:
) er:(r;(IVoo))O(s;(eon))

®) (rVs);(eVq) =(r;i)e(s;q)
© (17 =) V(=Y 1))l

2 We will indistinctly use [x, y) or x * y for this operation.



(10) t#20Arc ((1 V)7 oo) \% ((oo "I eo) - (3v)(3w)(0 # ((1 V) v) \% ((oo Vi w) c t)

The idea behind these axioms will become clear with the introduction of some abbreviations, for first and
second projections? and direct product

(1) n=(1Ve)”

(12) p=(=VI)

(13) r®s=((IVe)5r)V((=V )

Now, axiom (7) expresses fork in terms of intersection and projections; axiom (8) gives a kind of
distributivity, and axiom (10) says that every non-null relation contained in a direct product contains a non-
null direct product, i.e., (£ 0AtCoo®co — (V) Aw)0£vO w 1).

Notice that, because of Tarski rule, our fork algebras are simple, in that their relational reducts are simple.
We shall often be concemed with atomic fork algebras: those with atomic Boolean reducts.

2.3. ELEMENTARY THEORIES AND ABSTRACT CALCULI

Let us now examine the languages for these structures. It is important to bear in mind a distinction between
concrete, proper structures and their abstract counterparts. In the concrete versions one has individuals,
whereas in the abstract versions one abstracts away from them and considers only the abstract objects,
without, so to speak, looking into the individuals which constitute them.

This distinction will be clarified by examining another way of introducing proper relation algebras. The idea
is considering (unsorted) first-order logic and extending it (conservatively) with concepts pertaining to
relations. First view it as single-sorted language £, where the only sort is sort ¢ (of individuals). Now,
consider a new language, called K/RR (Abstract Language of (Binary)Relations) with sort 4 (of binary
relations over individuals) with equality, together with operations and constants for sort 4, namely O (for the
null relation), oo (for the universal relation), 1 (for the identity relation). 2 (for the diversity relation),

together with + (sum), # (intersection), ~ (complement), ~ (converse), (relative sum 1) and ; (relative
product)®. We extend £ by adding RULAR together with a ternary predicate symbol _(-,-) over sorts 4 ¢ ¢. Call
this language ££3R (Elementary Language of (Binary)Relations) Now, given variables x and y, over sort¢
and terms p and g, over sort 4, we have new atomic formulas of the form p = g and p(x, y) (which we
also write as x p y). Finally add the following axioms [Tard1], with implicit universal quantification over

relation variables:

(14) (vx)(Vy)(xUy) (20) (Vx)(Vy)(xFy © yrx)

(15) (Vx)(Vy)(—=x0y) Q1) (Vx)(Yy)(xr+sy e xryvxsy)

(16) (Vx)(x Ix) (22) (Yx)(Vy)(xresy & xry axsy)

(A7) (Vx)YVy)(Vz)((xryayIz)— xrz)  (23) (Vx)(Vy)(xr;sy e (3z)(xrz A zsy))
(18) (Vx)(Vy)(xFy & —xry) (24) r=se (YX)Vy)(xry & xsy)

(19) (Vx)(Vy)(x @y ¢ ~x4y)

3 The reason for calling x and p projections will become clear later.
4 Notice that 424Ris the language of relational algebras.



We thus obtain a theory, called the Elementary Theory of (Binary)Relations (ETBR, for short). The new
axioms purport to explain the meaning of the new relative operations by means of first-order formulas
involving individuals. For instance, axiom (23) explains the meaning of relative product as composition of
relations. Also, if we have equality between individuals, it is reasonable to strengthen axiom (17) to
x 1 y <> x =y, which defines / as the diagonal. In this sense, we say that this theory provides a standard
meaning for the relational theoretic terms. More precisely, consider the first-order language with equality
over sort¢ (of individuals), extended by the sort¢ and the ternary predicate symbol _(-,-), and call SMARthis
sub-language of ££2R We see that: given a term p of sort r of ££4R and variables x and y, over sort ¢, there
exists a formula ¢(x,y) of ££8R such that ETBR F (Vx)(Vy)[p(x,y) €> ¢(x,y)]. This formula
o(x,y)=S(p) will be called the standard meaning of relational term p.

Now, consider a model & of ETBR. The realization of sort 2 consists of elements which behave, in view of

the standard meaning above, as sets of ordered pairs of elements of the realization of sort ¢. In this sense,

they are binary relations over individuals. Thus, the proper relation algebras are the reducts to language
ALAR of the models € of ETBR.
Now, let us examine the languages of fork algebras. The situation corresponds to the one described above
for algebras of relations. We have:
the first-order theory TIO (Theory of Injective (pair-forming) Operation), with equality, of the
injective binary operation *;
the first-order language, with equality, /£9R (Abstract Language of Fork Relations), which is the
extension of 422% by a new binary operation from sorts 4 4 to ;
the first-order theory, with equality, ETFR (Elementary Theory of Fork Relations ) in language
£/9R, which is the extension of ETBR by a new binary operation from sorts 4 4 to 4, together with
the new axiom (explaining fork) (Vx)(Vy)(x r Vs y & (3v)(3w)(y = (v¥w) Axrv A xsw));
the sub-language SMPR of ££L9R, which is the extension of SMAR by a new binary operation from
SOrts 4 4 tO 4
As for the case of relations, we have:
a standard meaning, assigning to each fork term p of sort+ of ££9R and variables x and y, over sort
¢, a formula ¢(x,y)=8(p), called the standard meaning of p, such that
ETFRF (Vx)(Vy)xpy > 6(x,y)]:
the simple proper fork algebras are the reducts to language 4£7R of the simple models & of ETFR.

2.4. SOME CONCEPTS AND RESULTS

Let us review some concepts and results about relational and fork algebras.

First, recall that Schroder rule is equivalent to:

(25) Fifcrofjicrei;fcs

(26) (r;s)et=0e>(Fit)es=06e(1;5)er=0

Q27) (r;s)etc(re(e;5));(se(Fs1) Dedekind formula

Also, one says that a relation r is functional iff 7 ;rc 1, injective iff r; 7 c 1 (equivalently, 7 is
functional), surjective iff F ;oo =oo, bijective iff it is injective and surjective, total iff r;eo=co



(equivalently, r is surjective). It is also convenient to have some means for talking about domain and range
of relations. We introduce the definitions Zen(r)=(r;7)el and Aea(r)=(F;r)e 1. Notice that in a
proper relation algebra these correspond to partial identities over the domain and range, respectively, and
thus can be regarded as representing these sets as binary relations. Another usual representation of sets is
by means of right ideals: relational terms of the form r; e (also called conditions [Hoa86a, 86b] or vectors
[Sch85a, 89, 93]). Notice that both representations of sets are equivalent in the strong sense that one can
move between them via bijections defined by relational terms: given a vector r; e, we have the partial
identity (r; oo)e 1 with Zin((r;o)e 1)= Zon(r;)5; and given a partial identity 8, we have a vector
8500 .with Fon(8; )= Zem(8). We will call 210 1V 16

As for fork algebras, we have already introduced, by definition, projections and Cartesian products. It is
not difficult to prove that our projections are functional and present the behavior one would expect of
projections. For instance, on(m) = Zim(p)=1® 1 and Fua(7)= Hun(p)=1I; and they decompose
Cartesian = products:  for non-null r and s, (r®s);xn=(/1® Zn(s));n;r and
(r®s);p=(Fna(r)®1);p;s’

Two central results about fork algebras will be proved in Section 4.

The first one concerns the expressive power of our fork relational terms vis-a-vis first-order languages.
Recall that the Elementary Theory ETFR of Fork Relations assigns to each fork-relational term ¢ its standard
meaning: a formula S(¢)=¢(u,v) such that ETFR + (Vu)(Vv)[t (u,v) & ¢(u,v)). Expressiveness
provides an inverse for S, in that it provides for each formula o(vq,..-, V) a term T(¢)=r with standard
meaning S(£)=1(u,v), such that ETFRF (Vv )(Vv,)... (Vv JVV) [9(Vq,vs,... v,)
t((vl*(vz*...,(vn_l*vn)...)),(Vl*(vz*...,(vn_l*vn)...))) ]. Thus, we can say that the n-ary relation
defined by formula ¢(vq,v,,..., v,) is described by term 1, for in any structure the former is the domain,
and range, of the latter.

The second result is the analog of Stone’s representation theorem. Representability asserts that any fork

algebra is isomorphic to a proper fork algebra8.
In the next section we will comment on the importance of these results for program derivation within our

fork-relational approach.

3. ONPROGRAMMING WITH RELATIONS
We shall now examine some aspects underlying our relational approach to program derivation.

5 Notice that we are using D and R for the usual meaning of domain and range of a relation, while we use T~ and Fen
for denoting partial identities on domains and ranges.
Notice that both 2 and its converse are functional relations {Fri93a).
Notice also that (r Vs);n=re(s;) , (rVs);p=se(r;e)and ((rVs)ix)}V((rVs);p)=rVs

8 Both results together represent a quite important result since, expressiveness guarantee that fork algebras are algebras of
first-order logic with equality while it is a consequence of representability the existence of a finitary axiomatization for
abstract fork algebras. Therefore, abstract fork algebras, which will be introduced in Section 4, turn to be the first finitelly
axiomatizable algebras of first-order logic with equality. Notice that as late as 1991 Maddux [Mad91] and Németi
{Ném91] considered the problem of finding such finitazable algebras unsolved.



Program derivation, as program verification, involves a specification and a program. The specification
‘describes some data type, with basic sorts, operations and predicates, together with the required behavier of
the program. Notice that the assumption that we are given this data type is interpreted as we are free 1o use
its basic symbols in a program.

We shall now explain why we can regard both specifications and programs as relations, and indicate scme

advantages of this viewpoint.

3.1. SPECIFICATIONS AS RELATIONS

First, let us see why we can regard specifications as relations.

Let us start by considering the given data type (say lists with sorts ¢ and £4n, operations such as hez 4,
tail, cons, and predicates such as null).

The information provided about the data type is given by its specification: a set of first-order sentences its
axioms in a possibly many-sorted language. |

Now, it is well-known that one can faithfully reduce many-sorted first-order logic to the usual unsorted (or
single-sorted) version. This is done by considering relativization predicates that are intended to characterize
the sorts. In terms of inodels, the universe U of the unsorted structure is regarded as the union of all sorts,

which can be recovered by means of the relativization predicates provided.
In the relational setting, we consider each sort s as given by a partial identity 8,, which characterizes it in the

sense that 3, = {(u,u) e U :u e s}, so that u € s iff (u, u) e 3, . For instance, for the case of
lists of elements, we consider two partial identities 8 4, and 8., corresponding to the sorts ¢ and .

We also consider relation symbols corresponding to the given operations and predicates. For our list
example we would have relation symbols head, tail, cons and null corresponding to head, tail, cc-s,
and null. Notice that one can express the fact that the relations corresponding to operations are indeed
functional r; 7 ;r = r as well as information concerning domain and range (r ;7 = d, expresses the fact
that domain of ris s).

The axioms of the specification are first-order sentences, which, as mentioned above, can be assumed
already reduced to their unsorted versions. We can express such axioms in a fork-relational manner. For
instance, consider an axiom of lists like (Ve:£m)(Vx st ) head(cons(e, x)) = e. The relative product
cons 5 head is a relation whose domain consists of pairs of elements and lists (which corresponds to
O¢4m ® 84,¢) and the right-hand side is the first component of the given pair (which can be extracted by a
projection m). Thus, this axiom can be expressed by (8., ® 8,,,) ; cons ; head =
Bezn®bp )y ® 3 8 £ 4 m - Similarly, an axiom like
(Vx:.&:«t)null(x)v(E]e:C&n)(Ey:Aat)x=cons(e,y)]_ can be expressed by
8, =9, +(cons™ ; cons). The latter axiom gives an inductive property of lists, still within first-order.
Notice that, by representing sets by means of their partial identities we can express “any set M including 0
and closed under  successor contains the set of naturals” as
(VS)(SG IAS, 8 A8 succcsucc;8-8,, 5).

Expressiveness guarantees that any first-order formula can be expressed by a fork-relational term, whose
standard meaning (given by elementary theory) is equivalent to the given formula. In this sense, any



specification consisting of first-order axioms in a (possibly many-sorted) language can be expressed by a
set of equations involving relational terms built from the corresponding relations.

For instance, consider an axiom of lists like (Ve:&4n )(Vx: List)head(cons(e,x)) =e. Moreover, the
standard meaning maps C to — in the sense that, with $(p)=6(u,v) and S(@=y(u,v), ETFRF pcgq
iff the sentence (Vu)(Yv)[6(u,v) = y(u,v)] is logically valid.

Let us now consider the abstract calculus ATFR, dealing with formulas of ETFR without variables (free or
bound) over individuals; thus’ ATFR is a sub-theory of ETFR. But, in view of Representability, we know
that model g of ATFR is isomorphic to a proper fork relation algebra . Now, such a proper fork relation
algebra P is the reduct to the sort of relations of a model & of ETFR Hence, every model  of ATFR can
be expanded to a model € of ETFR; therefore the extension from ATFR to ETFR is conservative.

Now, consider a sentence ¢ (say, a conjunction of specification sentences) and a sentence T in the same
language (say, expressing some property). By the above expressiveness result, we have terms s=5(0) and
t=5(1), and o+ T iff ETFRF s c tiff ATFRF s ct, the latter equivalence following from
conservativeness.

Summing up, Expressiveness guarantees that first-order properties T and (finite) specifications & can be
expressed by relational terms ¢ and s, respectively. Moreover, t is a consequence of o iff s C ¢ can be
derived within the abstract calculus of fork relations. This means that the first-order reasonings are exactly
mirrored in the calculus of fork relations.

Thus, we can safely replace first-order reasoning by reasoning within our relational calculus. But we do not
have to; whenever it is more convenient we can resort to first-order reasoning, with the assurance that it can
be translated into ATFR. And Representability provides an added bonus: we can reason by means of
indiViduals (which is often more intuitive when one wishes to think in an input-output manner, by resorting
to diagrams, for instance); if the conclusion no longer involves individuals it could be derived within
ATFR..

Therefore, reasoning within the abstract fork-relational calculus ATFR is both sound and complete with
respect to standard first-order reasoning®.

Now, let us see why we can regard programs as relations.

The language of the abstract fork-relational calculus ATFR relational calculus has symbols for constant
relations as well as for operations on relations.

We are mostly interested in terms built from some relational constants by means of these operations.
Standard meaning of such a term ¢ is given by elementary

theory ETFR of fork relations: it is the formula ¢(x, y) with variables x and y ranging over individuals,
such that from ETFR one can derive (Vx)(Vy)[t(x, y) > ¢(x.y)]. For instance, the standard meaning
of term r;s is the formula (3z)(xrzazsy), and for rVs we have

(AV)@wW)y = (v*W)AxrvAaxsw).

9 This is one of the differences between our calculus and those of the Eindhoven group [Bac92] and of the Munich group
[Sch85b, Zie83, Ber86, Ber91]. The difference of our calculus with all the other algebras of first-order logic with equality

is representability and, therefore, finitiness.



The algorithmic symbols are all of the above, with the exception of complement (7) and relative sum . %).
The reason for such a name is as follows. Consider an effective domain U, one where equality is
effectively decidable and where the pair-forming operation * : Ux U — U is effectively computzhle.
Then, the constant relations 0,90, I and £, are effectively decidable. Also, the algorithmic operatons
preserve effective enumerability; for instance, if r and s are effectively enumerable, then one can effectvely
enumerate r Vs by effectively enumerating those (u, v) € r and (u’, w) € s, deciding whether u=u’
and in such case computing v * w and outputting (u, v * w).

Now, consider a term built from some effectively enumerable relations by means of these algoritkmic
symbols. Such a term denotes an effectively enumerable relation, and as such can be regarded as a
(p0551b1y non-deterministic) program over domain U

Summing up, the standard meaning assigned to the algorithmic operations is programming-like, in that they
preserve effective enumerability. In this sense, terms built from effectively enumerable relations by mzans
of these algorithmic symbols can be regarded as programs.

There is a slightly stronger sense in which algorithmic relational terms describe programs. It comes from
the natural correspondencé between algorithmic operations (except, perhaps for intersection and converse)
and programming-language constructs. For instance, relative product corresponds to sequentialization. in
that they have the same standard meaning. Now, intersection does not quite follow this pattern, but it can be
simulated in terms of other algorithmic operations since r e s =(r V s); 2 (notice that 2 is a kind of equality
test). This last equation shows a use of converse that has a natural, direct programming counterpart. The
intuitive view of converse as “running backwards, from output to input” may appear not to correspond
directly to a programming-language construct; but the very argument that shows that converse preserves
effective enumerability indicates how it can be simulated. Moreover the idea of converse fits very well with
the usual logic programming paradigm.

Thus, there is a natural correspondence by means of which each algorithmic relational term can be translated
into a program. (Notice that we allow recursive terms, which will translate into recursive programs.) That
they have the same meaning comes from the connection, pointed out by van Emden and Kowalski, betwzen
deductive meaning and operational meaning.

The preceding remark may be interpreted as soundness: each algorithmic relational term can be translated
into a program with the same meaning. The convers, completeness, would guarantee that no program is
lost by limiting oneself to such terms. This comes from the above natural correspondence. For, each simple
programming-language construct, such as sequentialization, case, etc., has a relational operation as direct
counterpart. Thus a program text involving some basic symbols can be converted into a algorithmic
relational term with the same meaning (here iteration and recursion are covered by recursive terms).

As a simple example of the above correspondence, consider the double of a natural number. The recursive
program dbl(x) =if is_zero(x) =T then zero else succ (succ (dbl (pred(x)))) end_if and the
relational term dbl = 8., ; zero + 8, ..., 5 pred 3 dbl 5 succ ; succ correspond to each other. (Here
.Swo and §,, ,.., denote {(0,0)} and {(n, n) : n € Nat} respectively, and can be obtained from



relations corresponding to is_zero, true and false). Notice, further, that we have a slightly simpler term
for double, namely dbl =38, +succ™ ; dbl ; succ ; succ.

Concepts related to correctness are easily expressed and established in our relational setting. For instance,
partial correctness of p is expressed by an inclusion and termination as a property of 9 (p). In order to
establish the termination of the above program db/ it suffices to prove

8,0 € Lom (p) A Lo (p) 5 succ < succ y Gom (p).

zero

3.3. PROGRAM DERIVATION WITH RELATIONS

Now, let us consider the aspect of program derivation. In view of the above arguments, the essence of this
activity amounts to deriving an algorithmic fork-relational term from some given (not necessarily
algorithmic) terms, corresponding to the specification. One crucial aspect is the elimination of non-
algorithmic constructs (mainly complement/negation and relative sum/universal quantification). They are
often eliminated in favor of recursion by relying on the inductive structure of the domain; and there are
some general strategies for this task.

Furthermore, relational reasoning within ATFR offers some conveniences for manipulation. First, it has the
advantage of not involving (variables over) individuals (an advantage over usual programming or first-order
reasoning, shared by the functional approach). Also, relational reasoning permit conveniently expressing
abstraction from decisions still to be taken, by resorting, for instance to non-determinism (an advantage not
easily found in the imperative or functional approaches).

We can express strategies, both general and global in fork-relational terms. Thus, one could in principle
simulate derivations such as those done in CIP. Also, general problem-solving strategies, such as divide-
and-conquer, can be expressed and used. Some examples are (some of the names are not standard): case
division (p = ¢’ + q”), decomposition (p = ¢’ ® q”), interpolation (p = ¢’ ; q”’), reduction
(P =1t ;9 ; r), reduction to decomposition (p =1 ; ¢’ ® q" ; r), and binary divide-and-conquer
(p=e+s ;(p®p) ;m).

4. FORK ALGEBRAS AS FINITARY ALGEBRAS OF FIRST-ORDER LOGIC

In this section we examine two central results about fork algebras: Expressiveness and Representability.
Their importance for our approach to program derivation has been commented upon in the preceding
section.

Expressiveness guarantees that the expressive power of our fork relational terms is the same of first-order
formulas: any n-ary relation defined by formula ¢(v1,vy...., V) can be defined by term ¢, in that in any
structure the former is the domain, and range, of the latter.

Representability is the analog of Stone’s representation theorem: any fork algebra is isomorphic to a proper
fork algebra.
These results show that our fork algebras provide a finitary algebra of first-order logic with equality10,

10 The proof of expressiveness can be found in [Vel91b) and that of representability in [Fri93a]. Notice again that our
algebra turn to be the first finitary algebra of first-order logic with equality.
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4.1. EXPRESSIVENESS OF FORK ALGEBRA TERMS.
Consider a first-order language £ with equalily =, given by a set Py of predicate symbols (we do not
consider function symbols, since functions can, for our purposes, be replaced by‘ their graphs). As usual, a
structure 3B for £ consists of a domain B together with a realization pB < °B, for each o-ary predicate
symbol pin P, This can be extended to assign a realization for each formula ¢ € dy, namely
@ = {(by,....b.): B+ @[by,....b,]}., where B = @[b,,....b,] means, as usual, that the
assignment of b, to v, fori=1, .., n, satisfies ¢ in B ([Ebb&0]).
It is more convenient, however, to view a formula as defining a set of trees over B. Consider language £*.
obtained from £ by the addition of a new injective binary operation symbol. Now, given a structure B for /£
we can obtain a structure B* for £*, whose domain consists of the finite trees over B, where the new
operation symbol is realized as tree construction. Notice that 3 is an elementary substructure of B*. Thus.
we can replace 3B by B* because @¥ is the restriction of the realization ¢ in B*. Also, it is interesting to
notice that in * we can get by with formulas with a single free variable. In order to clarify this last remark
let us introduce some notation to be also used later. We let f (@) be the set of variables with free occurrences
in formula @, and for a finite set ¥ of variables, we let h(¥) = max{i:vie ¥}. Consider a formula
¢ € ®,with h(f(@)) = n; we associate with ¢ a formula y of £* with h(f(y)) = 1 such that
o ={(b),...,b,): B* V[(bl*(bz*---(bn-l*bn)n-))}-
Now, given such a structure B* for £* we can expand it to a model i of ETFR with a binary relational
constant p for each predicate symbol p in P realized by {(b, b): b e P2 }. Notice that, if p is n-ary, then
the standard meaning $*(p) of p is the following formula of 2*: u ~v A (3x1)(3xy)... 3x,.
P@Exu = X *(Xg*...(X,.1*X,)...). The idea of expressiveness is showing how this correspondence can
be extended so as to cover all formulas of £. In doing this, it will be important to take into account some
variants of a formula, such as substitutions and adding new innocuous variables; this will be taken care of
in Lemmas A and B below.
We are now reédy for our expressiveness result, which will show that terms of ATFR have the expressive
power of first-order logic. This will be established by showing that any o-ary relation that can be defined
by a first-order formula can also be defined by a closed term.
Theorem (Expressiveness) Given a first-order language £, there exists a function Tassigning to each
formula @ of £ with h(f(9)) = n, a closed term t with standard meaning $*(H)=y(u,v), such that for every
structure B forL, o3 = {(b,, .. ., b,): ﬁ - \V[(bl*(b“z*--~(bn-1*bn)--~))}- '
Proof outline  We will define Tby induction on the structure of formula ¢.
Basis:  We distinguish three cases.

Case I: @ isv, = v, Then, weset T(v, = v,) = 2;2

Notice that S*(T(v, = v,)) is (3x)(Ix,)[u = X1*X3 A X] =Xy AV =X{*Xy].

Case 2: ¢ is p(v,, ..., v,) with p € P,. Then, we set
q-(p(vl‘ LIRS ] Vn)) = ﬁ
Case 3: ¢ is an atomic formula a(u,, . . ., u,) obtained from one of the above vy, ..., V)

by means of a substitution . Then, we set

11



Ta(uy, ..., u,)) = §; T (Ve ..., v,)) ;s
where § is a term, indicated in lemma B below, simulating o.
Inductive step: We must distinguish three cases
If @ is W, then we set T(—y)=T(=y)e 1.
Notice that S*(T(—y)) is u = v A =S*(T(y)).
Now, let h(f(¢)) = n. In view of Lemma A below, it suffices to consider @' of the form

QPAVI=VIA...AV,=V,.
Ifpisy ve,
then @'is equivalent to y'v 8', where y' is VAV, =V A...AV,=v, and
similarly for 8'. Lemma A applied to the inductive hypothesis gives T(y") and 7(0"). We
then set Ty v 8) = T(y') + 7(8")

If @ is (3v,)y, where h(f(y)) = n.
~ clearly @' is equivalent to @v)Y'A v, = v,, where y' is obtained from v by the
substitution ¢ that interchanges v; and v,. So, Lemma A below, applied to the inductive
hypothesis, gives T(y"). Then, we set:
T@AVIV) = (1V )5 T(y) ;5 (1V =)
whence Lemma A will give T(¢).

Q. E D.

Lemma A For every n > 0, there exists a term d,, such that, for every formula ¢ with h(f()) =n, if
@' is the formula @ A Vi=V, A ... AVy,,,=V,,. one can have T(¢") = T(¢) ® e, and
T(o) = an ; T(e'); d,, where €; = ] and em=1® e

Proof

Trivial by induction see [Vel91b]. A

Lemma B Given a substitution 6 on {1, ..., n}, there exists a term 5(0), such that for any formula @

with h(f(¢)) = n, if 6(¢) is the formula obtained by applying ¢ to @, then one can take
T(o(9)) =5(0) 5 T(9) ; s(o).

Proof Trivial, see [Vel91b] and the discussion on the construction of non-atomic cylindrifications below.
Notice that in the proof of Expressiveness we explicitly define the translation ‘T for the existential quantifier
Just for the case of the quantification on variable V,.. For quantifying over other variables we rely on terms
d, and s(o) for respectively adjusting the number of variables and producing an alphabetical
transformation of the original formula. This seems to be very close to the way Polyadic Algebras treat the
same problem, but there is an important difference, namely in our case this trick is an artifact of the proof,
while in the former it is inherent to the algebra itself. Notice also that both d, and s(c) are constructed
within ATFR.

By wusing a somewhat two-dimensional notation we can express, for instance,

T3 v(3 Vi)Y (Ve Vi, Va, Vi, V) as,

12



Tn T
myn;| vV x|V
p p
\% ;'T(w(vo,v,,vz.v3,v4)); \%
|p p
ds s

where the pair of terms (ds, ds”)is the construction, within ATFR, of the cylindrification

clotg(!;/"(vo,vl ,vz,v3,v4)). We will comment some more on this later on.

4.2. REPRESENTABILITY OF FORK ALGEBRAS. .

An extensive development of the arithmetic of fork algebras can be found in [Fri93a] and [Dur93}.

We now consider a simple, atomic fork algebra A and indicate the proof that it is isomorphic to a proper
fork algebra. _

First, as proved in [Bau92]!! the atoms of A are functional. By a result of [J6n52], this is a necessary and

-sufficient condition for the representability of relational algebras. Thus, the relational reduct
(A, +,2,57,7,0,00, 1) is isomorphic to a proper relation algebra. It remains to show that fork is properly

S OAFt R
represented. An outline of the proof is as follows.

Given such a simple, atomic fork algebra A, we first introduce an algebra
p= (9"(C xC),®,0,l4, ' 1@ CxC A> over the atoms of the identity (ie. C={ae o :a c 1}), where
< is defined as: (Va)(VB)(Vy)ar<sf®yo arBaras ¥) and ® stands for the usual direct product

onA .
We then prove that
r£0-> nm5r20Ap;r#0,
r®s=06er=0vs=0,
r®s#0->w;(r®s);n=r,
r®s#0-p;(r®s);p=s,
(r®s=t®q)/\(r¢0)/\(s¢0)A(t¢0) Ag#20)> (r=1)a(s=gq),
ae L Afedl <> a®B e and
"®" is injective,
thereby establishing that D is indeed a proper fork algebra.
Then, following the idea of Theorem 4.21 in [J6n52], we define a function from the universe U of A into
that of P as follows '
Z:U->F(CxC)
H(r)={(P(a), R(a))eCxC:ac o(r)}

11 Also see [Hae93a, 93b] and [Fri93a]
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o a if & ooVeo
D(a)= _ Sy e o
(@;&)0(a,;q,) if @ =a,Va, for some o, a, € o
K.of > C
a;a if a@ oV
Fla)=1,_ _ .
(@;0)®(a;0,) if a=a,Va, for some o, a, € of

The definition of this function is based on two auxiliary functions. The idea underlying the latter is
“inspecting the shapes of the atoms in the domain and range”, as indicated in the figure below.

r ZooVeo AF @ oVoo o—e
r=s;5cl O
r=§;scl =
.
r=sVt .<.
: °
r=(sVi)” .>'
W)
r CeoVoo A F C 0oVeo .%.
Figure 4.2.1
Thus, we distinguish the 4 cases (z, @), (Z, ®), (®, @) and (®, ®) in Figure 4.2.2.
(Z(Zo-cVoo aza'IVa‘l a
aa,
a;a ® Z(a)
a,;a,
_ Cc—C ~
Case ¢z ~
Case ¢®
o Q
a=a Vaq, ®v 3
o, a,
L Case @ ¢ Case ®® ‘L
r a ..9((2) *J,
Figure 4.2.2
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Finally, we prove that # is an injective homomorphism from A into P mapping « to
{{c,d):c,de (C}, whence, an isomorphism from A into a sub-algebra of . We thus establish our

representation theorem!2,

Theorem (Representability) Every simple atomic fork algebra is isomorphic to a proper algebra fork
algebra.

4.3. CLASSICAL ALGEBRAS OF FIRST-ORDER LOGIC

Our fork-relational calculus provides a finitary algebra of first-order logic. We shall now briefly examine
this role played by our calculus and compare it with other, classical approaches to algebras of first-order
logic. A more detailed comparison can be found in [Hae93a, 93b].

The idea of algebra logic has been quite attractive, since Boole started developing a Boolean calculus for
propositional logic. It seems natural to try to obtain an algebra for first-order logic (with equality) by
extending Boolean Algebras with some operations so as to cope with quantifiers (and equality).

The attractive aspect of Abstract Relational Algebra for underlying a programming calculus resides in its
absence of variables over individuals, the same aspect that led functional languages and functionally based
programming calculi to deserve so much attention. This absence of variables is due to the fact that the
extension to Boolean Algebra necessary for constructing Abstract Relational Algebras is Peircean, i.e.
finitary.

B. J6nsson and A. Tarski [J6n51] introduced the concept of Boolean Algebras with Operators as
extensions of Boolean Algebras with some, not necessarily finitely many, operations that are continuous
with respect to the lattice structure of the Boolean algebra. In fact, they show that Abstract Relational
Algebras are Boolean Algebras extended with just two operators, namely, ; and ~.

Other Boolean Algebras with Operators aiming at algebras of logic are Cylindric Algebras of Tarski et al
[Chi48, Tar52, Hen74], and the Polyadic Algebras of Halmos [Hal62]. The latter concept provides an
algebra for pure first-order logic, and the former an algebra for first-order logic with equality (due to the
diagonal elements). '
We should notice that both Cylindric Algebras and Polyadic Algebras abandon the Peircean-like way of
extending (R, +,¢,-,0,) in favor of a more direct attack to the problem. Both approaches maintain the idea
~of Boolean Algebra, but, produce theories over sequences of infinite length (restricted by a local finiteness
condition) by imposing an infinite arity. Tarski et al. choose to represent the existential quantifier by
infinitely many cylindrifications ¢ (one for each variable v;), and equations V¢ = V¢ by means of a doubly
infinite sequence of diagonal elements d;:. Halmos, on the other hand, represents the existential quantifier
by means of a single function 3 but introduces infinitely many transformations on the index set J. We
should notice that both Cylindric and Polyadic Algebras are laden with a syntactical artifact, in that the
former, by means of each of the "{-axis", and the latter, by means of the index set J, have hidden “names”

for variables over individuals.

12 A complete and detailed proof of the Representation Theorem can be found in [Fri93a]

15



The concept of projections and of some kind of product in connection with algebras of first-order logic
appears as early as 1946 with the seminal work of Everett and Ulam on Projective Algebra [Eved6). Everett
and Ulam (and, later, Bednarek and Ulam [Bed78]) define Projective Algebras as extensions of Boolean
Algebra with three fundamental operations: two projections p, and p- and a product. Apparently, however,
the power of their combination with Peircean operations, for the construction of a Relational Algebra over
locally finite trees, failed to be recognized. Later on, De Roever [Roe72], Schmidt and Stréhlein [Sch85b),
Zicrer [Zie83], Berghammer and Zierer [Ber86], Berghammer {Ber91), and Backhouse et al. [Bac92)'3,
introduced product and projections, as data types or as operations. They appear to have been guided
categorical viewpoint, which may have “masked” the non-fundamental character of projections.

Our approach reverts to the idea of extending Boolean Algebras with Peircean-like Operators. We have an
extension of Abstract Relational Algebra with one operator, namely fork. Here, projections and product are
not fundamental, but are constructed by means of the basic operators, which accounts for the power
exhibited. This is why, with our finitely many operations, we can construct infinitely many terms for the
quantifiers as well as for the substitutions, as indicated in the proof of Expressiveness and the
accompanying lemmas.

4.4. COMPARISON WITH OTHER APPROACHES TO PROJECTIONS AND PRODUCT.

Notice that our axiomatization of abstract fork algebras allows the introduction of projections and products
as defined concepts. We shall now briefly compare this approach to two other approaches to projections
and products, namely that of the Munich group'* and the one due to the Einhoven group (Backhouse et al.).
Itis interesting to bear in mind that our approach and these two differ in one fundamental aspect. While they
directly axiomatize properties deemed essential to projections and product, we construct terms that exhibit
their behavior. We shall show that the axioms of both these approaches can be derived from our
axiomatization by relying on the definitions (11) and (12), of projections, and (13), of direct product!$,
First, let us examine the Munich group axiomatization. It consists of the following axioms (in our own
notation)

Mo: ®sm=1, M ; : psp=I1. M , : (n;&)e(p;p)=1. M ; : Tip=coand p;m=ocols,
My: rVs=(r;f)e(s;p)

We now indicate how these axioms can be derived from our axiomatization. First, in view of definition
(11), of first projection, My can be written as (1Veo);(1V )", whence axiom (8) yields
(1 H 7) @ (eo;)=1. M, can be derived similarly. To derive M, notice that from our definitions, one has
1®1=((1V ) ;1) V((eV I ;1)=(1Vee) V(= V1), and the right-hand side can be rewritten
successively as ((1V o) ;(1V o)) e ((o0 V 1) ; (0 V 1)), by axiom (8), and then, by definitions (11) and
(12), as (m;7)e(p;p). (Notice that. because we are dealing with homogeneous relations, we obtain

equality with /® ]. which, in view of axiom (9), is included in the identity). M; can be derived in a

13 The idea of direct product and direct sum presented in this paper by Backhouse et al. was borrowed from the works of the
Munich group.

14 Schmidt, Strohlein, Zierer and Berghammer.

15 See also [Ber93).

16 Actuually one of them suffices for this axiomatization, we include both just for symmetry.
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straightforward way from our definitions. Finally, given our definitions of projections, M is our axiom
(8).

Now, let us examine the axiomatization due to Backhouse et al. Its axioms can be derived from ours, a
process that clarifies why it exhibits more axioms than necessary. As presented in [Bac92] it looks like,
Bo:rVs=(r;7)e(s;p). B ; : (n;®)e(p;p)cl, B , (rVs);(tVag) =(r;i)e(s;q),
B; : D(n)=D(p)

In view of definitions (11) and (12), By is our axiom (7), and B, follows from axioms (8) and (9), and B>
is our axiom (8).

As for B , it can be derived immediately from M, and the definition of Fin , because
D(r)=D(s) > Fon(r) = Gin(s) (since I is the identity restricted to set X).

Thus, the properties of projections and product considered essential by Munich and Einhoven groups can
be derived from our axioms and fork algebras together with the definitions of projections and product in

terms of basic operations.

S. ON RELATIONS VERSUS FUNCTIONS

Oege de Moor [deM92] gave three reasons for favoring relations instead of functions as the underlying
formalism of a programming calculus, they have to do with partiality, non-determinism and latitude along a
derivation. Let us briefly review them. First, consider partiality. Most functional calculi, such as the one of
Bird and Meertens, deal with total functions for the sake of simplicity; but this restriction is too severe for
some problems, such as those of dynamic programming. Next, consider non-determinism. One often has to
deal with problems that are inherently non-deterministic, for instance in optimization. Next, consider
latitude. One can begin a derivation from a functional specification with the goal of obtaining a deterministic
program, but the very structure of the derivation can lead one into a relational environment. This is the case,
for instance, with inverses of programs, since only bijective functions have inverses. One advantage of
dealing with relations is that one can view functions as univalent relations, and relations always have
converses. This advantage has two consequences: it simplifies many derivations and offers an extraordinary
expressive power.

Formalisms based exclusively on functions must introduce a somewhat artificial artifact, like
pseudoinverses instead of “real” inverses, for dealing with inverses of function. A pseudoinverse of a
function f: A — B isafunction f™'7: B —5%A), defined as (%) ={y fly)= x}, i. e. its pre-image.
But, if one wishes to derive a “deterministic program”, such pseudoinverses should eventually be removed,
for instance, by deriving a choice function which selects one of the elements of {y fly)= x}. We shall

now indicate how this problem can be handled in our fork-relational approach. For this purpose it is
convenient to review some notions about residuals and symmetric quotients.

Let s_/r be the left residual and s[rthe right residual., ie., respectively the weakest and strongest solutions
of equations y;rcs and r; y <s. In order to obtain expressions for such solutions we can proceed as

follows. First, consider the following pair of Galois connections,
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xcs/re ysres
xcslrer;ycs
By applying Schroder equivalencies we have s /r =5 ;7 and s/r =F7;§ (recall that r + s = 73 5).

Now, notice that

(s/r) =(537) =(5:7) =r:(3) =715 o8
Thus, by recalling the proper algebra definition of r + s in ETBR, we can write

(Vx)(\?’y)(x(s_/r)'y < (Vz)(xFzv zs'y))
which can be rewritten as

(Yx)Vy)(x(s/r)"y & (Vz)(xrz—> ysz))

This expression shows that left residuals are connected to a kind of conditional. It suggests introducing
relational conditional so that r = s = (s /r)".

Notice also that

Fmi= (R = (T = FiR sl 29)
Then, F =5 =sup{x:r;xcs}=F1ts, thus
| (Vx)(V y)(xF =5y (V z)(z?x v zsy)) (30)
 which can be rewritten as
' (Vx)(‘v’y)(xf—»fy(—)(Vz)(zrx—)zsy)) (31
Consider now the system of equations
r;xcs
x;scr

Its  solution can be calculated following a similar procedure, which yields
Figerss=s[reF[S=(F=5)e(5=F) =s/re(r[s)” =r/s. We will call, following Schmidt et. al.

[Ber89, Sch89, 931, r s the symmetric quotient of r by s.

Let as now return to the problem of dealing with inverses and pseudoinverses of functions. First notice that
we can express symmetric quotient within ETBR as (Vx)(Vy)(x rlsy e (Vz)(zrx <> zsy)).So, by
setting f, = {(x,y) 'y =f(x)}, we can express £~ as fele . ie., the pseudoinverse of a function f is
the symmetric quotient of f (considered as a relation denoting its graph) by the set-theoretical pertinence
relation € . Hence, f'7 = (elfz)e (fel ).

What the above argument shows is that by introducing pseudoinverses one is adding to the original problem

the non-trivial one of deriving an algorithmic expression for (f,)™ ;€ (f,)” ;€. Notice that the standard
meaning of the latter expression involves universal quantifiers, the reason for its complexity. We will have
occasion to indicate how to deal with specifications involving universal quantifiers later on.

Nevertheless, there is at least one circumstance in which the above results have a positive aspect. Imagine
that one wishes to write a generate-and-test relational specification for something like “the longest sublist
such that...”. One can express it in terms of two relations: a relation, call it such, filtering those lists with
the desired property, and a relation, call it max, selecting those with maximum length. We can then write
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((conc™; 7 ; such) [e); max. We still have a non-trivial derivation problem, but this is inherent to the

original problem.

6. ADVANTAGES OF REPRESENTABILITY

The theory of abstract fork algebras arose as abstraction from the proper fork algebras, much as Boolean
Algebras come from Fields of Sets or Relational Algebras from Proper Relation ALgebras. In this sense,
the intuitive, intended models of the theory of Abstract fork algebras are the proper fork algebras. For fork
algebras - as for Boolean Algebras, and in contrast with Relational Algebras - we have representability of
the abstract models by the intended ones. This guarantees that every property holding in the intended
models (the proper fork algebras) also holds in every model and, therefore, can be derived from the axioms
of abstract fork algebras. We thus have the best of two worlds: proper algebra intuition for geometrical
insights, and abstract version for calculations without individual variables; and we can use whichever
course appears more appropriate for the problem at hand.

For example, is quite easy to derive from the axioms of fork algebras and the definitions of both projections
the following three equations (er);n=13_(m);r, (er);p=1_%(m);s, and

(rVs);z)V(rVs);p=rVs. On the other hand, consider the equality
lg vy = {([x,y],[x,y]):[x,y]e Fen(r) X Fan(s) AX(F ; 5) y}. We know, by expressiveness, that it
can be expressed entirely within the abstract formalism, without variables over individuals. But, it is not so
easy to see, within this abstract formalism, why it holds. This becomes clear by examining figure 1.

-~ (- H
X\V -\1.\)‘

S\V
Z

Figure 6.1

What we have denoted as (7 ;)T is the internalization of relation (F;s) within the grupoid structure
underlying the proper fork algebra, i.e., the input-output arcs (') of the original relation are now
represented as pairs [ ] of the grupoid. It is easy to see that we can transform relation r, whose arcs are of

the form <x,y), into a relation whose arcs are of the form (x,[x,y]}, simply by the taking 1V r. Notice
that from 7'V r we can recover the original relation, since r = 7 (((1 Vr)5(1Vr))e 1) ; . Thus, the
transformation of a relation r into its internalization 1V r is injective and no information is lost. The

internalization form of a relation may be more convenient for some purposes. For instance, if a is a given
input for r then r-arcs beginning with a will appear in the range of the internalized relation as pairs with a as

first component.

Notice that, while expressiveness give us the confidence that anything definable by a first-order formula can
be expressed by a fork-algebraic term, representability give us the right of relying on intuitions from
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diagrams for writing such terms. In the sequel we shall illustrate these ides by means of some typical

examples.

6.1. INTERNALIZATION OF COMPOSITION AND JOIN
We shall now indicate how the above idea of internalization can be used for reasoning about words as
introduced by Méller [M6193].
A word of length § over an alphaber A is, following Méller, a §-tuple W = Xy Xp5 s Xy X >, where
XgsXpar s Xyy o X € A. Considering a concatenation operation we can write word W as
W = AKosXpar Xy X » # Xg,oras W=x, # «xl.---',xk,n-,xg».

Moller defines two operations on words W and V over A, namely join W<V and composition W :\'.
By writing W =W"# X, and V=y, #V’ we can define these operations as follows

W’ # x, # V'iff x, =Yoo
WpaV = ; :
df| A otherwise
and
Wiy o W’ # vV’ iff x, =y,,
def | A otherwise

These operations are naturally extended to sets of words: S &< T and composition S; T

For “‘exemplifying the close connection between join and concatenation”, Méller shows the binary relation
R< A # A modeling the edges of a directed graph with set of nodes A. Then, he considers both

R><1R={xk#"xj#xb:xk#xjeRij#xneR}

and
R;R:{xk#xh;xk#x,eRij#xheR}

He observes that relation R>< R consists of exactly those words «x, # X; # x,» that represent paths, for
they result from gluing together two edges at a common intermediate node, whereas the composition R: R
is an abstraction of this; it just states whether there is a path from x, to x, via some intermediate point
without making such point explicit. By iterating this observation, Méller argues that relations R, R>< R.
R><(R><R), ..., represent the paths with exactly 1, 2, 3,... edges in the directed graph associated with
R, whereas the relations R, R; R, R ; (R ; R), ..., just state the existence of such paths between pairs of

vertices.

~ Representation plays here a central role. Indeed in the absence of representability, one cannot be sure of
having sufficient intermediate points!?, and as a result, one cannot ensure that axiomatically defined
R©>< R has the intuitively desired behavior. In such case one cannot “lift” reasoning from the intended

17 A beuer understanding of this discussion can be obtained by recalling the concepts involved in Schmidt's Point Axiom
and Intermediate Point Theorem.
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models to the abstract theory, being thus forced to work just within an extension by definition of first-order
logic
Using the concept of internalization introduced above we can view a word W = €Xgy Xy, Xy, X as

represented within fork algebra. This idea will be used to deal with “chains”, compositions and joins of

binary relations.

Consider a “chain of binary relations” S=(so,sl,.---‘sk,‘-us:). A binary relation s, is regarded as

representing pairs of the form (xo,xl), where X, and x, are, as before, letters of A. Thus, a word is one
of the instances of s,b><a5 b2 pas, B-ba S¢- As suggested above, we have an object

<x0,[xo,[xl,[---[xk,[.-.[xg.xwmﬂbeSv. An analysis of figure 6.1.1 shows that

s¥ =1V(s0 (JV(S, .(JV(Sk .(le))))D In this sense, we have a representation

v . 1.
S¥ = (So:815 2 Sa 08, )" for the given chain.

I/:X?
xO/V W oxy
\So , 1/
N[y
1 .
' oM
\xz ... I/Xk
X(V s__‘r
Sk v
Xis1 1/,'_X?
X=/V \A
Eg >
S:
5\;
[ — !
| SE—)
Figure 6.1.1

Figure 6.1.1 also indicates how to deal with objects suchas S”. For
| (Xo.%,) €8 5= I,
S";psm=s,
s¥ SPIP T =5, 58,

................................

v
ST Ps e spL=, 3aSp 3ait S,
g z

Notice also that we can extract any s; from S¥ by means of “operators” E, defined as follows
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We can now define join and composition in terms of the above representation. Given
\% v v
SV:«so,sl,m,sk,m,sé»> and T =«t0,t,,~-,tb,--~,t§» , we define

" a7’ = V(EO(SV);(I V(El(Sv);m;(l v (EK(SV);"*(JV(Eé(SV); TV))))))J

The idea behind this expression becomes clear if one considers the innermost subterm {/ V (E,(5%); T%)).
p 3

Also we define

Again this is clarified by considering the innermost subterm (1 \% (E (SV); TY ;p)) and the fact that if

5

TV =} V(to ;(lv(zl .;..;(IV(t,, ;...;(1 Vtg)))))J then TV ;p=t0;«yl,...,yh,...'yw»\?.

Recalling Méller’s example on paths in a directed graph, the above results indicate how to speak about
palhs. their length, as well as and components, connectivity, etc.

Let us now turn our attention to the relationship between operations >« (join) and ;. (composition) Méller
suggests that composition ; is a kind of abstraction of join <. Let us analyze such relationship under the
light of our representation of both operations. First, notice that the link between S and T° is
“implemented” by subterms (1 \% (EQ(SV); TV)) and (1 % (Ei(SV); Tv ;p)) in the case of ¥ > TV So,
we should focus our attention on these subterms. Let A™ be the set of all V-chains!® and A™" p.< A" and
AV A7, respectively, the set of joins and compositions of every pair of words in A”". Let us define a
function ¢: A" ba A" - A" ; 47, assigning to each join of relations its naturally related composition,
for instance,

p v
¢(«SO’SI’“.’sk’“-’s§+l’tl’”.'th’”.’t;+l» ): «so'sl““‘Sk’.“'sg'tl‘“.’th"“'tgﬂ »

I8  We are calling V-chain our representation WY of a chain W of binary relations.

22



Notice that ¢ is “implemented” by the relational product by p at the end of Eg(SV);TV. Le.,
E(S7); T¥ ;p. Thus, the existence of such ¢ is guaranteed by the functionality of p: moreover by the

non-functionality of p, ¢ is not injective. This is an explanation for Méller’s abstraction relationship

between ; and ><.

6.2. SUBSTITUTION: FROM FILTERS TO IF_THEN_ELSE

We now sketch another nice example of the advantage of being allowed to use inspiration from the proper
algebra. It indicates a simple way of converting terms using partial identities as filters into terms with if-
then-else which are more program-like.

The idea is converting a partial identity filtering those objects that satisfy a given formula ¢ 1nto its
characteristic predicate, yielding true or false depending on whether or not an object satisfies ¢ and false.
Consider partial identity /, =T (¢) coding formula ¢, and let us introduce the of relations
true ={(x,y):xe UnyeBool ay = T} and false = {{(x.y)xeunyeBoolay= F} representing the

Boolean constants.

We will resort to an algebraic operation, called substitution of s into r and denoted by r[s] The result of
applying r[s] is intended to be the relation obtained by replacing the arcs of r beginning in points belonging
‘to the intersection of the domains of r and s by arcs of s (see Figure 6.2.1)

(rVsi;eo)n

Ran (r) v Ran (s)

(Dom (r) — Dom(s)) U (Dom(r) N Dom(s))
Fig. 6.2.1. rfs]

It is easy to see, by relying on such “pictorial” intuition, that substitution can be expressed as,
rﬂsl}:(er);p+(er;w);n.

Now, substitution provides a general way of translating partial identities into if-then-else-like terms. We
merely convert partial identity I, =7(¢) into the if-then-else-like term ‘I'((p) defined by

‘Z'((p) = (1, ;false)ﬂlq, s truell = ((1, ; false) \Y (1, ;true)) ;p+((1, ;false) Vi, ;true; oo); n. The above

figure shows that this gives the desired result.
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6.3. COPING WITH COMPLEXITY

One can translate a first-order specification into fork-relational terms by straightforward application of the
constructive proof of the expressiveness theorem. But, by doing so we obtain expressions that, even when
algorithmic, are not very efficient computationally. Notice that the proof of the expressiveness theorem
expresses quantifiers by composite terms built from basic operations are expressed, rather than by
monolithically by means of fundamental operations. This fact is very helpful in dealing with such
complexity.

In order to illustrate this claim, we will use parts of a “classic” example: a derivation!9, from a non-
constructive first-order specification, of a program for deciding whether a natural number n is of the form
21 — 1 for some i € Nat.

Thus, a first-order specification for our problem is

(n)= (31)(16NatAn—2'—1J

a(n.i)

The above formula involves two basic operations, whose relational counterparts are the relational constants
pred = { X, ¥):x,ye NatAx#0 Ay =x— 1} and por2 = {( Y):x,y € Natay =2* } where Nat is the type

natural numbers and Bool is the type Boolean (recall that U is the universe of discourse of the Proper
Algebra).

Recall from the expressiveness theorem that ’Z’((By)(w(x.y))) =7;T(w(x.y)); 7 and
‘T(:(x,y)):(]V])’;(]V]). Thus, we can  write (see figure 6.3.1)

T(p(n))=1,,; ﬁ;(]@(pth;pred));(] VI)y ;(1VI);n

it T=) n
[ 1 ~, N
<V ® ; V> <V ; V>
N —pot2 ; pred — /1 \ 7

T2-1)
Figure 6.3.1

But (1VI)"5(IV1);m=(1V1)";(I1V1);(IVe) and by applying Axiom (8), we can write
(IV 1) ;(1ee)=(1V 1) 51=(1V I)". Thus, we have, as illustrated in figure 6.3.1

T(@(n)) =1y, 3 75 (1®(por2; pred)); (1V 1)
Notice that expression 1, ; 7 ; (1 ® (por2 ; pred)) (1 V 1)7, a cylindrification, represents the unbounded

minimalization ,uz[(Z' -1)-n= O]; we thus have a pi-recursive function [Hen77].
Now, since (3i)(n =2'- 1) © (Bi)(i <nAan=2'- 1), by defining the new relational constant
<n={(xy)x,yeNatay< x}, we obtain the following equality

19 Different aspects of this derivation have been considered in [Dur93, Hae93a, 93b},
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(1®(por2; pred));(1V 1) = (1®(<nj;por2; pred)); (1V 1)~

—~ 1 ™~
I l
<V ® ; Y>
N n; por2 ; pred - ~
Figure 6.3.2

Upon substitution we have ‘
T(p(n))==1,,; 7; (1 ®(<n; por2; pred));(] Vi
which, in view of Definition 11, can be written as ‘

T(e(n)) =1y, (1 V ); (1®(<n; por2; pred)); (1V 1)~
Notice that we are here in the crucial point of the derivation. Since projections, and hence cylindrifications.
are not monolithic operations within the context of fork algebras—-, we can write
(1Veo);(1®<n)=(1V < n), thereby restricting the combinatorial explosion produced by 7. Thus. we

have
T(9(n) =1, 3 (1 VS 0);(1®(por2; pred));(1V 1)

— 1 ™~
1 I
<V ® V>
n 1
™ —por2 ; pred — ~
Figure 6.3.3
By comparing figures 6.3.2 and 6.3.3 we see that we have been able to transform the unbounded
minimalization /,12[(2i - 1) -n= O], into the bounded minimalization ﬁz[(? - 1) -n= O]. But notice that
<n= pred”, where pred™ is the transitive closure of pred. Then
T(p(n))=1,,;(1V< n);(l ®(pred" ; pot2 ; pred)) s(1V 1)

which is an iterative algorithm.

]/ 1 \1
prZa’” ; ® ; \17>
™ —por2 ; pred — ~

" Figure 6.3.4

Notice that we have gone from a p-recursive expression to a primitive recursive expression, and this last

step converted a bounded minimalization into an iterative expression. Summing up, from figure 6.3.1 to
figure 6.3.4 we went from a p-recursive function to an iterative algorithm. We can now transform
T(p(n)) into an if-then-else-like program by using substitution [Dur93, Hae93a, 93b].

It is interesting to connect this with the well-known Kleene Normal Form theorem which asserts that any ji-

recursive function can be expressed by means of a primitive-recursive expression and a single unbounded
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minimalization [Hen77]. Within our framework, it guarantees that any recursive function can be represented
by a canonical fork algebra term, which has just one cylindrification subterm, a fork of identities and

universal relations.

6.4. COPING WITH UNIVERSAL QUANTIFIERS VIA GALOIS CONNECTIONS, PATTERN
MATCHING AND LIFTING

As mentioned in the preceding section, translation from first-order formulas to fork-relational terms can be

accomplished by straightforward application of the constructive proof of the expressiveness theorem. Here

we will illustrate another kind of translation, which we will call “by pattern matching”.

Let¢, ¢1 and £2 be lists, &ud (9 a predicate deciding if list £ is ordered, and last and head the usual operations

on lists. A first-order definition of &« could be

(V2o &) & (V4)(Va) (¢ e £ ve=4 # ¢ — lasi(¢) < head(s, )))

which can be written in the Proper Relational Algebra formalism as
(Ve)eow To (V]4.8))(¢ e £ v[4.4] cnct—[4.4] (st @ hd) 1) pair) (32)

where, £ is the set of lists of length 1, L'is the set of all lists, / .- 18 the identity relation restricted 10 the
set of lists, 7, is the identity restricted to the set of lists of length i or less, Ist is a relation which for each
list gives its last element, hd is a relation giving for each list its head, cnc is a relation which given two lists
of length 1 or greater concatenates them to form a new list? and 1 is the partial identity over pairs “pair"
of elements satisfying relation <.
Comparing expressions (32) and (31) (see figure 6.4.1) it is evident that both definiens match. Then. by
substitution, we can write

(VO)¢ow Te> 1, + fenc™ = (15t @ hd); 1,)") pair) 33)
Recalling that /e (r ; ) is the identity over the domain of r, we can write

Iy =1, %(0d5)=1,. O(IL. +(cnc™ = ((Ist ® hd); 1)) c-o)

By distributing intersection over sum, we have

log =1 o1y +1, o ((ene™ = ((Ist ® hd): 1,)); ) &%)

IL'

Notice that the expression ((cnc' — ((Ist®hd); 1 )‘);oo) is not defined over £L'. Then, assigning to
operation + angelic non-determinism [Ber86], we can write the following deterministic expression

log =1+ 1, poo((enc™ = (Ist @ hd); 1)) ;) (35)
Let us forget about the trivial part 1,, and concentrate ourselves on the second, non-trivial part of (35)
Thus, calling lo,=1,,- IL' and recalling (29) we can introduce the right residual
| louz =1, *(((Ist ®hd); 1 [enc); ) (36)

which is equivalent to
logy =1,._, *(sup{x:cnc; xc (st ® hd); I}; ) G7)

20 Notice that cnc is a partial relation not defined on empty lists.
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(V&) (odT & (ViaLMEL v [4,4]) conct - [h4]) ((si®hd); 1) pair)
x)Vy) (xrT=sTy & (vz) ( zrx - zsy )
Fig. 6.4.1. Matching patterns between first-order predicate O and Proper Relational Algebra
definition of relational implication between converses
Notice that we must solve the equation sup{x: cnc; x < (Ist ® hd); 1.} over the set of ordered lists. For

this purpose, we introduce the following two lemmas.
Lemma 6.4.1 1f D(x) is the set of lists ¢ satisfying O + then cnc ; x = (16_‘ ® IN) 3CNC i X.

Proof
(x;00)00=1,, ——)(]M®1~);cnc;x=(1~®1N);cnc;1~ ;X

but (1,, ®1,,);¢nc;1,, =(1L.®1L.);CHC2]~

then, (1N®JN);cnc;x=cnc;1~ s X=cncix

Q. E. D.

Lemma 6.4.2 sup{x:lu =It(x;oo)/\cnc;xc(bt@hd);]s}z cne’ (1, ®1,,);(Ist®hd); I,

Proof
{xil =1le(x;=)rcncsxc(lst®hnd); 1) =

{x:1,, =le(xsoo)A(loy ® 1 )iencsxc(lpy, ®1,,)5 (Ist ® hd); 1.}
by lemma 6.4.1 this set is {":1@4 =le(x;=)acncixc(ly, ®1,,);(Ist@hd); 15}
by ; monotonicity and since cnc is univalent we can write the above set as
{x:]a_‘ =10(x;°°)Achnc';(1~®1~);(lst®hd);1$}
then, sup{x:/,, = Ie(x;)ncncsxc(lst®hd); 1} =cnc™5(1,, ®1,,); (Ist ® hd); I,
so, enc” 5 (1,, ®1,,);(Ist® hd); 1 is an upper bound and since its domain is that of O
Q. E D.
Then, we can rewrite (37) as 1,,, =1,._,, 0((cnc';(1~ ® I, );(st®hd); 1, ); eo)

which becomes 1,,, =1,, 0((cnc';(1~ ®1,,);(Ist®hd); 15);00)
Now, recalling (r;r7)e/=(r;)e=(1V r);n2! we can write the above expression as
( A ]

Od
lysenc™ 31 ® |icne
I 1oy
loy, = v 5™ whichisthe same as 1, = \% i
1\ (st 1., (Ist
cnc” ;1 @ 5 ® |51, cne 5l @ |5 ® |,
\ lo, ) \hd : \ l,, ) \hd

21 All the proofs of this kind of equalities can be found in [Dur93, Hae91, 93a, 93b, Vel9la, 91b}
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But, by lemma 6.4.2, the domain of cnc™;(1,, ®1,,);(Ist®hd); I is the set of ordered lists, Thus,

from the definition of V, we have
IN
cne” ;| ® |;cenc
JN
1 = \% H 4
1., (st
cne” 3| @ |5 ® |51
I, ) \hd
Now, recall that Dfr}; o =r; e, D(r; s)=D(r; D(s)), D(r Vs)=D(r) e Ds). Also, if D(s)= D(t) then
Dls Vi)=Dls), D(r;s)=Dlr;1), D(r;s}=’D(r;sVr;t)=@(r;(th)), and if D(r;s)=D(r ;1) then
ri(sVit)c(r;s) V(r;t). So, from the definition of @22 (for a deeper discussion of @ see [Dur93,

) r;s
Hae93a, 93b]), we can easily derive To(r;s;oo)= le(rit;e0)>r;| V|| V | and since 1o, is
. t rit
* univalent, A reduces to equality. Then, we can write
® |;cnc ® |;cnc
1,, 1,
l,,,=cnc; \Y% im andthen I, ,=cnc; \% ¥ 5
1, Ist Ist
® L ® |1, ' ® |1,
1, ) \hd hd

It is important to notice that we have constructed a recursive refinement for the universal quantified
relational expression 1., 0((cnc’-o((lst@hd);]s)');oo). We could have resorted to the Galois
connection,
xc((st®hd); 1, [enc) & cncy x < (Ist @ hd); 1,

But. the intuition needed for stating equation cnc ; x (Ist® hd); 1, is not trivial. The solution on x of this
equation must be a relation with the same domain as Oa. Then, for guaranteeing the inclusion
xcenc (1, ®1,,); (st ®hd); I, the domain of x must be the domain of ordered lists. What we have
done is to replace “clever intuition” by mere calculation. We “pick” intuition from the proper algebra by
doing the initial pattern matching and “lift” this intuition to the abstract algebra by replacing definiens by

22 In calculating programs equality is too narrow a substitution criterion while inclusion is clearly too wide. As the
appropriate concept we introduce a relational refinement-like ordering relation defined by
resiff 1, ., ircs and ! pom(s) C ] pou(sy- Its “programming” meaning is obvious, given two specifications (or
programs) g, and 6, 0, is totally correct with respect to o, iff within its precondition, o, satisfies 0, -not necessarily
with the same degree of non-determinism, and the set denoted by the precondition of o, is included in that denoted by the
precondition of ¢,. Formally, p{o,]  pu[o,). Where H{@] is the relational denotation of formula .
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definiendum (see (33)). Notice that in such cases representability plays a fundamental role. In fact, it is by
relying on representability that we actually carried out the calculations instead of cumbersome

manipulations.

7. CONCLUSIONS

We have presented an alternative basis for relational programming calculi, obtained by extending abstract
relational algebras with a fork operator, and examined some fundamental issues of its use for program
derivation. From the theoretical side, we have showed that our calculus has the crucial features of
expressiveness of first-order logic and representability, which makes it sound and complete. From the more
practical side, we have argued for the adequacy of our calculus for program derivation, both on the basis of
general arguments and illustrative case studies.

Operators, such as fork as well as direct product and projections, have been used by other researchers. But,
they appear to have overlooked some important features due to the non-monolithic character of projections
(in our approach). A crucial one is the fact that our new algebra has the expressive power of first-order
logic. As algebras of first-order logic, our fork-relational algebras present an important advantage over
“classical” ones: it is finite extension of Boolean algebras that has a finite axiomatization. Also, some usual
alternative axiomatizations for fork and projections can be derived from ours.

Another important feature of our fork-relational algebras is their representability: any model of the abstract
calculus is isomorphic to a proper one, consisting of binary relations of input-output pairs. This means that
we can use input-output intuition provided by the proper algebias while retaining the advantages of the
abstract calculus without individual variables for algebraic manipulations.

We thus have a sound and complete calculi, with the power of classical first-order logic, for reasoning
about specifications and programs. On the other hand, the standard meaning of our fork-relational
operations is computational, which allows us to regard terms with only algorithmic operations as programs,
their actual conversion into a usual programming language being straightforward.

The adequacy of our calculus for program derivation has been extensively illustrated elsewhere [Dur93,
Fri92, Fri93b, Fri93c, Hae90, Hae91, Hae93a, Hae93b, Vel92]. We have provided here some additional
material indicating how various aspects of other approaches can be handled within ours and how we can
cope with computational complexity and universal quantifiers. This is supported by general arguments and
case studies related to program inversion, Moller’s composition and join [M6192], the use of substitution to
convert programs with filters (partial identities) into a program-like form with if_then_else, and how
complexity and universal quantifiers can be coped with by a combination of proper-algebra intuition and
abstract-calculus manipulations.

On-going and future research addresses two main directions. The first one is the analysis of our fork-
relational algebras as algebraic structures. This has to do with the search for better, more intuitive
axiomatizations and the role played by simplicity, atomicity and the crucial axiom (10). The second one is
the full development of a programming calculus with supporting environment. This involves, among other
questions, answering whether or not we should deal non trivially with partiality (as discussed in Section 4
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of [Hac91]). After a conclusive answer to this question, we will develop a typing system for our evolving

relational programming calculus.
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