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Abstract

ON FORK ALGEBRAS AND REASONING ABOUT PROGRAMS

Paulo A. S. VELOSO
{e-mail: veloso@inf.puc-rio.br}

Armando M. HAEBERER
{e-mail: armando@inf.puc-rio.br}

PUCRioInf MCC 01/94

Fork algebras provide a useful basis for relational reasoning about

programs and specifications. They arise as extensions of relational

algebras with a new operator, called fork, which enables the

introduction, by definition, of projections. In this paper we
examine some fundamental issues concerning fork algebras,

presenting the proofs of expressiveness and representability and

discusstheir importance for reasoning about programs.
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Algebras de “fork” fornecem uma base apropriada para o

raciocinio relacional sobre programas e especificacdes.

Aparecendo como extensdes das algebras relacionais com um novo

operator de bifurcacao, “fork”, elas permitem a introducio, por

defini¢do, de projegdes. Este trabalho examina algumas questdes

fundamentais acerca de algebras de “fork”, apresentando

demonstracdes dos resultados de expressividade e

representabilidade, bem como discute sua importincia para

derivacdo de programas.
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Cilculos de Programagdo, Cdlculos Relacionais, Especificagdes Formais,
Algebras da Légica, Expressividade. Representabilidade.
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INHERITANCE IN OBLOG SPECIFICATION
A SOUND AND COMPLETE SYSTEM FOR BEHAVIOUR REWRITING

Abstract

In the Oblog framework, an object-oriented language to system
specification, we present a behaviour rewriting system. The system, that
is sound and complete with respect to the inheritance characterization in
Oblog, defines a new inheritance syntax and is developed with the theory
of graph grammars. Categorial techniques are used to connect the
semantic domain proposed for objects, with state machines and
computations.



1. INTRODUCTION

Fork algebras provide a useful basis for relational calculi for programming.
We examine some fundamental issues concerning fork algebras and their
use in writing programs and reasoning about them. Fork algebras arise as
extensions of relational algebras with a new operator, fork, which enables
the introduction of projections by definition. The abstract calculus of fork
algebras manipulates fork-relational terms without variables, free or bound,
over individuals. This calculus, which provides a finitary algebra of classical
first-order logic, is our formalism for reasoning about programs.

Two basic issues concerning a formalism for reasoning about programs
concern its formal aspects (such as soundness and completeness) and its
adequacy for reasoning about programs and specifications. We, accordingly,
address both issues.

The (meta-)mathematical aspects of soundness and completeness of a
calculus are connected to the limits, in principle, and there lies their
importance. These are settled by two fundamental results, namely
‘expressiveness (which shows that fork-relational terms have the expressive
power of first-order formulas) and representability (which shows that any
abstract model of our calculus is isomorphic to a intended one with relations
of input-output pairs). As an added bonus, these results show that we have
an algebra of classical first-order logic that is finitary, in constrast with
other approaches [EU46, Hal62, HM74].

The adequacy of our calculus for reasoning about programs and
specifications has been illustrated by several examples elsewhere [DB93,
FW92, FAN93, Fri93, HVE90, HV91, HBS93, VHBO92]. We argue here on the
basis of general arguments connecting our basic results to the intended
applications concerning programming.

The structure of this paper is as follows. Section 2 starts by reviewing
Boolean and relational algebras [Tar41, JT52] and introduces fork algebras
together with their theories and calculi; we then go on to the central
mathematical results of expressiveness [VH91] and representability [BHV92,
FBHV93]. Section 3 provides an overview of our approach, by arguing that
we can view specifications and programs as relations and why this
viewpoint is useful for reasoning about program development. Finally,
section 4 provides some concluding remarks as well as indication of on-
going and future work.



2. FORK ALGEBRAS

In this section we introduce some basic definitions concerning fork algebras
and prove the crucial results concerning their ex[ressiveness and
representability . Fork algebras are extensions of relational algebras, which
in turn extend the well-known Boolean algebras. For this reason it is
convenient to examine the progression from Boolean algebras, first to
relational algebras, and then to fork algebras. We shall be interested in both
concrete (or proper) and abstract versions of fork algebras: much as Boolean
algebra provides an abstract theory of set-theoretical operations, relational
algebras (and fork algebras) correspond to abstract theories of operations
on (structured) relations.

2.1 BOOLEAN, RELATIONAL AND FORK ALGEBRAS

Consider a set W. We have the usual set-theoretical operations on subsets of
W, namely union U, intersection N and complement ~ (with respect to the
universe W), in addition to special sets, namely the empty set & and the
universal set W . As usual, by a field of sets (FS, for short) we mean a
structure = <S,u,N,~,,W>, where S is a set of subsets of W, with @ and W
in S, which is closed under the above set-theoretical operations. The
abstract version of a field of sets is a Boolean algebra: (BA, for short) a
structure % = <B,+,e,7,0,0> satisfying the well-known axioms. As usual on a

BA we can define a binary relation < giving a lattice structure to it. Also, an
element ae B is called an arom iff for every be p such that 0 # b < a we have

b=a; and Boolean algebra is aromic iff every non-zero element contains an
atom. By Stone’s representation theorem every Boolean algebra is
isomorphic to a field of sets, where set-theoretical inclusion < corresponds
to the abstract partial order <.

Now let us examine algebras of relations [Tar4l, CT51, JTS52].

Consider now. a set VCW xW of ordered pairs of elements of W. Then, we
have some natural relation-theoretical operations on subsets of W xW,
namely transposition and composition, defined, respectively by p’=
{ <uv>eWxW : <v,u>ep } and plg = { <u,w>e WxW : <u,v>ep and <v,w>egq
for some ve W }, as well as the special diagonal (or identity)relation A = {
<u,v>e WxW :v=u}. A proper relation algebra (PRA, for short) is a structure
P =<P,u,N,|,~.DAV>, such that the reduct <P,u,N,~,@&,V> is a field of sets with
Ae P and P is closed under composition and transposition. The abstract
version of a proper relation algebra is a relational algebra (RA, for short): a
structure % = <R,+,e,;,7,A,0,1,00> such that its reduct <R,+,»,7,0,0> is a Boolean
algebra, <R,;,1> is a monoid, and Schroder’s rule (r;s <t iff rA ™ < 57 iff 1757
< r7) holds. We shall call a relation algebra atomic iff its Boolean reduct is
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so. We shall often be concerned with simple RA’s, which are those satisfying
Tarski’s rule (eo;r;c0=00 whenever r=0).

Let us now introduce proper and abstract fork algebras.

Consider a set U equipped with a binary injective operation *:UxU—>U
(which we view as constructing pairs y*z=[y,z] of elements of U). We now
have another natural operation on subsets of UxU, namely (proper) fork,
defined by r£s = { <x,[y,z] >eUxU : <x,y>er and <x,z>es }. A proper fork
algebra (PFA, for short) is a structure & =<F,u,n,.Z,~,.@,A, V>, where the
reduct <P,u,n,|,~,",J,A,V>is a proper relation algebra such that F is closed
under £. The abstract version of a simple proper fork algebra is an abstract
fork algebra (AFA, for short): a structure & =<A,+,0,;,V,7,70,1,00> such that
KA, +,0,,7,4,0,1,00> is a relational algebra satisfying Tarski’s rule, and the
following axioms hold

(1) rVs =(r.n) e (s.p)

(2) (Vs ) (pV*r = (ripr) o, (5:9")

(3) nVp <1

(4) if 0#1t< 00 ®c then 0# v®w <t for somev andw;

where projections and direct product are defined as follows:

(m) 7m=(1Veo) {first projection}
(p) p=(=VIr {second projection}
(®) r®s =(mr)V (p.s) {direct produc}

Notice that, because of Tarski’s rule, our fork algebras are simple, in that
their relational reducts are simple. We shall often be concerned with atomic
fork algebras: those with atomic Boolean reducts. An extensive development
of the arithmetic of fork algebras can be found in [Fri93a, Dur93].

2.2 ELEMENTARY THEORIES AND ABSTRACT CALCULI

Let us now examine the languages for these structures. It is important to
bear in mind a distinction between concrete, proper structures and their
abstract counterparts: in the concrete versions one has individuals, whereas
in the abstract versions one abstracts away from them and considers only
the abstract objects, without, so to speak, looking into the individuals which
constitute them. This distinction will be clarified by examining another way
of introducing proper relation and fork algebras. The idea is extending
(unsorted) first-order logic, with equality, by defining the concepts
pertaining to relations.

First consider a single-sorted language £, where the only sort is sort ¢ (of
individuals) and the atomic formulas are of the form x=y, where x and y are
variables of sort ¢ . Now, introduce a new sort » (for binary relations over



individuals) and a a ternary predicate symbol _(-,-) over sorts 2¢<:.. We now
have new atomic formulas of the form r(x,y) (which we also write as x r y).
With this material we can introduce, by definitions, operations and
constants for sort ». For instance, constant 1 is defined by the axiom VxVy
[x 1y <> x=y], and operation ; by VxVy [xr;sy & 3z (xrz A zsy)]; also
equality = over sort 2 is introduced by the definig axiom r=s & VxVy (x ry
& X5Yy).

Thus, by introducing axioms like those of [Tar41], we obtain a a theory,
called the Elementary Theory of Binary Relations (ETBR, for short) in the
extended language &££BR (Elementary Language of (Binary) Relations). The
new defining axioms explain the meaning of the new relative operations by
means of first-order formulas involving individuals. In this sense, this
theory provides a standard meaning for the relational theoretic terms.
Indeed, for for any term p of sort r, we have a formula ¢(x,y), without
relational symbols, such that ETBR F (Vx:)(Vy:)[p(x,y)>d(x,y)]. This formula
¢(x,y)=8(p) will be called the standard meaning of relational term p. For
instance, S(r;s) is the formula 3z (x rz A z 5 y).

The language of the RA’s is the sub-language #.£8R of ££8R consisting only of
sort » and +,e,;,7,~,0,1,00; and the restriction of ETBR to A/8R is the Abstract
Calculus ACBR of Binary Relations.

Now, consider a model & of ETBR. The realization of sort 2 consists of
elements which behave, in view of the standard meaning above, as sets of
ordered pairs of elements of the realization of sort ¢. In this sense, they are
binary relations over individuals. Thus, the proper relation algebras are the
reducts to language /B8R of the models & of ETBR.

Now, let us examine the case of fork algebras. The situation corresponds to
the one described above for algebras of relations.

We start with a first-order theory of individuals with injective binary
operation %, form ETBR over it and extend the resulting theory by the
axiom (Vx:)(Vy:d[rVs(x,y)@v:)Aw:)(y=vswAar(x,v)as(x,w))] defining fork.
We thus obtain the Elementary Theory ETFR of Fork Relations. .
The language of the PFA’s is the sub-language 4£%R of ££9R consisting only of
sort » and +,e,;,V,7,4,0,1,00; and the restriction of ETFR to A£%R is the Abstract
Calculus ACFR of Fork Relations.

As for the case of relations, we have a standard meaning, assigning to each
fork term p of sort » of ££9R a formula ¢(x,y)=85(p), without relational
symbols and with variables x and y, over sort ¢,, such that
ETFR+ (Vx)X(Vy)[xpy < o(x,y)]. This formula ¢(x,y)=5(p) is standard



meaning of relational term p. Also, the simple proper fork algebras are the
reducts to language #.£9R of the simple models & of ETFR.

2.3 EXPRESSIVENESS OF FORK ALGEBRAS

Standard meaning reduces relational terms to first-order formulas. The
question of expressiveness concerns the converse. Even though for RA’s the
answer is negative [Tar4l], we. now have a positive answer [VH91, HVO].
Expressiveness will guarantee that the expressive power of our fork-
relational terms is the same of first-order formulas: any n-ary relation
defined by formula ¢(x,,...,x,) can be defined by term ¢, in that in any
structure the former is the domain, and range, of the latter.

Consider a first-order language £ with equality =, given by a set of predicate
symbols (we do not consider function symbols, since they can be replaced
by their graphs). A structure B for £ consists of a domain B together with an
n-ary relation p® realizing each n-ary predicate symbol p of 2. As usual, this
can be extended to assign to a each formula ¢ its realization consisting of
those n-tuples that satisfy it: ¢3 = {(b;,....b,) :BF ¢ [b;,....b, 1} [EbbSO].

It is more convenient, however, to view a formula as defining a set of trees
over B. For this purpose, we extend £ to £* by adding a binary operation
symbol . Given a structure 8 for £ we have an expansion B* to £ *, with B*
consi'sting of the finite trees over B and % realized as (injective) tree
construction. We can replace 8 by B* because ¢#® is the restriction of the
realization of ¢ in B*. Now, we can expand 8* to a model ﬁ of ETFR, with a
binary relational constant p, corresponding to n-ary p, realized by {(b,b):
b=by#(by*...(b,.1*b)...) & B*E p(xy,....x.) [ by,...b, 1}

Theorem (Expressiveness) Given a first-order language £, there exists a
function 7 assigning to each formula ¢(x;,...,x,) of £, a closed term t with
standard meaning S(f)=wy(u,v), such that for every structure B for./ ,
o8 = ((by,....0,) : BE y [ (by#(byr...(b, 1*b,)..))(by#(by+... (b, 1#b,)..0) 1}

Proof outline. We will define Tby induction on the structure of ¢.

Basis. If ¢ is x,=X,, then we set T(x,~x,) = 28;2. If ¢ is p(Xy,...,X,), then we set
T(p(Xy,...,Xs)) = p. If ¢ is an atomic formula p(y,,...,yn) obtained from
p(X1,...,Xy) by a substitution o, then we set T(p(y,....yn)) = s p;s, where s*1is
a term, indicated in lemma B below, simulating o.

Inductive step: By Lemma A below, we may replace ¢ by ¢'. If ¢ is -y, then
we set T(—y)=T(y) 1. If ¢ is yvO, then @' is equivalent to y've', and we set
T(yve) = T(yH+1(0"). If ¢ is (Ix,)y, then ¢'is equivalent to (Ix,)y'AXx,=x,, where
y' is obtained from y by the substitution o that interchanges x; and x,, and
we set T((3x,)y") =z AT(v');n , whence we can obtain Z(¢).

QD



Lemma A Given positive n and m, there exist terms d_and e,_, such that,

for every formula ¢(x,,...,x,), if ¢' is the formula PAX=XA A=K A AKXy =X
we have 7(¢") = 7(¢);e, and T(¢) = an;‘l((P');dn,.
Lemma B Given a substitution ¢ on {1,...,n}, there exists a term s, such

that for any formula ¢(x,,...,X,), if 6(¢) is the formula obtained by applying o
to ¢, then we can take T(c(@)) = s*;T(¢);s.

Corollary (Preservation of implication) Given formulas o(x4,...,X,) and
Y(Xy,....Xn), F O iff ETFR & T(Q)<T(y).

2.4 REPRESENTABILITY OF FORKR ALGEBRAS

We now show that atomic AFA’s can be represented by PFA’s [BHV92,
FBHV93], in contrast with the case for relational algebras.

Lemma Let =<A+,0,;,V,7,A,0,1,0> be an atomic AFA. Then, for all r,s,t,ge A,
r#0->myr20Ap;r+0, r®s=0r=0vs=0, r®s#0->m;(r®s);x=r,
r®s#0—p;(r®s);p=s, (r®s=1@q)A(r#0)A(s#0)A(t#0) A(g#0) —
(r=t)A(s=q), r®s is an atom iff both r and s are atoms, and if r is atom with
r<eo Voo then r=(r;n)V(r;p).

Theorem (Representability) Every atomic AFA is isomorphic to a PFA.

Proof outline. Consider such an atomic AFA &/ = <A,+,0,;,,V,72,0,1,00> with set of
atoms AZ. For re A, let A¢(r) = { aedt : as<r }, and set U = AZ(1). By the lemma, ®
is an injective operation on U. Thus, by defining r<s = { <o,p®y>e UxU :
<a,p>er and <a,y>es }, we have a PFA F=<F,u,n,,2,~,.3,A,V>, with V=UxU
and F=§ (V).

We introduce functions 9, #A¢—U, for “inspecting the shapes of the atoms in
domain range”: #:A¢—U is defined by Fo)=[(o;m)(osm)]®[(op)ri(aip)], in
case aso Veo , and % (a)=ar;0, otherwise, and & is “dual”. We now define
H A - F by x ( r ) =
{ <D(0), HA0)>eUxU : ae d¢(r) }. We can now show that & is an injective
homomorphism from & into & the crucial steps being # (e ) = V and H#(r;V
s) = AA(r)47Ar), whence, an isomorphism from .27 into a sub-algebra of F
OFD

Corollary The extension from ACFR to ETFR is conservative, in particular, for
terms p and g, ETFR v p<q iff ACFR V p<q.

These results show that our fork algebras prdvide a finitary algebra of first-
order logic with equality.

3. PROGRAMMING WITH RELATIONS

We shall now examine some aspects underlying our fork-relational
approach to programming [HV91, VH93, VHB92, HV90], whose formal basis
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rests on our expressiveness and representability results in section 2
Reasoning about software artifacts (programs) involves proving that the
program exhibits the required behavior on the basis of the specification of a
data type.

3.1 BEHAVIOR AS RELATIONS

First, let us see why we can regard behavioral specifications and properties
as relations.

It is well-known that one can faithfully reduce many-sorted first-order
logic to the unsorted version, by considering relativization predicates that
are intended to characterize the sorts. In terms of models, the universe U of
the unsorted structure is regarded as the union of all sorts, which can be
recovered by means of the relativization predicates provided.

In the relational setting, we consider each sort s as given by a partial
identity &,, which characterizes it in the sense that 3, = {{(u,u)e U: ues}. We
also consider binary relation symbols corresponding to the given operations
and predicates [HVO91].

For the data type lists with sorts Lz and £4m, operations head, tail, cons, and
predicate null, we have 84, and §,,, corresponding to sorts Lia¢z and &m, as

well as relation symbols head, tail, cons and null corresponding to head,
tail, cons, and null. We replace an expression like cons(x,y)=z by
cons(xxy,z), and we can express functionality of relations and information
concerning domain and range. We can express an axiom like (V x:Zist)
[null(x)v(Ty:&bm)(3z:List) cons(y,z)=x] by the equation 8, = &,,;+(cons;cons™),
where 8, = (null;null™)e1.

Now, consider a property expressed by a formula, which may assumed
already reduced to its unsorted version. Expressiveness shows how to
translate  such a formula into a term “saying the same thing” and this
translation preserves implication. Also, a specification consisting of first-
order axioms can be expressed relationally. Our results in section 2 show
that first-order definitions and reasonings are exactly mirrored in ACFR.
Therefore, reasoning within the abstract fork-relational calculus ATFR is
both sound and complete with respect to standard first-order reasoning.
For instance, consider a sentence o (say, a conjunction of specification
sentences) and a sentence tin the same language (say, expressing some
property). By the above expressiveness result, we have terms s=7(c) and
t=1(t), and o + 1 iff ETFR \s<t iff ACFR F s<t.

- Thus, we can safely replace first-order reasoning by reasoning within our
relational calculus. But we do not have to; whenever it is more convenient
we can resort to first-order reasoning, with the assurance that it can be

7



translated into ATFR. And Representability provides an added bonus: we
can reason by means of individuals (which is often more intuitive when one
wishes to think in an input-output manner, by resorting to diagrams, for
instance); if the conclusion no longer involves individuals it could be
derived within ATFR..

3.2 PROGRAMS AS RELATIONS

Now, let us see why we can regard programs as relations.

The language 4.£2R of the abstract fork-relational calculus ATFR relational
calculus has symbols for constant relations as well as for operations on
relations, namely +,e,;,V,7.4,0,1, and . We are mostly interested in terms
built from some relational constants by means of these operations. Standard
meaning of such a term 7 is given by elementary theory ETFR of fork
relations.

We call algorithmic operations those of 429, except for complement ~. Given
a set BRCS of basic relational constant symbols, we call algorithmic terms
those of BRCSUALFR that do not involve ~. The reason for such a name is the
fact that we can regard such terms as describing (possibly non-
deterministic) programs. (Notice that we allow recursive terms to cover
iterative and recursive programs.) There are two Jjustifications for this.
First, the algorithmic operations preserve effective enumerability, in the
following sense. Consider an effective domain U, one where equality = is
effectively decidable and where the pair-forming operation
*: UXx U - U is effectively computable. Then, the constant relations 0,
o , and 1 are effectively decidable. Also, the algorithmic operations preserve
effective enumerability; for instance, if r and s are effectively enumerable,
then one can effectively enumerate rVs by effectively enumerating those
(u,v)er and (u’,w)es, deciding whether u~u’ and in such case computing vxw
and outputting (Li,v*w). Thus, if the basic relational constant symbols in BRCS
have effectively enumerable realizations, every algorithmic term denotes an
effectively enumerable relation. Summing up, the standard meaning
assigned to the algorithmic operations is programming-like, in that they
preserve effective enumerability. In this sense, terms built from effectively
enumerable relations by means of these algorithmic symbols can be
regarded as programs. ‘

Second, there is a natural correspondence between algorithmic operations
(except, perhaps for e and ~) and programming-language constructs. For
instance, relative product corresponds to sequentialization, in that they
have the same standard meaning. Even though intersection e does not quite
follow this pattern, it can be simulated in terms of algorithmic operations

8



via res = (rVs);2~ (where 2 = 1V 1, which makes 2+ a kind of equality test).
This last equation shows a use of converse that has a natural, direct
programming counterpart. The intuitive view of converse as “running
backwards, from output to input” may appear not to correspond directly to
a programming-language construct; but the very argument showing that
converse preserves effective enumerability indicates how it can be
simulated. Moreover, the idea of converse fits very well with the usual logic
programming paradigm. Thus, there is a natural correspondence by means
of which each algorithmic relational term can be translated into a program.
(Notice that we allow recursive terms, which will translate into recursive
programs.) That they have the same meaning comes from the connection,
pointed out by van Emden and Kowalski, between deductive meaning and
operational meaning.

The preceding remark may be. interpreted as soundness: each algorithmic
relational term can be translated into a program with the same meaning.
The converse, completeness, would guarantee that no program is lost by
limiting oneself to such terms. This comes from the above natural
correspondence. For, each simple programming-language construct, such as
sequentialization, case, etc., has a relational operation as direct counterpart.
Thus a program text involving some basic symbols can be converted into a
algorithmic relational term  with the same meaning (here iteration and
recursion are covered by recursive terms) [HV91, VHB92].

As a simple example of the above correspondence, consider doubling a
natural number. The recursive program dbl(x) = if is_zero(x)=true then
zero else succ (succ (dbl (pred(x)))) end_if and the algorithmic term dbl =
0 e00:2€70+0, o, ,oospred;dblisucc;succ correspond to each other. (Here ..., and
0,0t zero ar€ partial identities over {0} and the non-zero naturals, respectively,
and can be obtained from relations corresponding to is_zero, true and
false). A slightly simpler form is dbl = §, +succ?,dbl;succ;succ.

3.3 FORK-RELATIONAL REASONING ABOUT PROGRAMS

Concepts related to correctness are easily handled in our relational setting.
Partial correctness of p amounts to inclusion and termination to a property
of the partial identity 2(p) = (p;p~)e1; For instance, in order to establish
termination of the above term db! it suffices to prove
8,0 =2(db)AD(dbl);succ<succ; 2(dbl).

An important relationship between programs and/or specifications
annotated with preconditions is that of refinement, whereby the degree of

non-determinism is reduced without losing successful computations. In our
case, we say that <¢,p> refines <0,q> iff 09<dy and 3g;p <g [HVI1].
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Our argument so far appears to emphasize input-output behavior, more
appropriate for terminating programs. But, it can be extended to any
behavior described by first-order formulas, because of the results in section
2, and the fact that one write algorithmic terms corresponding to the traces
of programs.

Now, let us consider the aspect of program derivation. In view of the above
arguments, the essence of this activity amounts to deriving an algorithmic
term from some given (not necessarily algorithmic) terms, corresponding to
the specification. One crucial aspect is the elimination of non-algorithmic
constructs (mainly complement/negation and relative sum/universal
quantification). They are often eliminated in favor of recursion by relying
on the inductive structure of the domain; and there are some general
strategies for this task [VHB92, VH93].

We can express strategies in fork-relational terms. Thus, one could simulate
~ derivations like those done in CIP. Also, general problem-solving strategies,
such as divide-and-conquer, etc. can be expressed and used [HV91, VH93].
Reasoning within ACFR offers some conveniences for manipulation, such as
not involving individuals (an advantage over usual programming or first-
order reasoning, shared by the functional approach) and .conveniently
expressing abstraction from future decisions by resorting to non-
determinism (an advantage not easily found in the imperative or functional
approaches) [VH93].

3.4 FORK-RELATIONAL SOFTWARE DEVELOPMENT

Now, let us briefly examine the roe that these concepts canm play n the
context of software development [HV90].

The development of a software artifact for a given application generally
goes through several intermediate stages, involving requirement
specification, reification, implementation, optimization, etc. The objects
involved in each stage are distinct from an epistemological viewpoint, but
they purport to describe relations, and the relationship among them is
refinement-like. ’

An application can be regarded as a pair <8,g>, where 8 describes the data
that are to be processed and g the desired input-output behavior. Consider
now an program p with precondition ¢ where p is guaranteed to halt. If
<¢.p> refines <0,g> then we have an acceptrable program, in that it halts for
any required data producing an output in accordance with the desired
behavior.

Similarly, the relationships of correct implementation (between
implemented program and abstract program), of rotal correctness (between
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abstract program and formal specification), and of adequate formalization
(between formal specification and application concept) can be regarded as
refinement-like. By transitivity, we can conclude that a correct
implementation of a total correct program with respect to an adequate
formalization is an acceptable program.

This approach does not solve the problems involved in validation by testing.
For they are akin to the epistemological questions involved in the
confirmation of scientific theories. But it does provide a precise framework
where such issues can be addressed [HV90].

4. CONCLUSIONS

We have presented an alternative basis for relational programming calculi,
obtained by extending abstract relational algebras with a fork operator, and
examined some fundamental issues of its use in reasoning about programs.
From the theoretical side, we have showed that our calculus has the crucial
features of exlpressivencss of first-order logic and representability, which
makes it sound and complete. From the more practical side, we have argued
- for the adequacy of our calculus for reasoning about programs on the basis
of general arguments.

Operators, such as fork as well as direct product and projections, have been
used by other researchers. But, they appear to have overlooked some
important features due to the non-monolithic character of projections (in
our approach). A crucial one is the fact that our new algebra has the
expressive power of first-order logic. As algebras of first-order logic, our
fork-relational algebras present an important advantage over “classical”
ones: it is finite extension of Boolean algebras that has a finite
axiomatization. Also, some usual alternative axiomatizations for fork and
projections can be derived from ours.

Another important feature of our fork-relational algebras is their
representability: any model of the abstract calculus is isomorphic to a
proper one, consisting of binary relations of input-output pairs. This means
that we can use input-output intuition provided by the proper algebras
while retaining the advantages of the abstract calculus without individual
variables for algebraic manipulations.

We thus have a sound and complete calculi, with the power of classical first-
order logic, for reasoning about specifications and programs. On the other
hand, the standard meaning of our fork-relational operations is
computational, which allows us to regard terms with only algorithmic
operations as programs, their actual conversion into a usual programming
language being straightforward.

11



The adequacy of our calculus for program derivation has been extensively
illustrated elsewhere by means of case studies [DB93, FW92, FANO93, Fri93,
HVE90, HV91, HBS93, VHB92], where more references and comparisons
with other approaches can be found.
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