::?'
£\

ISSN 0103-9741

Monografias em Ciéncia da Computagdo
n° 08/94

Design Rationale for Collaboration: the Active
Document Approach

Ana Cristina Bicharra Garcia
Mark J. Stefic
H. Craig Howard

Departamento de Informdtica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22453-900
RIO DE JANEIRO - BRASIL

PUC RIO - DEPARTAMENTO DE INFORMATICA ISSN 0103-9741

Monografias em Ciéncia da Computagdo, N° 08/94
Editor: Carlos J. P. Lucena July, 1994

Design Rationale for Collaboration: the Active Document Approach*

Ana Cristina Bicharra Garcia
Mark J. Stefik**
H. Craig Howard***

* This work has been sponsored by the Ministério de Ciéncia e Tecnologia
da Presidéncia da RepuUblica Federativa do Brasil.

** |Information Systems and Technology Laboratory, Xerox Palo Alto
Research Center, Palo Alto, CA, USA

*** Department of Civil Engineering, Stanford University, Stanford, CA, USA

In charge of publications:

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentag¢do e Informagdao

PUC Rio — Departamento de Informética

Rua Marqués de Sao Vicente, 225 — Gavea

22453-900 — Rio de Janeiro, RJ

Brasil

Tel. +55-21-529 9386 Telex +55-21-31048 Fax +55-21-511 5645
E-mail: rosane@inf.puc-rio.br ' ‘

Design Rationale for Collaboration: The Active
Document Approach

Ana Cristina Bicharra Garcia
Mark sStefik
H. Craig Howard

e-mail: bicharra@inf.puc-rio.br

Submitted to Research in Engineering Design Journal.
March 1994

We present a new approach for supporting documentation in
routine design tasks using computationally active documents.
This approach substantially reduces the <costs of
collaborative design. The major costs are in the time
required to check and maintain consistency between design
decisions and requirements, the time to explore a large
design space, and the time lost in communication delays
between people with different expertise. By reducing these
costs, the active design document approach supports the
creation, use and revision of design documents. We
demonstrate the feasibility of the approach with a detailed
case study of its application to the preliminary design of
heating ventilation and air conditioning (HVAC) systems.
Evaluation of a prototype system confirms that where the
approach is applicable, it can significantly improve the
quality and reduce the cost of design documentation.

1. Introduction

Design documentation is expensive, often inconsistent, and
generally incomplete. Even for ordinary designs, the quantity of
information that might be included as design rationale is large. But
just what kinds of information should be included in design rationale?
To this question we offer an answer that is radical in its departure
from most previous work on design rationale, but elegant in its
simplicity. We use the term rationale to refer to the contents of
design documents. In any specific context, it means the information
that a user needs to answer a question. Our approach to defining
rationale is open-ended. Rather than beginning by specifying exactly
what counts as rationale in abstract terms, we expand the term to
encompass whatever information arises in design documents or is used in
the communication about design.

Design is a collaborative process. All of the design
collaborators are faced with costs, and many of those costs are related
to communication. Design rationale is best understood as supporting the
information needs of collaboration, not only for the generation of
designs, but also for the other collaborative processes such as testing
whether specifications are met, testing whether alternatives are
feasible and have been explored, and negotiating changes. To recognize
opportunities for computer support we must understand those needs, both

in their breadth and in their economics. We must identify what the
collaborators are doing and what they need to communicate about. We
evaluate the effectiveness of computer support for design rationale in
terms of the economics of both the production and the use of
documentation.

For manually produced documents, consistency of the design is
maintained by the designer. As designs get larger, it becomes more

difficult to check them for internal consistency. A small heating,
ventilation and air conditioning (HVAC) system design may involve two
hundred parameters. Due to this large number of parameters and the

dependencies among them, it is common to find explanations or even
decisions that contradict the set of design specifications.

In addition, designers and clients do not start out knowing
exactly what is needed. They develop and negotiate the set of
specifications for a project and record it in design documents. Design
documents are constantly revised to incorporate new designed parameters
and to update the project with new specifications. Documents are
created, used, and revised in what we might call the document lifecycle.

Most automatic documentation systems do little to support the
communication needs of collaborative design: to reveal design
assumptions, to provide a consistent explanation of the design, to
maintain consistency between the explanation and the design, and to
provide feedback on changes in specification

The active design document (ADD) approach uses a computer-based
design model to drastically alter the costs of producing and using
design documentation including:

1. the cost of checking consistency: The parametric design
model (with its constraint checking) shifts the work of
checking consistency from manual work by the designer to
automated work by a computer.

2. the cost of explorxing a design space: The initial parametric
design model guarantees that most decisions can be
automatically documented. Consequently, the designer has
more time to try different alternatives.

3. the costs of communication: The active design approach makes
engineering constraints and design specifications both
explicit and active. Because this information is in the
active document, participants can more readily answer
questions that would otherwise require communication delays
for meeting with their collaborators.

In this paper we discuss the ADD approach as an opportunity to
improve engineering practice. The fundamental difficulties that
underlie the quality of design documentation, both in terms of its
quality and usability, have to do with the interacting costs of design
and communication, which are addressed by our approach.

Section 1 describes the ADD approach to design documentation.
Section 2 presents an active design document showing that the approach
is feasible. Section 3 explains the experiments and our evaluation of
the approach. Section 4 discusses related work in the area of design
rationale. Section 5 presents our conclusion and shows how the results
depend on certain properties of the domain.

2. The Active Design Document Approach

The active design document approach (ADD) uses a parametric model
of design decisions. This model defines the terms both for design and
explanation, and determines what is meant by design consistency. In
this approach, design is not a separate activity from documentation.
Instead, design consists of establishing parameters in the model.
Because the model is an active document, explanations are generated
automatically on demand and consistently with the model. Because the
model allows people other than the designer to simulate and try other
design alternatives, it sidesteps some of the costs and delays of
communication.

Four assumptions about documentation use are important to the
active design document approach (Garcia, 1993):

. “Explanation Completeness” Hypothesis: The same model that
generates a design should be able to explain it.
. “Explanation Visibility” Hypothesis: This hypothesis says

that the appropriate terms for describing design rationale
are accessible through document analysis and interviews
techniques.

. "Explanation Kernel" Hypothesis: A small set of types of
parameterized document suffices to provide form and context
for most document gqueries.

. "Explanation Diversity" Hypothesis: Design explanations vary
according to the perspective and goals of the person
requesting it. However, all explanations can be derived from
the same model that originated the design.

Our approach to design rationale is specific to routine
preliminary design. We applied our approach to the preliminary design
of HVAC systems. Before presenting the approach, this section describes
the documentation lifecycle emphasizing the role of documents in the
preliminary design stage of building designs. We also describe the
design model for the domain of heating, ventilation and air conditioning
systems. Finally, we describe the active design document approach in
detail.

2.1. The Documentation Lifecycle

Documentation is an issue for all areas of engineering. However
the costs and demands of creating and using documents are particularly
critical for designs of unique artifacts such as the design of a
building. Because building designs are almost always one-of-a-kind (one
client and one building), there is no opportunity to amortize designs
over thousands of copies. It is in this extreme setting that the active
document approach was developed, and in which we have tested it using a
prototype system. In this section we describe the building design
process (Luth, 1991) emphasizing the creation, development, use, and
revision of design documents.

Building designs are usually developed in four phases: conceptual
design, preliminary design, design development, and construction
drawings. Each design stage produces documents that address different
issues. During the conceptual design phase, the design team develops
the building'’s concepts and requirements. This phase produces a set of

documents containing the .requirements governing the design. 1In the
preliminary design phase, each design trade develops a set of
alternatives that satisfy the set of design requirements developed
during conceptual design. After negotiation among design participants
and approval by city inspectors, the design is detailed. Therefore, the
document generated during preliminary design represents the design that
is to be detailed. The detailed design drawings developed during design
development and approved by the city inspectors are further specified to
contain construction instructions. This last document also needs to be
approved by the city.

In preliminary design, HVAC system designers receive a document
with initial requirements to be addressed. These requirements are
frequently modified during the project by the various design
participants including owners, architects and structural engineers. The
changes reflect the evolving aspect of design. This creation, use, and
revision of documents, repeated for each design phase, consist the
document lifecycle.

Based on this evolving set of requirements, HVAC system designers
are requested to propose a design in a very short period of time varying
from one week to a month. Even for quite ordinary designs, the quantity
of information that might be included as design rationale is large due
to the large number of parameters that need to be documented. In
addition, designers need to keep track of the dependencies among these
parameters. For example, a typical HVAC system design for a small
commercial building contains 150 to 200 parameters to be identified.
Most parameters depend on three or more parameters. This information
would be expensive to document completely. In practice, only a small
portion of it is documented. For designs developed for bidding on
contracts, it is typical that only a fraction of the designs will
actually lead to funded projects. In such situations, there is even
less incentive to document.

Later, whenever questions about the design are raised, designers
regret not having spent time properly documenting the design because
they must spend time recalling and explaining the rationale for the
design to documentation users. This perception of value and attitude
presents an important requirement on documentation systems: any system
supporting documentation should not require much time from designers.
Design must remain the designers’ main activity.

Figure 1 presents a piece of the design space containing the
parameters, their dependencies, and the design space portions explored
by different users. Each portion of the design space explored by a user
is called the AMEBA diagram of the interaction. The name AMEBA comes
from the amorphous shape of the diagram. The diagrams as well as the
network represent the design space explored or to be explored to
generate a preliminary design of HVAC systems.

Building_Orientation Glass_Type Building Building Function Legend

Worst Building Schedule
Exposure Glass_%| | ocation ——— Dependency
Building External—l Building Intern: Documented Parameters
Heating Loads Heating Loads
i) j =271 explanation Elements
User 1
l . == Explanation Elements
Building Heating Loads Building Area User 2
of) EXX] Intersection between
Buildinas Conversion Explanation for
ng BTU-> TONS different users-same question

of
Cooling Systems

Equipment

Configuration
Required Area

Range of Efficiency

~ HVAC System location

Building # of people

CFM suppl Code Minimum
% CPM

ASHRAE I

erv recommended CFM Building Function
Criterion

Perceived Quality
Criterion

Control . Required __—FPM return
independence First Cost Shaft Space
Criterion Criterion

oM Al " cEM retum — CFM supply

I
\ % outside air

CFM

Air Circulation
Criterion

Perceived Quality Regquired Supply Air
Criterion Ceiling Space per floor
Duct Type ——
FPM Supply

Figure 1: AMEBA diagram illustrating the portion of the design model
being discussed. Nodes in this figure correspond to design
parameters in the HVAC parametric model. Links represent
dependencies, such as derivation paths and constraints. See
the legend for the interpretation of the shaded regions.

2.2. The active design document approach

The active design documentation approach addresses the
documentation overhead, instability of specifications, and consistency
issues of preliminary design documents by using an initial design model
able to generate design decisions and rationale most of the time. This

section describes the approach and the way it addresses these
documentation issues.

The design model we created for the HVAC domain does not always
generate the same decision as a particular designer. This can happen
for any of several reasons. The case may be outside the coverage of the
model, the designer’s experience may differ from that encoded in the
model, or there may be an error in the model. In such cases, designers
alter the design model.

Whenever a user changes specifications, the model propagates the
effects. The active document then receives the new HVAC parameter
values and evaluates them in terms of the active constraints and
criteria. Consequently, it checks the local impact caused by the change
in the design specification, such as a violation of an architectural
constraint. In addition, it forces the new value and propagates it to
the set of influenced parameters.

ADD allows documentation users to discover the designer’s
assumptions, as well as to support some exploration of design space even
when designers are not available. ADD’s available design model can
simulate what would be the design under different circumstances.
Consequently, the design choices can be shared by designers and clients.
Answers for questions about a design are generated instead of recorded
by the document.

In summary, an active design document has the following
attributes:

. has an initial model of the domain;

. has a decision-making model for the domain;

. has a mechanism for checking consistency;

. supports changes to specialize or correct the model;

. can generate design decisions;

. allows specification changes maintaining design consistency;
. formulates explanations for the design decisions;

. has low documentation overhead for designers;

. integrates design and documentation activities;

We tested the feasibility of the active design document approach
by modeling and implementing an active document for the preliminary
design of HVAC systems. The prototype systems, presented in the next
section, was tested and we obtained encouraging results.

2.3. An HVAC design model

Our empirical studies identified elements and processes in the
design task that became the basis for defining the representational
language for design. The design of HVAC systems requires selecting
heating, ventilation and air conditioning systems. It also includes the
selection, specification and location of equipment of each subsystem.
The characteristics of the task suggest some type of constraint-
satisfaction (Sussman, Holloway, and Knight, 1979) approach for doing
the design. ADD's parametric design model is similar to the one used in
VT's model for elevator's design (Marcus, 1989). Figure 2 illustrates
the kinds of information we include in our design representation.

oY TLA

select
Alternatives
’
’
H

Testing & Evaluation
evaluate

valuation
A Criteria

Dt -,

’
/
/
/
’
’
/
’
!
7
/
4
4
’
4
i
4
/
/

generate
generate
generate

generate
select

generate

Design
Context

>

Parameters

generate

generate

Generation

Semantic network of the elements of HVAC system

Figure 2:
design process model.

This representation emphasizes the micrc level of the decision-
making. Decision, alternatives, evaluation criteria, constraints,
parameters, fixes, impacts, previous cases, goal, design context and
design agents are the nodes represented in this network. The set of
relations in this representation includes generate, constrain, evaluate
The process starts with a design goal to be achieved within

and select.
a specific design context and considering a set of design agents.

Design agents (architect, code, standards, mechanical engineer, etc.)
are the sources for the constraints and criteria that should be
considered in the design. Given the design goals, ADD generates design
parameters to be instantiated. When a parameter is instantiated, there
may be enough information to carry out some other step. Alternative
values for parameters must be tested against constraints. Agents
generate the evaluation criteria that evaluate each alternative.
Constraint violations lead to fixes that, in turn, may lead to the
introduction of new constraints.

The parametric model contains information about all parameters in
the design process. A parameter can be derived or primitive. Primitive
parameters are the part of the initial specification for a design case
such as the coefficient of conversicn from BTU to TONs parameter.
Derived parameters are parameters that need to be either calculated or
decided to define the design. Derived parameters can be calculated
through mathematical equations, heuristic rules or tradeoff analysis.

The HVAC design parameters are connected to each other through
dependency links. The dependencies effect the order in which ADD
determines the values for parameters. In addition, the dependency links
determine the direction of propagation in case of changes in a design
parameter value. For example, if parameter A depends on parameter B,
then before solving parameter A, ADD needs to determine a value for
parameter B. 1In addition, any change in parameter B needs to be
propagated to parameter A. Figure 3 illustrates a dependency diagram
containing ADD’s main derived parameters and the dependencies among
them. This figure represents about 30 percent of the design parameters
represented in ADD’s model of the HVAC domain. On the other hand, it
represents around 80 percent of the total decided parameters needed in
the preliminary HVAC design phase. The parametric model also contains
heuristic rules for generating, evaluating and selecting alternatives.
The dependencies between parameters represent constraints imposed either
by the device behavior, the environment, or the design participants’
preferences.)

. i Design
Desin , Desien a
A % Outside Air E:“‘o dc‘;{ rzzfr Equipment

Chan,
M rscge = Dinenion

Tol
Cooling ” Capadity
uipment . "
onnage / \\ . CcolmiEquxpmems

ut
Equipment Building o
Package Package Worst Desi
ection Equipments Exposure esign is
Temperature Cooling
- Coling Egupmert
Heatin| i
Equipment
CTom!ty
apadi
ipment
// l Eﬂo“g:i!ém
Numberof _ Equipment /
Equipment Dimension
Equipthent
equired
Area
D N
HVAC tayout
Sysiem Changes
Air Equipments
. Air Layout Desi Desi
D esign 'SIgn
Hvac % Cuteide Air Cydle Desiqn 20N o Optside A
Layout Design 7?’ Aig to deliver
. Air Equipment
Quantity of \ / P! Chan
System Airto deliver ™~ Air Selection
Distribution uipment

Degree of
- Centralization System \ = Tocati
Conl Capacity "
/ sy“e\ / / mpm:;\\t
Control Control Air Equipments

Equipmanr— Equipment Air System .
3 N t e Aiir System
ﬁs\t c{g # ection Required Lonﬂol// Number of Equipment

Capadty | Equipment — Dimension \
Nuzber of E::mz‘
Systems Area
Figure 3: ADD's dependency diagram containing a representative set of

the main design parameters.

The existence of an explicit design model (that is, the domain and
decision-making models) suggests the feasibility of a computational
assistant to aid the process of designing and documenting an artifact.
In ADD, this “assistant” takes the form of an active document that keeps
track of dependencies, propagates constraints, and checks parameter
values.

3. Using ADD for the Preliminary Design of HVAC systems

As mentioned earlier, HVAC system designers work under time
pressures for developing preliminary designs. They focus on generating
a design rather than documenting it. Documentation is often seen as
taking time away from the design process; consequently, designers try to
minimize their documentation work. For designs developed for bidding on
contracts, it is typical that only a fraction of the designs will
actually lead to complete projects. In such situations, there is even
less incentive to document.

This perception of value and attitude by designers presents an
important requirement on documentation systems: any system supporting

documentation should require minimal time from designers. Design must
remain the designers’ main activity. This section shows how an
automated system can change the cost structure of creating documentaticn
and thereby improve the delivery of information.

3.1. An Architecture for Active Documents
To test the active design document approach, we built and

evaluated a prototype system as an active document for the preliminary
design of HVAC systems.

We created and implemented an architecture, shown in Figure 4,
that addresses the requirements presented in Table 1. Figure 4 shows

the architecture we used for developing an active design document. This
architecture shows:
. Reasoning Components. These are responsible for generating

design decisions, comparing these decisions with the
designer’s decisions, preparing design reports and
controlling the documentation process (the Anticipator,
Reconciler, Rationale Generator and Controller respectively);

. Design Knowledge Base. This contains knowledge about the
HVAC system docmain and knowledge about a specific case; -
. Interfaces for creating documentation. These are active only

when creating a design document. These interfaces allow
designers to develop their projects and to adjust ADD’s
design model (the design and justification interfaces,
respectively);

. Interfaces for Retrieving documentation. These allow
documentation users to query and question the design (the
Explanation interface).

Design

Interface

~ Justification
Interface E

nowiedge
Elicitor _

Design KB

Reconciler

User Model
Artifact Model

Domain Heuristics

Decision-Making Model [
kComponent Database)

Design Cases

Anticipator

4 Legend
[Only Documentation Retrieval

k Only Documentation Acquisition

Documentation Acquisition & Retrieval

Figure 4: An architecture for implementing the Active Design

Documentation model.

3.2. Reasoning for Documentation Capture and Retrieval

The purpose of ADD’s reasoning process 1is to generate a consistent
and complete design document with low overhead for designers. ADD
increases the quality of design documents by recording the design model
that generates the design instead of just recording the parameter
values. In addition, ADD’s initial design model decreases designers’
effort in the documentation activity. Designers add specific knowledge
only when ADD is not able to generate a certain design value.
Furthermore, the parameter values are guaranteed to be consistent
relative to ADD’s model. This section describes ADD’s reasoning
modules, which generate the consistent design document at low cost for

designers. These modules are responsible for:
. generating the design (Anticipator),
. reconciling ADD’'s design with the user’s (Reconciler),
. preparing rationale reports (Rationale Generator), and
. controlling ADD’s actions.

The role of the Anticipator is to predict a value for a decision
topic given by the designer considering the current state of the design
and the active requirements. To make a prediction, the Anticipator uses
the domain knowledge base (the parametric design and engineering
decision-making models) and information about the specific design case.
It is a constraint-based reasoner; i.e., given some constraints and a
set of evaluation criteria, it is able to generate and analyze
alternatives and propose a set of solutions. Figure 5 illustrates the
Anticipator procedure to decide the value for a parameter.

Value
subparameters
Constraints
Eliminate Alternatives }

——

verconstrained
Alternatives? Design
evaluated alternalives

Solution
Set

Select Best
Alternatives

Figure 5: A simplified version of the Anticipator’s procedure.

Given a parameter, if the value is already known, the Anticipator
returns the value. Otherwise, the Anticipator checks whether it has all
necessary information for determining the parameter value, i.e., if all
subparameters are already known. The Anticipator first determines any
subparameter following the same procedure. After determining the values
of all subparameters, the Anticipator is ready to choose a value for the
parameter being studied. First, the Anticipator generates the
alternative values for the parameter. Then, it applies the active
constraints on the alternative values. If there is no alternative that
satisfies all constraints, the Anticipator returns all alternatives with
their evaluations (in an overconstrained situation, ADD notifies the
designer and goes to the acquisition mode). All alternatives that
satisfy all constraints are evaluated considering the set of active
criteria and their importance in the design. ADD selects the best
alternatives and returns this set.

The Anticipator proposes a set of parameter values to be compared
to the value proposed by the user. The module responsible for this

comparison is the Reconciler. In the typical cases, ADD agrees with
user and thus determines that it understands the rationale for the
decision. If there is a mismatch, the Reconciler diagnoses the type of
match or mismatch that occurs between the designer's and ADD's proposed
values.

Whenever a mismatch is diagnosed, the rationale generator and the
justification interface are activated. The Rationale Generator is
activated to prepare ADD’s rationale for its expectation. The
Justification Interface is activated to elicit changes to ADD’s model
from designers.

The Knowledge Elicitor is activated whenever a mismatch is
diagnosed. The Knowledge Elicitor module works closely with the
Justification Interface. This module interprets the information
provided by the designer. The elicitation is guided by the user, who
triggers a procedure to do one of the following:

. Change Requirements. The Reconciler creates a new version of
the design containing the changes. Consequently, the old
information remains available.

. Change Design Constraints. The Reconciler guides the user in
changing the model. The Knowledge Elicitor module translates
the new constraint into either LISP functions or heuristic
rules depending on the type of parameter (deduced or decided
parameters) .

. Change Design Criteria. The reconciler changes the criteria
for evaluating a design.

ADD's last reasoning module is the Controller that supports the
overall interaction cycle in anticipatory design. The Controller
defines ADD’s sequence of actions, but not the order of designer
actions. It is often in idle mode. As soon as the designer updates the
design case by proposing a new parameter to be evaluated, the Controller
activates the Anticipator to generate an expectation for the parameter
value. Then, the Controller sends ADD'’s expectation and the user’s
value to be evaluated by the Reconciler. If the Reconciler diagnoses a
match between the values, the Controller updates the Design Case and
returns to its idle mode. Otherwise, it activates the Justification
Interface to acquire more information for ADD’s design model. The
Controller also propagates the changes to any parameter influenced by
those changes checking whether the changed parameters still comply with
the values proposed previously proposed by the user.

In summary, the Anticipator generates the document, the Reconciler
determines whether the document reflects the designer’s idea, the
Justification Interface allows the user to adjust the document, and the
Controller guarantees design consistency. Consequently, the designer’s
effort for generating design documentation is heavily transferred to
ADD.

3.3. User Interfaces for Documentation Capture

Designers use the Design Interface to develop design cases and to
understand the design specification. ADD proposes values for design
parameters, adjusts initial requirements and generates more requirements

or design parameters. ADD’s Design Interface supports opportunistic
design by offering a series of design actions.

Concepts from conventional graphical user interfaces were adequate
for our prototype system and the HVAC domain. For concreteness, we
describe them here briefly. As illustrated in Figure 5, the Design
Interface offers two types of actions: Specification Retrieval
Decision-Making actions. Designers retrieve the initial specification
on the project that includes:

. the set of specific requirements for the building (such as
the budget limits),

. the design specification drawings (blueprints) containing
structural and architectural information about the building,

. the job specification containing the name of the design
participants; and

. the set of criteria and the importance they play in the case

being developed.

In addition to studying the initial specification, designers
develop their projects by selecting parameters, choosing parameter
values and changing requirements. ADD's design interface supports this
decision-making activity by allowing designers to select parameters,
that become the focus of the decision-making process, and values for
those parameters. The parameters are logically organized in groups.
For example, HVAC system configuration, HVAC degree of centralization,
HVAC equipment location, equipment quality, and Building Heating Loads
parameters are classified under the HVAC__PARAMETERS.

Design Interface

Specificatiop Retrieval . Decision-Making

Design Requirements Blue Prints

Retrieval Retrieval
Job Specification Design Criteria Parameter Selection
Retrieval Retrieval Parameter-Value Selection
Figure 5: ADD’s Design Interface Anatomy.

Designers can propose values for design parameters in any order.
Even when parameter dependencies require a certain order of actions, ADD
does not impose this order on designers. ADD creates assumptions for
the dependent parameters to avoid imposing decision ordering.

The Justification User Interface complements the Design User
Interface by allowing the system to output its decision reasoning and
the user to insert rationale for justifying contradictory decisions.
This interface also does not impose any special order of actions.

The Justification User Interface starts working as soon the
Reconciler detects a conflict between the designer’s and the
Anticipator‘s decisions. 1In this case, the Justification User Interface
presents the user with its decision and rationale as illustrated in
Figure 6. A designer can either accept ADD’s proposed value and

explanation, force his/her own solution, or go to the acquisition mode
to adjust ADD’s model.

User's and ADD's ADD's
alternatives with constraints Decision
and criteria evaluation Sequencing

Dependency Network Tri gger

i that .
 With the paramelers that 11 1y, cian’ Model
influence the "problematic Ch
anges

parameter.

Figure 6: ADD’'s Justification Interface: the lower right
window presents the options for changing ADD‘’s design model
while the remaining windows present ADD’s rationale for its
expectation (evaluation of alternative values for a parameter
considering active constraints and criteria, dependency network
containg the parameter being discussed and history of the
decisions). '

In case of a expectation failure, designers can either 1) change
any parameter values, 2) change the set of specification or 3) engage in
a thorough model adjustment. The Justification Interface offers three

different types of actions (as illustrated in Figure 7): Change
Parameter Values, Change Design Data and Change Parametric Model
actions. The last set of actions allows designers to actually alter
ADD’s design model by changing:

. the parameters settings (by adding or deleting parameters
from the model),

. the parameter’s dependencies (by adding, modifying or
deleting dependencies between parameters in the parametric
model), '

. the constraints definition (by editing, deleting, or adding
constraints) ;

. the criteria definition (by adding a new criterion, changing

a criterion evaluation for the parameter alternative values,
or changing the importance of a criterion in the design).

Justification Interface

Change

Change Design Change Design Data
Parametric Model

Parameter Values

Change Current Change Change

Parameter Values Building Data Parameters Change
Constraints
Change Previously Change Change Ch'ang’e
Decided Parameter Values Job Data Parameter Dependencies Criteria
Figure 7: Hierarchy of the options offered by the Justification User

Interface.

3.4. User Interfaces for Documentation Retrieval

The appearance of ADD’s interfaces are modeled after current
engineering documents. This approach to supporting the retrieval of
information is in contrast with the conventional use of query languages.
Facts are not found by describing appropriate names and indices to a
query language. Rather, they are presented in a regular integrated way
in the reports that make up the design documentation. To find
information, one requests the appropriate kind of report. In this way,
information is always presented in a context, and pieces of information
that are generally used together are reported together.

The user requests design explanation by interacting with a menu-
based interface. ADD processes two types of questions: questions that
involve a simple retrieval of data and questions that involve rationale
generation. As illustrated in Figure 8, the data retrieval options
include:

. retrieval of the initial design specifications,
. retrieval of ADD’s adjusted parametric model,

. retrieval of a parameter value,

. retrieval of the final design specification, and
. retrieval of the design history:;

while the rationale generation options include:

. rationale generation for a parameter value,
. rationale generation for comparison among options, and
. simulation of a design under different circumstances

(sensitivity analysis).

Explanation Interface Options

Data Retrieval Rationale Generation
Initial ' /R
Specification value Fma¥ Parameter ~ Comparison Dfesxgn .
Decision Parametric Design value Among Simulation
History Model Specification Parameter
Values
Figure 8: Hierarchy of the explanation options offered by the

Explanation Interface.

ADD generates reports to answer the guestions selected through the
Explanation Interface. ADD contains a definition of the parameters that
need to be retrieved to formulate such reports.

The Rationale Generation options instigate more complex
procedures. These options accommodate questions such as:
(1) why does a parameter have a specific value?,
(2) why does a parameter not have a given value? or
(3) what would happen to a design if the specifications were
slightly different?

Answering these questions requires a design action such as
generate alternatives, evaluate alternatives considering a set of
constraints and criteria, propagate changes through the parameter
dependencies and evaluating the changes.

Once the data for the reports are available, the Rationale
Generator’s effort orients towards filtering the information to be
presented to documentation users. ADD considers two types of explanation
filters: breadth and design view filters. The breadth filtering is
defined by the user's selected explanation emphasis and by the
information clustering observed in the domain reports. The breadth
filtering determines the amount of information ADD displays to the user
for a given design parameter (illustrated in Figure 9).

Explanation Filters

Breadth Filters Depth Filters
User Interests Information User Lackground
Clustering
(from reports)
User Interests Background
FIRST_COST
Oﬁiﬁ?&ggﬂ OWNER
ENERg@%}}V_g&S\TAHON ARCHITECT
EQJﬁ%ﬁ?ﬁEﬁ%ﬁﬁﬁéﬁujy STRUCTURAL
M AHKII"(I?IIEiiNCE PRACTITIONER
éggiggﬂgﬂﬁ?; HVAC_DESIGNER
ggﬁ%gfﬁ}}:g INSPECTOR
pgkgég)gfggzuw OWNER_REPRESENTATIVE

Figure 9: Data Input for helping focusing an explanation.

ADD presents the parameter evaluation in terms of the criteria
selected by the user for explanation emphasis. A user can check other
criteria by changing the explanation emphasis. ADD's objective is to
provide only the information that interests the user at a given time.
This is called a breadth filtering because ADD is defining the issues
influencing a parameter.

The depth filtering determines what view of the design model
should be displayed. The depth filtering is defined by the user
background. For example, a gquestion concerning the equipment capacity
is answered in terms of the specific building loads calculations if
asked by a HVAC system designer, however the same question may be
answered in terms of the building location, and building exposure if
asked by the owner. The answer is the same, but the view of the answer
varies.

The main role of design documents in preliminary design is to
allow a two-way dialog between the designer and documentation users.
HVAC designers need to understand the design requirements requested by
the other building design participants including the owners and the
architects. Since designers do not have perfect knowledge of these
requirements, they make guesses about the requirements during design. In
addition, during the preliminary stage of the design requirements often
change.

ADD’s dynamic document allows documentation users to discover the
designer’s assumptions, as well as to support some exploration of design

space even when designers are not available. ADD’s available design
model can simulate what would be the design under different
circumstances. Consequently, the design choices can be shared by
designers and clients.

Whenever a change in the building specification or in the design
requirements is proposed by a documentation user, the Rationale
Generator retrieves all parameters influenced by the changes. For each
of these parameters, the Controller invokes the Anticipator to obtain an
expectation considering the new design conditions. The Reconciler is
activated to check the match between the old and new parameter values.
If the new specification produces a different parameter value, the
Controller records and propagates the changes to the influenced
parameters. At the end, the Rationale Generator contains a list of
parameters that need to be changed to adjust to the new design
specifications. The changed parameters correspond to the impact on the
HVAC system design given changes in the design specification. As soon as
the impacts are calculated, the Rationale Generator returns the design
to its original specification.

The same process occurs when the change affects the HVAC system
design. In this case, the user is probably interested in checking the
impact on the other design trades (or even in other aspects of the HVAC
system design) if a HVAC system design parameter changes. The Rationale
Generator receives the new HVAC parameter value and evaluates it in
terms of the active constraints and criteria. Consequently, it checks
the local impact caused by the change in the design specification, such
as a violation of an architectural constraint. In addition, it forces
the new value and propagates it to the set of influenced parameters. At
the end, the Rationale Generator reports the local evaluation of the
change and a list of other HVAC parameters affected.

4. Evaluating ADD’s Performance

To establish viability of the architecture for building active
documents, we developed a pilot study using ADD to build, revise and use
an active document for a realistic problem. Our studies have helped us
to understand how an active document can affect the cost of creating and
using documentation.

First, we conducted two tests with experienced designers
interacting with ADD in the preliminary design of a modest HVAC system.
Then we had two typical users of HVAC documentation interact with ADD to
understand one of the designs developed in the first tests. In both
cases, we kept statistics on ADD’s performance to measure its degree of
interference with the designers and to understand how its internal
architecture performed. We also videotaped the sessions. In addition
to the statistics and videotapes, we interviewed the designers and
documentation users, asking them to evaluate the potential usefulness of
ADD in their work environment.

4.1. Pilot Study in Creating Documentation

We selected two experienced designers from different HVAC system
companies to take part in our experiments. Both have more than 10 years
of professional experience in generating HVAC system designs. They had
no previous experience with ADD or with the problem case. Each asked to
develop a design proposal (preliminary design document) for the given

case. That case consisted of developing and documenting a design for a
5-story office building located near San Francisco using ADD. (To
minimize one source of possible bias, the realistic project used for the
test case was not considered in the development of ADD's initial
knowledge base.)

Procedure

Each designer was given an initial set of specifications including
the building blueprints, design criteria, the list of design
participants, and the owner’s requirements for the design. Then the
designer was asked to prepare a preliminary design meeting these
specifications. The preliminary design of an HVAC system involves the
instantiation of about 150 parameters. Each designer explicitly decided
between 15 and 20 parameters. All other parameter instantiations were
considered implicit decisions, but the designers also checked their
values interactively with ADD at the end of the session. There was no
imposed order for the designers’ decisions or actions.

The designers interacted with ADD though Dr. Garcia because we
didn‘t have enough time from the experts to completely train them in
ADD’s user interface. The designers asked for information about the
case, selected parameters to be instantiated, and provided values for
those parameters. Dr. Garcia did not provide any additional verbal
input about the project because we wanted to verify that the information
shown by ADD was sufficient.

The sessions lasted about 2 hours each. In addition to the
material collected observing designers interacting with ADD, we
interviewed them to verify the usefulness of a tool like ADD, the
adequacy of the approach to support design and documentation, and the
need for such a tool to assist the documentation process.

Data Analysis

We analyzed the data in the protocols to verify the adequacy of
the architecture for building an active document and the impact of an
active document on the cost of creating documentation. We recorded the
frequency with which each module was activated in each session as well
as the number of right expectations generated by ADD. The purpose was
to measure the percentage of automatic documentation as a measure of the
time saved.

Results

The statistical results of this pilot study are shown in Table 1.
We first measured how the ADD architecture responded to each designer’s
actions. For example in session 1, the designer explicitly decided
values for 17 parameters (indicated by the number of activations of the
Reconciler, which compares designer’s decisions with ADD’s decisions) .
Those 17 parameters include 4 that ADD had to recompute after knowledge
elicitation to handle conflicts between designer choices and ADD's
choices (measured in the number of activations of the Knowledge
Elicitor). On its own, ADD determined values of a total of 74

parameters

(the number of activations of the Anticipator),

a number that

includes many parameters that the designer handles implicitly in

preliminary design.

In analyzing those numbers,

expectation only 4 times for 74 parameters decided in session 1.

we note that ADD produced an incorrect

The

fraction of the parameters correctly and automatically documented is
what we call the anticipation hit ratio. i

Session 1 Session 2
_ User Project Manager A |Project Manager B
Design Interface 33 13
Number of Anticipator 74 59
Activations per Reconciler 17 12
ADD module Knowledge Elicitor 4 6
Justification Interface 10 20
Anticipation Hit Ratio 0.95 0.90
Informal Evaluation Excellent Excellent
Table 1: Pilot study results for creating documentation.

The correct expectation is extremely important in guaranteeing low

overhead in the documentation process.
the time required to produce an active design document,

Equation 1 is the computation of

including the

time for uninterrupted design and the time required to enter extend
ADD’s knowledge base to justify the user’s decision.
importance of having a high percentage of right expectations in the

active document approach.

Te = Th * r + Ti{ * (1 - r)
where:
Te 1is the
Th is the
T; 1is the
design
r is the

time to enter rationale;

model to match the user’s decision;
anticipator’s hit ratio.

It highlights the

(Equation 1)

time to document a parameter automatically;
interaction time—the time spent adjusting ADD’s

and

Equation 1 tells us that the expected design time depends on the

anticipator’s hit ratio.
practice, then r is close to 1.

In such cases,

If the knowledge base is tuned to the user’s
ADD’s approach to

documenting additional parameters imposes very little overhead on the

designer.
not tuned,
that the

not have a big variance.
In
They saw

4.2. Pilot Study in Retrieving Documentation

In our test cases, even though the initial design model was
the anticipation hit ratio was above 90%.
domain is mature and that the strategies used for designers do

This suggests

our interviews, the designers confirmed our numerical results.
substantial potential for the active documents in HVAC design.

We conducted two tests to evaluate ADD’'s performance in delivering

rationale.

owner’'s representative and a mechanical engineer.

We selected two natural users of HVAC system documents:
The owner'’s

an

representative had more than 15 years of experience analyzing design
documents and making sure that the owner’s requirements were satisfied

by a project.

The other user was a university professor who teaches the

design of HVAC systems. Neither had no previous experience with ADD or
with the problem case, which consisted of understanding and approving
the design proposal developed in the documentation creation experiment.

Procedure

Again, Dr. Garcia served as the interface with the system. Her
role was to input the user questions to ADD. Both users easily
verbalized their questions about the design and analyzed the answers
presented by the system. Dr. Garcia did not add any information to that
displayed by ADD. There was no time restriction on the interaction;
however both took 1 to 1 1/2 hours interacting with the system.

Data Analysis

We analyzed the data in the videotapes produced by the two

experiments. We were looking for
. the adequacy of the architecture to provide answers to users'’
questions, and
. the adequacy of the answers to satisfy documentation user’s
needs.
Results

Table 2 presents the number of times each module was activated to
generate design explanations. All modules were activated during both
sessions, indicating that they are all were necessary in explanation.
Even in retrieval sessions, the Anticipator is activated, illustrating
the fact that explanations are generated and not just retrieved from
active documents. During session 1, the user retrieved design facts,
such as initial requirements, and decision history. He questioned the
value of 4 parameters and verified the value of other 6 parameters. In
both sessions, the documentation users changed specifications to check
the design response to those changes. ADD was able to answer all of
their questions, except for the ones related to parameters outside its
design model or related to parameters not addressed by the designer
during the development of the project.

~Session 1 " Session 2
User Project Manager Mechanical

Engineer
Number of Explanation Interface 33 13
Activations per Anticipator 74 59
ADD Module Reconciler 17 12
Rationale Generator 4 6
Answer Acceptance 0.9 1

Informal Evaluation Excellent Excellent

Table 2: Pilot study results for retrieving documentation.

The documentation users reported that the case study was a good
representative of the cases they normally solve in their offices. They

also stated that without. ADD they would take much longer to find
information in a project and analyze it. They also commented that they
missed the blue prints at first till they realized that the blue prints
were also available inside the tool. They were surprised with the
potential of the tool, especially the ability to check impacts on a
design given changes in the requirements. Both agreed that a design
tool with ADD’s capabilities would have a major impact on design speed,
quality and flexibility.

The results from the initial test cases indicate that ADD offers
the following benefits:

. increasing the number of questions that can be made on a
design;

. providing focus for the explanation, and

. allowing documentation users to challenge the design,

changing requirements and assumptions

In summary, the same design model that originates a design can be
used for constructing an explanation. The same model allows
documentation users to explore new alternatives. Consequently, the
designer is no longer the only one doing design. The acquired design
model can also be used as the index of information that can be filtered
considering the user’s interests and profile.

5. Related Work

Previous work on design rationale follows three major approaches:
to record the sequence of actions (history-based rationale), to record
the arguments and issues raised during design (argumentation-based
rationale), and to record the device behavior model (device model-based
rationale).

This section presents the three other approaches to documentation;
i.e., history-based, argumentation-based and device model-based
rationale, emphasizing their performance related to the preliminary,
routine design issues. At the end of this section we present a table
with the summary of this comparison.

5.1. Argumentation-based Rationale

The argumentation-based approach is an outgrowth of research on
hypertext. The primary goal of this research has been to provide a
uniform structure for creating arguments, so as to make arguments more
directly comparable. The emphasis in this work has been on
expressiveness of the argumentation language together with domain and
task independence.

According to the argumentation-based rationale approach, design
rationale is an informal representation of the arguments that defines a
design. This approach offers a fixed, domain-independent vocabulary for
describing the reasons for a design. Rationale is recorded and
retrieved as uninterpreted chunks of text classified using the
argumentation-based vocabulary. Previous approaches, such as IBIS
(Kunz, 70), PHI (McCall, 87), QOC (MacLean, 91), and DRL (Lee, 90},
differ in the vocabulary and relations defining rationale.

The quest for generality in argumentation-based rationale comes at
the expense of attention to the requirements of the design task. Thus,

argumentation systems are not especially well tailored to engineering
design, routine design, preliminary design, engineering decision models,
trade-offs, particular domains, or the different needs of different
documentation users. Although these systems have goals for generality,
they are unspecialized and weak.

Argumentation-based models can not support preliminary design
documentation because the models (1) impose overly general and

unfamiliar notation for designers; (2) force designers to have an even
more active role in the documentation task (increasing the documentation
overhead); (3) can not guarantee consistency of the recorded rationale,

consequently the recorded rationale might not explain the design; (4)
offer a static view of design, consequently they can not support the 2-
way communication needed in preliminary design; and (5) can not go
beyond recording and retrieving information, since rationale is
uninterpreted text.

5.2. History-based Rationale

The history-based rationale approach represents rationale as a
sequence of events that take place during design. According to this
approach, the “design log” is sufficiently rich to reconstruct the
design and, consequently, to explain it. Many systems, such as Lakin's
electronic notebook project (Lakin, 1989) and EDN (Karinthi, 92), aim to
provide an environment that can construct the design log. In this
model documentation should contain all information and actions that take
place during the design.

The history-based approach focuses primarily on low overhead
methods for recording design decisions. This approach has sought
generality in this recording without commitment to any particular design
domain or phase of design. To this end, it relies primarily on
uninterpreted design records. Furthermore, this approach focuses on the
creation of design records, but not their use. Consequently, it pays
little attention to the processes of design tradeoffs or negotiation
over specification that is characteristic of preliminary design.

One of the assumptions of this approach is that the record of the
actions explains the design. However, many design decisions and
criteria are never written down so that the relevant rationale is
inaccessible to a document user. The designers’ actions might reflect
some of their design process; however, there is no way to guarantee that
the actions can reproduce the designers’ reasoning process. The history
helps to understand a design, but it is not enough to explain why the
designer selected a specific alternative. In short, this approach saves
on documentation creation payments but mortgages document retrieval
futures. Recording of documentation is cheap, but there is nothing to
assure that what is recorded will be useful or even meaningful.

Another problem with the adequacy of the history-based approach
relates to the consistency of the recorded document. Since rationale is
recorded as non-interpreted actions, there is no way to guarantee the
document ‘s consistency and accuracy to explain the design. In
comparison with the active design document approach, this reduces the
incentive for the designer to use the approach.

The design-history approach plays a very passive role in the
documentation. Consequently, besides recording a huge amount of

information (including irrelevant information), the approach can not
guarantee that the recorded information is able to explain the generated
design. The approach is not practical for supporting preliminary design
because design participants need fast access to information that reveals
and explains the assumptions considered in the design.

5.3. Device Model-based Rationale

The device-model approach for rationale uses a device model to
explain a design, and assumes that explanations in terms of devices are
sufficient for all explanation needs. This machine interpretation for
rationale is more powerful and domain specific than the argumentative
and history-based models proposed above.

The device-model approach is based on many of the techniques and
assumptions of device-model based expert systems, especially those for
diagnosis. The basic motivation for that work is to provide more
automatic methods for reasoning about a design by using detailed
knowledge about the devices that comprise it. In this research branch,
exemplified in work by Gruber (Gruber, 1992; Gruber and Russell, 1990)
and Baudin (Baudin, Sivard and Zweben, 1990), a deep model containing
form, function and behavior information about domain concepts supports
the acquisition of rationale in a specific domain.

This approach has been more successful for diagnosis than for

design. In diagnosis the model for the system composed of devices is
considered to be complete. However, throughout most of a design
process, some parts of the the system are always unspecified. Indeed,

the work of design necessarily involves exploration of the space of
possible designs. This brings requirements for modeling specifications,
tradeoffs, and social aspects of the design such as an analysis of the
different needs of different documentation users. By their nature,
device models do not make use of this information, and therein lies the
source of their weakness.

Although the device model-based approach models devices, it does
not really model design. For example, there is no place in this
approach to talk about design choices and evaluation criteria. The
approach is not motivated by an understanding of design as a
collaborative process. The approach pays no attention to the
information and communication needs of collaborating designers.

5.4. Comparing the Approaches

The documentation problems identified in our field studies were
the basis for comparing the approaches. Table 3 summarizes the
evaluation of each approach considering whether the approach (1) handles
the problem successfully, (2) does not handle it successfully, or (3)
does not address it at all. Each cell in table 2 contains either a +, -
or ? sign meaning:

. + addresses issues and substantially contributes to a
solution;

. - contributes little to a solution; and

. ? . does not address the issue.

parameterized

Argumentation| History-based | Device Model-]Active Design
-based Rationale based Documents
Rationale Rationale
Low Overhead — + — +
Consistency - — — + +
Completeness - —_ - +
(adequacy)
Access - - ? +
Information
Allow - - + +
Negotiation
Common - + + +
Terminology
Table 3: Comparing design rationale approaches to the

documentation problems identified during preliminary routine design.

In summary, the active document approach is a radical departure
from previous work on design rationale. These other approaches to
design rationale have not been so focused on the issues of preliminary
routine designs. Thus, although those approaches are the closest
related work, the active document approach represents a significant
departure both in methods and evaluation criteria. The other approaches
suffer in the comparison in part because they were never so precisely
aimed. Nevertheless, this very aiming is part of the point of the
approach. We believe that the sharper aim is necessary for a higher
payoff.

6. Conclusions

In this paper, we have described the active design documents
approach to support documentation lifecycle. We presented the
implementation and experiments of an active design document for the
domain of HVAC preliminary design. The test cases indicate that is
feasible to build an active design document that measurably aids
designers in the documentation process. We observed that the
performance of the documentation system depends crucially on its ability
to correctly anticipate design decisions. We propose a measure to check
the utility of the approach for a domain: the anticipation hit ratio.
The AMEBA diagram of each design session showed the fraction of the
parameter space actually designed and documented by designers compared
with the portion of the design space being covered by the automatic
documentation agent.

The active document approach reduces the costs for a designer to
document design assumptions, especially as they relate to communicated
specifications. It reduces the perceived cost of design exploration by
making it easier for users to try design variations both for users and
designers. Designers benefit because of the automatic propagation of
changes and checking of constraints. In additions, users exploring the
design space benefit because they do not have to wait for a designer to
be present. This also enables users such as owner representatives to
check that their specification are being correctly understood. It also
enables them to explore the sensitivity of cost to design and
specification variation.

Design is collaborative. The ADD approach directly affects the
nature of communication between design participants. It gives them a
rich and active medium for referring both to the design and elements of
the design process. We believe that this approach can improve design
practice both in the short run and in the long run. In the short run it
can improve the consistency of designs by its automatic checking, and
the quality of design by lowering the cost of exploring more of the
design space in detail. In the long run, we believe it makes the design
practice more visible, and thereby, more accessible for evolution and
tuning.

References

Baudin, C., C. Sivard, et al. (1990). "Using device models and design goals for design
rational capture.” Technical Report. NASA Ames Research Center, CA.

Conklin, J. and M. L. Begeman (1988). "gIBIS: A hypertext tool for exploratory policy
discussion." Proceedings of the 1988 Conference on Computer Supported
Cooperative Work (CSCW-88), Portland, Oregon.

Fischer, G., A. C. Lemke, et al. (1991). “Making Argumentation Serve Design.” Human-
Computer Interaction 6(3/4).

Garcia, A. C. B., H. C. Howard, and J. Stefik (1993). "Active Design Documents: A New
Approach for Supporting Documentation in Preliminary Routine Design."
Technical Report #85, Center for Integrated Facility Engineering, Stanford
University, CA.

Garcia, A. C. B., H. C. Howard, and J. Stefik (1994). “Improving Design and
Documentation by Using Partially Automated Synthesis.” Submitted to AIEDAM
special issue on Design Research Methodology.

Gruber, T. R. and P. P. Nayak (1992). Computer-assisted Formulation of Engineering
Models: Issues for Knowledge Acquisition. Stanford University, Knowledge
Systems Laboratory.

Gruber, T. R. and D. M. Russell (1992). Generative design rationale: Beyond the record
and replay paradigm. Design Rationale. Lawrence Erlbaum.

Karinthi, R. (1992). "Capturing Design Rationales for Use in a Concurrent Engineering
Environment." AAAI '92-Design Rationale Workshop, san Jose, CA,

Kunz, W. and H. W. J. Rittel(1970). "Issues as Elements of Information".Technical
Report. Center for Planning and Development Research, University of California,
Berkeley.

Lakin, F., H. Wambaugh, et al. (1989). “The electronic design notebook: Performing

medium and processing medium.” Visual Computer: International Journal of
Computer Graphics 5(4): 214-226.

Lee, J. (1990). "SIBYL: A tool for managing group decision rationale." Proceedings of
the conference on Computer Supported Cooperative Work (CSCW-90), Los
Angelos,

Luth, G., H. Krawinkler, K. H. Law (1991). "Representation and Reasoning for Integrated
Structural Design." CIFE Technical Report #055, Center for Integrated Facility
Engineering, Stanford University, CA.

MacLean, A., R. Young, et al. (1991). “Questions, Options, and Criteria: Elements of A
Design Rationale for User Interfaces.” Human Computer Interaction 6(3/4):

McCall, R. (1986). “Issue-serve systems: A descriptive theory for design.” Design
Methods and Theories 20(8): 443-458.

Marcus, S. (1989). “Understanding Decision Ordering from a piecemeal collection of

Knowledge” Knowledge Acquisition 1: 279-298.

Sussman, G, J. Holloway, and T. F. Knight (1979). “Computer aided evolutionary design
for digital integrated systems.” MIT Artificial Intelligence Laboratory Memo

526, Cambridge, MA.

