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LOGICAL SPECIFICATIONS: 1. INTRODUCTION AND OVERVIEW

Thomas S. E. MAIBAUM and Paulo A. S. VELOSO
{e-mail: tsem@doc.ic.ac.uk and veloso@inf.puc-rio.br}

PUCRioInf MCC 13/94

Abstract. The logical approach to formal specifications regards specifications
as axiomatic presentations of theories in standard first-order logic. Its
motivations come mainly from two related sources: concepts akin to program
verification and 'liberal' specifications (which provide flexibility for specifying
what one wishes without forcing over-specification). The rationale for our
standpoint is the realisation that programming has to do with syntactical
objects rather than with their semantical counterparts and, thus, that program
and specification development consists of the manipulation of theories. This
introductory report is intended to set the stage and provide a general overview.
It presents and discusses some general ideas underlying our property-oriented
approach. We start by examining the motivations for our approach and then
proceed to consider some of its consequences for stepwise development:
implementations and their composition as well as parameterisation and
instantiation. We also briefly comment on our approach to errors via liberal
specifications. This report is a draft of the first section of a handbook chapter.
Subsequent reports will analyse these and related points in more detail.

Key words: Formal specifications, program development, logical approach, logical
theories, axiomatic presentations, liberal specifications.

Resumo. O enfoque légico para especificagdes formais trata especificagoes como

apresentagdes axiomaticas de teorias na légica usual de primeira ordem. Suas
motivagdes vém principalmente de duas fontes relacionadas: conceitos
préximos a verificagdo de programas e especificacdes 'liberais’ (as quais
fornecem flexibilidade para se especificar o que se deseja sem forgar super-
especificagdo). A razdo para nosso posicionamento é a observagao que
programacgdo tem a ver com objetos sintaticos e nao com suas contrapartidas
semanticas e que, portanto, desenvolvimento de programas e especificagbes
consiste de manipulacdes de teorias. Este relatério introdutério pretende
fornecer um pano de fundo através de uma visdo panordmica, apresentando e
discutindo algumas idéias gerais subjacentes a nosso enfoque orientado a
propriedades. Comegamos examinando as motivagdes para 0 enfoque e
considerando algumas de suas conseqiiéncias para o desenvolvimento por
etapas: implementagdes e sua composigio bem como parametrizagao e
instanciacdo, também comentando brevemente sobre nosso enfoque para erros.
Este relatério é um esbogo da primeira segdo de um capitulo de um manual.
Relatérios subseqiientes analisardo esses pontos, e outros relacionados, em
mais detalhe.

Palavras chave: Especificages formais, desenvolvimento de programas, enfoque 16gico,
apresentagdes axiomdticas, teorias ldgicas, especificagbes liberais.



NOTE

This report is a draft of the first section of a chapter in a forthcoming
volume of the Handbook of Logic in Computer Science

Other reports, corresponding to the remaining sections, are in
preparation. The plan of the chapter - and series of reports Logical
Specifications - is as follows.

Introduction and Overview

Specifications as Presentations

Extensions of Specifications

Interpretation of Specifications

Implementation of Specifications

Parameterised Specifications

Conclusion: Retrospect and Prospects.

The chapter - and series of reports - is intended to provide an account
of the logical approach to formal specification development.
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Any comments or criticisms will be greatly appreciated.

The next report in this series is planned to be Logical Specifications: 2.
Specifications as Presentations, with the following contents

2 SPECIFICATIONS AS PRESENTATIONS

21  Introduction

22 Languages

23  Structures and models

24  Theories, presentations and specifications
25 Inductive sorts and specifications

2.6  Errors and underdetermined operations
2.7  Reasoning about programs

2.8 Liberally constrained specifications

29  Example specifications
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1 Introduction and Overview

This chapter! presents a logical approach to formal specifications
motivated by its usage in program development. This approach is based
on regarding specifications as axiomatic presentations of theories in
first-order logic. We shall use familiar logical concepts and terminology,
but we shall generally emphasise a constructive approach: constructions
that are guaranteed to provide the desired results, rather than a-
posteriori verification.

 This introductory section is intended to set the stage and provide a
general overview. It presents and discusses some general ideas
underlying our property-oriented approach.

We start by examining the motivations for our approach, which is
based on viewing programs and specifications as syntactical, rather than
semantical, objects. We then proceed to examine some consequences of
this viewpoint for stepwise development: implementations and their
composition as well as parameterisation and instantiation. We then
briefly comment on our approach to errors via liberal specifications. We
finally outline the contents of the subsequent sections? of this chapter,
where these and related points will be examined in more detail.

1.1 The logical approach

The logical approach to formal specifications regards specifications as
axiomatic presentations of theories in standard first-order logic. Thus we
use the full expressive power of first-order formulae, in contrast to other
approaches that rely on fragments, such as (conditional) equations. Also,
we emphasise a language-oriented viewpoint, rather than a model-
oriented one (which generally relies on some special kinds of models,
such as finitely generated models).

The motivations for the logical approach to formal specifications come
mainly from two related sources (Maibaum er al. 1991). On the one
hand, logical axioms employ language and concepts akin to program
verification (Manna 19740); on the other hand, the logical formalism
accommodates 'liberal' specifications, which provide flexibility for
specifying what one wishes without forcing over-specification (Maibaum
and Veloso 1981; Maibaum and Turski 1984; Veloso et al. 1985;
Maibaum 1986). In addition, this logical approach has been instrumental
in extending some of these ideas to problem solving (Veloso and Veloso
1981; Veloso 1984,1988) and to formal algorithm design (Smith 1985,
1990, 1992).

1 See the preceding note for an explanation of the terminology ‘chapter’, ‘section’,
etc., as well as for the numbering system. ‘
2 The susbsequent sections are planned to be issued as reports in this series.
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This approach comes from the tenet that program and specification
development consists of the manipulation of theories. This assertion can
be taken as a fact or as a viewpoint. The purpose of this introductory
section is to explain this position. Some arguments will be oriented
towards convincing of the truthfulness of this fact, others will try to
show the benefits of this viewpoint. The main point is that viewing the
process of program development as manipulation of theories does shed
some light on issues in stepwise development of programs, with
accompanying benefits.

1.2 Programs and theories!

The rationale for our standpoint is the realisation that programming has
to do with syntactical objects rather than with their semantical
counterparts. That a program is a syntactical entity hardly needs any
elaboration: a program text is a syntactical description of the
transformation effected by it. This viewpoint is further stressed by
viewing an abstract program manipulating an abstract data type as a
program schema (Manna 1974). The very purpose of a program is to
transform input data into output results. But in so doing, a program does
not manipulate directly real-world objects, only their symbolic
representations (Ledgard and Taylor 1977). a program to compute, say,
the greatest common divisor will actually manipulate numerals
representing numbers rather than numbers themselves.

Let us see how these considerations fit into the process of program
development. The starting point is the specification of the desired input-
output behaviour, which is given by syntactical entities, like first-order
formulae. The product consists of (the text of) an abstract program.
Now, the proof that the program does satisfy the given specification
amounts to syntactical manipulations employing, say, verification
conditions (Manna 1974). The process of deriving a program from a
specification is even more clearly one of syntactical transformations.

Notice that in reasoning about the behaviour of a program, say in
proving the verification conditions, one must rely on some knowledge
concerning the objects manipulated by it. But such knowledge can, and
should be, at the appropriate level of abstraction. Of course, the very
idea of data abstraction involves hiding representation details.
Conceptually this means dealing with abstract structures or, more aptly,
with their behaviour. And this is the point we wish to stress: the
important aspects of the behaviour of these abstract structures can be
captured by axioms, which are syntactical descriptions of their relevant
properties.

1 More details on these points are planned to appear in the forthcoming report
Logical Specifications: 2. Specifications as Presentations.
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So, programs and the objects manipulated by them are actually
syntactical entities described by their properties, as captured, say, by
axioms. But, what about the programs themselves, or rather their
behaviour? Programming languages, in addition to syntax, do have
semantics. But, notice that the so-called axiomatic semantics, a la Hoare,
consist of axioms and rules of inference. And even the denotational
methods give description of functions, rather than functions proper.

Thus, our view is that the process of program development can be
described, explained and understood - and more fruitfully so - entirely
by syntactico-axiomatic means, without recourse to other entities. In
connection with this process two points are worth mentioning. Firstly,
the process can involve refinement steps, and we will come to this
shortly. Secondly, it does involve some ‘“creativity” in taking good design
decisions and we are not claiming to automate this. What we wish to
stress is the feature that these design decisions can be recorded in
formulae, which participate in the process, a point that will be
elaborated upon in the sequel.

1.3 Implementations and theories!

Let us now consider program development by stepwise refinements.
Here one postulates some abstract data type (ADT), suitable for the
problem at hand, which has to be implemented on the available system.
The end product consists of (the text of) an abstract program
manipulating the postulated ADT, together with a suite of (texts of)
modules implementing the ADT’s on more concrete ones until reaching
the available level.

Now one needs some knowledge about the relevant properties of the
abstractions involved. This is provided by the axioms in the
specifications of the ADT’s. The proof that the abstract program does
exhibit the required behaviour consists, as before, of syntactical
manipulations  that derive the verification conditions from the ADT
specification. Similarly, the correctness of the implementation is verified
by syntactical processes, as we shall elaborate upon in the sequel.

Let us examine more closely what is involved in implementing an
abstract data type A on another one, C. The result will be a module
representing objects of A in terms of those of C, and operations and
predicates of A by means of procedures using operations and predicates
of C.

We can abstract a little from the actual procedure texts by replacing
them by specifications of their input-output behaviours. These amount

1 More details on some of these points are planned to appear in the forthcoming
reports Logical Specifications: 3. Extensions of Specifications and Logical
Specifications: 5. Implementations of Specifications.
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to (perhaps incomplete) definitions of the operations and predicates of A
in terms of those of C and can be regarded as axioms involving both the
symbols of A and of C. Similarly, the representation part describes the
abstract sorts in terms of the concrete ones, which can be abstracted into
axioms introducing the new sorts, and capturing (some of) the so-called
representation invariants (Guttag 1977).

With this abstraction in mind we are ready to describe this situation
in terms of formal specifications, i. e. theories presented by axioms
(Turski and Maibaum 1987; Veloso 1987).

One extends the concrete specification C by adding symbols to
correspond to the abstract ones in A, perhaps together with some
auxiliary symbols. Since one does not wish to disturb the given concrete
specification C, this extension! B should not impose any new constraints
on C. This can be formulated by requiring the extension B of C to be
conservative (Shoenfield 1967) (or non-creative) in the sense that B
adds no new consequence to C in the language of the latter.

One then wishes to correlate the abstract symbols in A to
corresponding ones in B, much as procedure calls are correlated to their
corresponding bodies. But, the properties of A are important, for
instance in guaranteeing the correctness of the abstract program
supported by A. Thus, in translating from A to B, one wishes to preserve
the properties of A as given by its axioms. Thus, one needs a translation
i:A— B that is an interpretation? of theories (Shoenfield 1967) in the
sense that it translates each consequence of A to a consequence of B.

We thus arrive at the concept of an implementation of A on C as an
interpretation i of A into a conservative extension B (sometimes called a
mediating specification) of C (Maibaum et al. 1985). This is depicted as
an implementation ‘triangle’ in figure 1.1 and is often called a “canonical
implementation step” (Turski and Maibaum 1987).

i
B
}e
C

A -
Fig. 1.1: Implementation ‘triangle’

1 Extensions are examined in more detail in in the forthcoming report Logical
Specifications: 3. Extensions of Specifications.

2 Interpretations are examined in more detail in in the forthcoming report Logical
Specifications: 4. Interpretations of Specifications.
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1.4 Composing implementations as theories

In stepwise development it is highly desirable to be able to compose
refinement steps in a natural way. Let us consider the situation depicted
in figure 1.2. Here, one has a first implementation of A on C (with
mediating specification B) and a second implementation of C on E (with
mediating specification D). Now, one would like to compose these two
implementations, in an easy and natural manner, so as to obtain a
composite implementation of A directly on E. An immediate question
that arises is: what would its mediating specification be?

D

}f

E

Fig. 1.2: Composition of implementation steps

This is where an important property, the so-called Modularisation
Property !, comes into play. It will allow one to obtain such a mediating
specification M, together with the required interpretation k of B into M
and a conservative extension g of E into M. In other words, it will enable
one to complete the rectangle, thereby obtaining a composite
implementation of A directly on D, consisting of a composite

interpretation of A into M  together with a composite conservative
extension of D into M, as illustrated in figure 1.3.

A

1}

j
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i

> —
Ie
j
C

Fig. 1.3: Composite implementation step
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E

1 A more detailed discussion of the Modularisaton Property is planned to appear in
the forthcoming report Logical Specifications: 4. Interpretations of
Specifications.



Thus, an immediate benefit of this view 1is the iteration of
implementation steps: an implementation of A by C “composes” naturally
with one of C by E to yield an implementation of A by E. Here it is
worthwhile noting that this composition mimics exactly what a
programmer does in simply putting together the corresponding modules.

Another dividend stems from the fact that this view concentrates on
the logical aspects of implementation. For, recall that in passing from C to
B we add formulae rather than programs. These formulae record the
design decisions taken in the implementation, not yet their actual coding
into a program text. Therefore, we achieve orthogonality: the process of
coding actual modules is independent of - and can proceed in parallel
with - the process of further (logical) refinement, say, in implementing C
by E. A simple example of this fact is “families of programs” (Parnas
1979). The successive refinements record the various design decisions,
allowing the development of, say, sorting algorithms, naturally classified
into families (Darlington 1978).

1.5 Parameterised specifications as theories!

One of the long standing research goals in work on formal specifications
is the provision of standard building blocks from which larger
specifications might be constructed and that may be re-used in different
situations. In particular, the structuring of a specification into a “context”
and “parameter” has been found to be particularly useful. The idea is
that the context can be plugged into different situations by appropriate
choice of values (instances) for the parameters. Such structured
specifications are called parameterised (or generic) specifications (Ehrich
1982; Ehrig and Mahr 1985).

Let us consider a simple example: SEQ[DATA] (sequences of, as yet,
unspecified values), where DATA is the formal parameter and SEQ is
what we referred to above as the context. Thus, DATA should be a part
of SEQ[DATA]. One may visualise this situation as in figure 1.4.

SEQ

Fig. 1.4: Parameterised data type SEQ[DATA].

1 More details on some of these points are planned to appear in the forthcoming
reports Logical Specifications: 4. Interpretations of Specifications and Logical
Specifications: 6. Parameterised Specifications.
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Now, one would like to instantiate DATA by various actual arguments
to get 'normal' specifications. So, the replacement of DATA by a
specification NAT, of natural numbers, should give a specification for
sequences of naturals; similarly, the replacement of DATA by INT should
give a specification for sequences of integers. One wishes to instantiate
DATA in SEQ[DATA] by NAT to obtain SEQ[NAT] by 'replacing’ the formal
parameter DATA by the actual argument NAT. Our intuition tells us that
SEQ[NAT] should look like figure 1.5. In other words, one just replaces
the DATA part by NAT within the context SEQ. Thus, for each given
specification for DATA, SEQ[DATA] produces an instantiated version, like
SEQ[NAT]. In an analogous manner one can instantiate SEQ[DATA] to

SEQ[INT].

SEQ

NAT

Fig.1.5: Instantiated data type SEQ[NAT].

The above intuition suggests regarding SEQ[DATA] as a function on
specifications. Indeed, this is the idea underlying the semantics of a
parameterised specification as a (perhaps partial) function from models
to models, or as a (partial) function from specifications to specifications.

Another viewpoint is provided by concentrating on the properties of
the specifications (Maibaum et al. 1985; Maibaum et al. 1991). First, one
should expect SEQ[NAT] to inherit all the properties of SEQ[DATA] that
concern only sequences, such as tail[cons(d,s)]=s. Also, DATA is supposed
to be a part of SEQ[DATA], but not an arbitrary one, in the following
sense. In going from DATA to SEQ[DATA], one would not expect to gain
any more knowledge about DATA. In other words, no new constraints on
DATA are placed by the addition of the context SEQ[ ]. (This is not to say
that every parameter is appropriate for every context.)

The simple tools of conservative extension and interpretations
between theories provide us with a quite straightforward account of
parameterisation which is consistent the treatment in the algebraic
setting. The parameterised types have specifications that are essentially
the same as those of normal types. Thus SEQ[DATA] should be a
specification just like SEQ[NAT]. Their meanings (theories) are the same
as for normal specifications and not (partial) functions between
specifications or models. Instantiation of a formal parameter by an



actual argument rests on a straightforward application of the
Modularisation property!.

The situation in instantiating a formal parameter to an actual
argument is similar to the one encountered in composing
implementations. The Modularisation Property completes the rectangle,
thereby yielding the resulting instantiated specification. Here it is
worthwhile noting that the construction of this instantiated specification
mimics exactly what was suggested above in figures 1.4 and 1.5.

1.6 Liberal specifications and errors?

Another important benefit of viewing specifications as (presentations of)
theories is not exaggerating the importance of errors. Asking for the:
value of “head of nil” is a semantical question. We can declare it to be an
error; we can postpone the decision of what value to return to a later
implementation stage (Maibaum er al. 1984); or, if the specific value
assigned to this expression is not required to prove something about the
system we are developing, we need not say anything about it at all!

The rationale behind liberal specification is not overspecifying. This
gives more freedom in specifying abstractions and in implementing
them after taking some design decisions. That is, incomplete knowledge
is, not only bearable, but also often desirable. This is where a property-
oriented, as opposed to model-oriented, approach is convenient: the
properties of an abstraction are the consequences of its specification,
which may very well be silent about some details. Some of these details
may, or may not, be refined at subsequent development steps.

Summing up, the basic ideas of this approach are as follows.
Programming deals with syntactical entities in an abstract manner.
Properties of objects make up the stuff programming relies on. In other
words, programming amounts to manipulation of presentations of
theories.

1.7 General overview of the chapter

We have presented some advantages of viewing program development
as manipulations of theories. In a nutshell, they amount to enabling
clear distinctions amongst specification of desired behaviour, design
decisions and program text throughout the whole process (perhaps
iterated, as in stepwise refinements). In doing so, we sometimes resort
to a terminology reminiscent of first-order logic. However, it should be

1 More details on parameterisation and instantiation are planned to appear in the
forthcoming reports Logical Specifications: 4. Interpretations of Specifications
and Logical Specifications: 6. Parameterised Specifications.
2 More details on some of these points are planned to appear in the forthcoming
report Logical Specifications: 3. Extensions of Specifications.

8



clear that the spirit of this viewpoint can be carried over to the more
general framework of a linguistic system (Turski and Maibaum 1987).
In the sequel, we will use mainly many-sorted first-order logic to
illustrate how such a property-oriented approach to formal
specifications can be realised in a conventional setting. We shall
generally employ the usual terminology and notation for logical
concepts, for which the reader is referred to standard textbooks, for
instance (Enderton 1972; Ebbinghaus er al. 1984; Shoenfield 1967; van
Dalen 1989). These will be briefly reviewed as they are needed.
This chapter is divided into five sections:
Introduction and Overview
Specifications as Presentations
Extensions of Specifications
Interpretation of Specifications
Implementation of Specifications
Parameterisation of Specifications
Conclusion: Retrospect and Prospect.
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