ISSN 0103-9741
Monografias em Ciéncia da Computagdo

n° 26/94

Logical Specifications:
2. Specifications as Presentations

Paulo A. S. Veloso
Thomas S. E. Maibaum

Departamento de Informatica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22453-900
RIO DE JANEIRO - BRASIL

PUC RIO - DEPARTAMENTO DE INFORMATICA ISSN 0103-9741

Monografias em Ciéncia da Computacdo, N° 26/94
Editor: Carlos J. P. Lucena August, 1994

Logical Specifications:
2. Specifications as Presentations *

Paulo A. S. Veloso
Thomas S. E. Maibaum **

* Research partly sponsored by the Braziian agencies CNPq, RHAE,
FAPERJ, Ministério da Ciéncia e Tecnologia da Presidéncia da Republica
Federativa do Brasil, British agency SERC and European Community
agencies.

** Dept. of Computing, Imperial College of Science, Technology and
Medicine, London, UK.

In charge of publications:

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentagdo e Informagao

PUC Rio — Departamento de Informdatica

Rua Marqués de Sdo Vicente, 225 — Gavea

22453-900 — Rio de Janeiro, RJ

Brasil

Tel. +565-21-529 9386 Telex +55-21-31048 Fax +55-21-511 5645
E-mail: rosane@inf.puc-rio.br

LOGICAL SPECIFICATIONS: 2. SPECIFICATIONS AS PRESENTATIONS

Paulo A. S. VELOSO and Thomas S. E. MAIBAUM
{e-mail: veloso@inf.puc-rio.br and tsem@doc.ic.ac.uk}

Abstract. The logical approach to formal specifications regards specifications
as axiomatic presentations of theories in standard first-order logic. We present
this view of specifications as theory presentations, exploring some of its
methodological consequences. Particular attention is paid to underdetermined
specification and the role of error or exceptions. We start by reviewing some
syntactical and semantical concepts pertaining to languages and specifications.
We then discuss how a specification generates its theory as well as the roles of
equality and induction. Errors and underdetermined specifications are
motivated and discussed in view of their role in developing programs and
reasoning about them. Finally we introduce liberally constrained specifications
as a more realistic concept of “good” specification, motivated by what is
specified and available knowledge about it. A collection of example
specifications is also provided. This report is a draft of the second section of a
handbook chapter. Other reports cover the remaining sections.

Key words: Formal specifications, program development, logical approach, axiomatic
presentations, equality, induction, errors, undetermined specifications,lLiberal
specifications.

Resumo. O enfoque l6gico para especificagbes formais trata especificagdes como
apresentagdes axiomadticas de teorias na logica usual de primeira ordem.
Examinamos este enfoque de especificagbes como apresentagoes de teorias,
explorando algumas de suas conseqiiéncias metodolégicas Da-se particular
atencdo a especificagdes subdeterminadas bem como ao papel de erros ou
excecdes. Comecamos revendo alguns conceitos sintaticos e semanticos
relativos a linguagens e especificacbes. Passamos entdo a discutir como uma
especificagdo gera sua teoria, bem como os papéis da igualdade e da indugao.
Questdes de erros e especificagdes subdeterminadas sao motivadas e discutidas
tendo em vista seus papéis no desenvolvimento e certificagdo de programas.
Finalmente introduzimos especificagdes com restrigdes liberais como um
conceito mais realista de “boa” especificagdo, motivados pelo que é especificado
e pelo conhecimento disponivel sobre ele. Também se fornece uma colegdo de
especificacdes como exemplos. Este relatorio é um esbogo da segunda segdo de
um capitulo de um manual. Outros relatérios cobrem as demais segoes.

Palavras chave: Especificagdes formais, desenvolvimento de programas, enfoque légico,
apresentagdes axiomdticas, igualdade, indugdo, erros, especificagdes
subdeterminadas, especificagdes liberais.

NOTE

This report is a draft of the second section of a chapter in a
forthcoming volume of the Handbook of Logic in Computer Science

Other reports, corresponding to the remaining sections, have been
issued or are in preparation. The plan of the chapter - and series of
reports Logical Specifications - is as follows.

Introduction and Overview MCC 13/94, June, 1994
Specifications as Presentations

Extensions of Specifications

Interpretation of Specifications

Implementation of Specifications

Parameterised Specifications

Conclusion: Retrospect and Prospects.

The chapter - and series of reports - is intended to provide an account
of the logical approach to formal specification development.

.\IO\LJIAL)J[\)H

Any comments or criticisms will be greatly appreciated.

The next report in this series is planned to be Logical Specifications: 3.
Extensions of Specifications, with the following contents
3 EXTENSIONS OF SPECIFICATIONS

3.1 Introduction

32 Specification construction and hidden symbols

3.3 Extensions of languages and presentations

3.4 Conservative and eliminable extensions

3.5 Extensions by predicates

3.6 Extensions by operations

3.7 Extensions by constants

3.8 Extensions by sorts

3.9 Applications of extensions

3.10 Example specifications

ACKNOWLEDGEMENTS

Research reported herein is part of an on-going research project. Partial
financial support from British, European Community and Brazilian
agencies is gratefully acknowledged. The hospitality and support of the
institutions involved have been very helpful. Collaboration with Martin
R. Sadler, Sheila R. M. Veloso and José L. Fiadeiro was instrumental in
sharpening many ideas. The authors would like to thank the following
for many fruitful discussions on these and related topics: Carlos J. P. de
Lucena, Samit Khosla, Atendolfo Pereda Boérquez, Douglas R. Smith,
Haydée W. Poubel and M. Claudia Meré. Special thanks go to Tarcisio H.
C. Pequeno and Roberto Lins de Carvalho

CONTENTS *

2. SPECIFICATIONS AS PRESENTATIONS

2

* See the preceding note for an explanation of the numbering system

NDNNDND DN NN
W 00 2 o0 U = W N

1

INTRODUCTION

LANGUAGES

STRUCTURES AND MCDELS

THEORTES, PRESENTATIONS AND SPECIFICATIONS
INDUCTIVE SORTS AND SPECIFICATIONS

ERRORS AND UNDERDETERMINED OPERATICNS
REASONING ABOUT PROGRAMS

LIBERALLY CONSTRAINED SPECIFICATIONS

EXAMPLE SPECIFICATIONS

.10 REFERENCES

o O 0 LN

12
14
17

List of Figures
Fig. 2.1: Syntactical diagram for Spec. 2.1: BOOL_NEG_LESS

Fig. 2.2: Program segment for union of sets

Fig. 2.3: Liberally constrained specifications

List of Example Specifications
Spec. 2.1. BOOL_NEG_LESS: Boolean with Neg(ation) and Less
Spec. 2.2. NAT_ZR_SUCC: Naturals with zero and successor
Spec. 2.3. STACK[ELEMENT]: Stacks of Elements
Spec. 2.4. SET[ELEMENT]: Sets of Elements
Spec. 2.5. INT: Integers with zero, successor and predecessor
ordered by <

Spec. 2.6. INT_ARITHM: Integers with arithmetic operations and
predicates

List of Results
Proposition Existence of liberally constrained specifications

Theorem Lattice of liberally constrained specifications

13
16

18
18
19

21

17

2 Specifications as Presentations !

A specification 'describes’ (properties of) some objects. We shall
emphasise specifications formulated within the formalism of first-order
logic. A specification will be an axiomatic presentation of a theory in
many-sorted first-order logic. The properties described by such
specification will be the consequences of the presentation.

We proceed in this section to present this view of specifications as
theory presentations, exploring some of its methodological
consequences. Particular attention is paid to underdetermined or
(logically) incomplete specifications - in contrast to loose semantics -
and the role of error or exceptions.

The semantics of a specification is generally given in terms of the
models in which the axioms of the specification are satisfied.
(Differences between different specification theories start arising when
restrictions on the class of models allowed are imposed: initial models,
finitely generated/reachable models, freely generated, etc.). In our
setting, a specification is a theory presentation and the semantics of the
specification (i. e. the meaning which we wish to assign to it) is the
theory generated by that presentation. This distinction is
methodologically important for the theory of specification. When
constructing specifications of programs or systems, we construct
presentations. [t is in this construction and the validation which we
apply to the result that the difference emerges.

We shall generally employ the usual terminology and notation for
logical concepts, for which the reader is referred to standard textbooks,
for instance (Enderton 1972; Ebbinghaus et al. 1984, Shoenfield 1967;
van Dalen 1989). These will be briefly reviewed in the sequel.

The structure of this section is as follows. We start in 2.1
(Introduction) by presenting a simple example, a specification of
Boolean with Neg(ation) and Less, indicating what a specification
consists of. Then we briefly review in 2.2 some syntactical concepts
related to First-order Languages, introducing some notation for terms,
formulae, etc., and in 2.3 semantical concepts - like structure, model,
value of term, theory, (logical) consequence, elementary equivalence. In
2.4 we examine Theories, Presentations and Specifications, discussing
the theory generated by specification, equivalence of specifications and
the role of equality. We introduce Inductive Sorts and Specifications by
means of inductive schemas in 2.5, which are illustrated by some some
simple examples: Naturals with zero and successor, Stacks of Elements.
Our view of Errors and Underdetermined Operations is motivated in 2.6

I See the preceding note for an explanation of the terminology ‘chapter’, ‘section’,
etc., as well as for the numbering system.

1

by discussing ideas such as computing values, overspecifying and
abstraction, which is completed with our examination in 2.7 of
Reasoning about Programs and the role of complete, sufficiently
complete and liberal specifications, as well as the usefulness of
undetermined operations for program refinement. Finally in 2.7 we
introduce Liberally Constrained Specifications as a more realistic
concept of “good” specification, motivated by what is specified and
available knowledge about it. Our Example Specifications of this section
are collected in 2.9.

2.1 Introduction

A specification consists of declarations and axioms. The declarations give
syntactical information concerning its (extra-logical) symbols, akin to
procedure headings which characterise syntactically correct procedure
invocations. The axioms are intended to provide the available
information concerning the behaviour of these symbols.

A simple example (see Spec. 2.1: BOOL_NEG_LESS in 2.9) will indicate what
a specification consists of. The declaration part lists its sorts as well as its
operations, constants and predicates, together with information
concerning their arguments ans results, if any.

Most of the syntactical information given by the declarations of a
specification can be graphically displayed in diagrams with appropriate
conventions (Goguen et al. 1978). Figure 2.1 gives such a diagram for
the specification of Boolean with Neg(ation) and Less given as Spec. 2.1:
BOOL_NEG_LESS in 2.9.

neg

e

fl

less?
Figure 2.1: Syntactical diagram for Spec. 2.1: BOOL_NEG_LESS

2.2 Languages
We shall now indicate our basic notation and terminology concerning the
first-order languages we shall use in specifications. These concern mainly
sorts and alphabet, terms and formulae. :
A first-order formalism deals with two kinds of symbols: the logical
symbols and the extra-logical ones. The logical symbols have fixed
interpretations, and are shared by all languages. The extra-logical
symbols are open to interpretation, and are peculiar to a specific

2

language. Since the logical symbols are shared by all languages, with the
same meaning, each language can be characterised by its alphabet of
extra-logical symbols.

The logical symbols will be the usual propositional connectives —=,A,V,
— and <, as well as the quantifiers V and 3.

The extra-logical symbols can be partitioned into two sets: a set S of
sorts and an alphabet A. The alphaber consists of two disjoint sets: a set
R of predicate symbols and a set F of operation symbols. Each one of
these sets, which may be empty, comes equipped with a declaration
function, assigning, to each predicate symbol re R its profile of sorts, and
to each operation symbol feF its profile of argument and result sorts.
(Notice that constant symbols are treated as nullary operation symbols,
even though we shall usually display them separately in presenting
example specifications, due to their special importance.)

We also assume the presence of an equality symbol =g, for each sort s.
These special binary predicate symbols are usually not explicitly
declared in presenting example specifications

In addition to the above symbols, one also needs a set of variables.
This is a set V, disjoint from SuU A, which comes partitioned into
denumerably infinite sets Vg, called the set of variables of sort s, for
each se S.

With a language one can build expressions. We are more interested in
the well-formed expressions, of which we have two kinds: terms and
formulaec. Terms are intended to denote objects of domains and
formulae serve to express properties of such objects.

A term is an expression built from variables with operation symbols
so as to respect their declarations. The sort of a term is the sort of its
result. A name is a ground term, i. e., one without variables.

The purpose of formulae is expressing properties, rather than
denoting objects directly. They can be classified according to their
construction. An atomic formula is an expression obtained by applying
a predicate symbol to appropriate terms according to their declaration,
which includes the equalities between two terms of the same sort. The
formulae are constructed from the atomic ones by proper usage of
connectives and quantifiers. A sentence is a formula without free
variables.

We often display these objects as L = <Srt(L),Alph(L)> and Alph(L) =
<Prd(L),Opr(L)> or L = <Srt(L),Prd(L),0pr(L),Var(L)>. We shall use the
following notations !

Var(L)[s] for the sets of variables of sort s;

I We often omit reference tothe language L when it is clear form the context.
‘2)

Prd(L)(sy...s,] and Opr(L)[s;...s,—>s] for the set of predicate and of

operation symbols with the given profile;

Trm(L)[s], Cnt(L)[s] and Nm(L)[s] for the set of terms, constants and

of names of sort s

Atfm(L), Frml(L) and Sent(L) for the sets of atomic formulae,

formulae and sentences.

When it is convenient and safe we shall use a simplified notation for
free variables and subsritution. We often say “given formula ¢(v)”
meaning that ¢ no variable, except possibly v, has free occurrence in ¢.
In this context ¢(t) denotes the result of replacing each, if any, free
occurrence of v in ¢ by term t, by resorting to suitable alphabetic
variant to avoid collision of variables. Similarly, ‘“given formula
©(Vy,...,vy,)" is intended to mean that all variables with free occurrences
in @ are among v,,...,Vp. And @(ty,...,tp,) denotes the result of the
simultaneous replacement of each, if any, free occurrence of vy in ¢ by
term t., with suitable precautions concerning collision of variables. A
similar convention is used for terms: t(vy,...,vy) and t(t;,....t,).

In order to improve legibility and simplify the notation, we shall
freely omit parentheses or use brackets and the like, when convenient
and safe.

2.3 Structures and models

Even though we favour a property-oriented approach, structures and
models can be used as tools, both for conveying intuition and for
establishing results. So, we now briefly review usual concepts related to
structures and satisfaction, introducing appropriate notations.

As usual, a structure for a language provides realisations for its extra-
logical symbols. A strucrure fit for language L amounts to an assignment
of a realisation to each extra-logical symbol - so as to respect the
syntactical declarations (Shoenfield 1967, p. 18; Enderton 1972, p. 79),
in the sense that sorts are realised as non-empty sets and operations
and predicate symbols as functions and relations, respectively, between
the corresponding realisations of sorts. A normal structure is one where
each equality symbol is realised by an identity relation. An assignment
into a structure maps each variable over a sort to an element of the
realisation of this sort. :

As usual, an assignment extends inductively to a mapping of terms to
values; and satisfaction is defined for atomic formulae, and then
extended inductively to all formulae so as to capture the logical meaning
of each connective and quantifier.

Given a structure fft for language L, we shall use the notations

= ¢ [a;,...,a,] to denote that ffl satisfies formula ¢ under assignment

a(vi)=ag, k=1,....m;

f[e] for the realisation {<ay,....a,>/BF o [a},...,a]} of formula ¢ in f;

for a term t: Mmt](a,,...,a,) for its value and f[t] for its realisation

<ay,...,a,>—>fM[t](a;,....a,), in M

for a sentence o, ffiF ¢ or Mle Mod(c) for M is a model of o;

Given a structure M for language L, its theory is the set Th(ffl) :=
{ce Sent(L)/M=c} and for a class K of structures for language L, its
theory Th(K) consists of the sentences of L holding in each structure
fMle K. Structures @ and B for language L are called elementarily
equivalent, denoted by @=, iff they have the same theory: Th(@)=Th(3B).
A class K of structures for L is an elementary class (notation Ke EC(L)) iff
it is closed under elementary equivalence: fBe K whenever e K and 4=78.
Thus, Ke EC(L) iff K=Mod(Th(K)).

A sentence c of L is a (logical) consequence of a set T' of sentences of
L, denoted by I'= o, iff Mod(I')cMod(c) (every model of T is a model of o).
Thus, Tk o iff 6e Cn(T'), where Cn(I'):=Th(Mod(I')) is the ser of
consequences of '

2.4 Theories, presentations and specifications

A specification generates a theory, consisting of the properties the
specification guarantees. This is what we regard as the content of the
specification. We now examine the basic concepts of our approach
related to considering a specification as a theory presentation.

As usual a theory over language L is a set of T sentences of L closed
under consequence (ceT whenever TE o), and we call T' a set of axioms
for theory T iff Cn(I')=T (Enderton 1972; Ebbinghaus et al. 1984;
Shoenfield 1967; van Dalen 1989).

By a specification we mean a theory presentation, 1. €. a pair P=<L,G>,
consisting of a first-order language L and a set G of sentences of L (its
axiomatisation). Given a specification P, we use Lng(P) and Axm(P) to
refer to its underlying language and set of axioms, respectively.

In order to describe the theory generated by a specification we need
to back up a little. Recall that the equality symbols are assumed to be
present, even though we may not bother to list them explicitly.
Similarly, the corresponding equality properties may be assumed, even
if we do not bother to include them in the set of axioms. Accordingly,
the theory Cn[P] generated by a specification P consists of the
consequences of its set of axioms augmented by the equality axioms. We
shall say that specifications P’ and P” are equivalent, denoted P'=P”, iff

5

they have the same language (Lng(P’)=Lng(P”) and generate the same
theory (Cn[P’]=Cn[P”]).

The set Eq_axm(L) of equality axioms of a language L=<S,R,F> consists
of the axioms stating that each equality has the properties of an
equivalence preserved by all the operation and predicate symbols of L.
We form the equality completion GUEq_axm(L) and say that a sentence
o of L is a consequence of P (notation PF o) iff GUEq_axm(L)Fo, and
accordingly the rtheory of specification P is Cn[P] := Cn(Gqu_ax.m(L)).
Similarly, for a structure M for L, file Mod[P] is taken to mean
file Mod(GUEq_axm(L)).

2.5 Inductive sorts and specifications

Many objects involved in computing are inductive. Simple examples that
come to mind are naturals, stacks, etc. So, let us indicate how ths idea
appears in our property-oriented approach. The idea is: that inductive
sorts come with information for generating inductive axioms wihich are
used in augmenting the axiomatisation, much in the spirit of the equality
completion.

The idea of ‘inductive’ has various, somewhat related, senses. One
sense is that of constructors: its elements are constructed from some
basic ones by means of some constructor operations. This somewhat
model-oriented view has the effect of providing an induction principle:
a property that holds for the basic elements and holds for the results of
constructor operations whenever it holds for the arguments will hold for
all elements. This induction principle, sometimes called generator
induction (Guttag 1977), is more appropriate for our property-oriented
view.

By an inductive sort we mean one with an inductive schema. This
inductive schema aims at capturing the inductive nature of the sort.
Since such schemas have a simple general form we may resort to a
device similar to the one employed for equality: we just indicate the
information needed for generating the inductive principles. This
information is given by formulae: a basis formula B for the basic
elements and a set {8,...,0¢} of formulae corresponding to the inductive
step, so that we can form the ser Ind(B;{8,...,0y}) of inductive axioms of
sort s with respect to basis B and step {8,...,8} consisting of the
inductive axioms Ind[@](B;{0,...,0}) for each formula ¢ with a single free
variable of sort s. The information of an inductive axiom, in terms of
realisations, is “if ¢ includes P and is closed under 64,...,0 then it
exhausts the domain”.

These inductive axioms are used, like the equality axioms, to
augment the given axioms, for deriving consequences. So, for a

6

specification with inductive sorts, the theory of specification P consists
of the consequences of its inductive completion
GuUEqg_axm(L)ulnd(B;{61,....8¢}).

A simple example (see Spec 2.2: NAT_ZR_SUCC in 2.9) will indicate
what a specification with inductive sorts may look like.

The item Nat: Ind(x=y,zero;{succ(x)x=y,y}) is intended to state that
sort Nat is inductively constructed from zero by succ, in that it gives the
information for generating the inductive = axioms

q)(zero)/\(vx:Nat)[(p(x)a(p(succ(x))]—>(\7’y:Nat)(p(y). We shall now describe
how this is done. We have two formulae x=y,.zero and succ(X)X=p,y .
From the former we form the basis sentence (Vx:Nat)[x=yn,zero—¢(x)],
equivalent to ¢(zero), and from the latter we form the closure sentence
(Vx,y:Nat)[(p(x)/\succ(x)zNaty—»(p(y)], equivalent to
(Vx:Nat)[p(x)— ¢ (succ(x))]. These basis and closure sentences contribute
to forming the inductive axiom, as expected. By relying on such
inductive axioms, one can derive consequences such as
(Vy:Nat)[—y=ngzero— (3x:Nat)y=Nzsucc(x)] or (Vy:Nat)[-y=ngsucc(y)].

More generally, consider a formula ¢ with a single free variable of
sort s, as well as formulae B, whose only free variable u is of sort s, and
0, with free variables u and v of sort s. We form the basis sentence
Bs(B,p) as (Vu:s)[B(u)—¢(u)], and the closure sentence Cl(¢,8) as
(Vu,v:s)[e(u)AB(u,v)—=¢(v)]. Then, the inductive axiom Ind[o](B;{61,....0})
of © with respect to basis B and step {8,....,6} is the sentence
[Bs(B,0)ACL(¢.0)A...ACL(0,0,)—>(Vw:s)p(w)]. Finally, the ser Ind(B;{01,....6})
of inductive axioms of sort s with respect to basis B and step {01,... .8y}
consists of the inductive axioms Ind[¢](B;{8i.....8y}) for each formula ¢
with a single free variable of sort s.

As another example, consider the case of stacks of elements with the
usual operations push, pop and top (see Spec 2.3: STACK[ELEMENT] in 2.9).
We shall comment on some aspects of this specification later on.

The inductive item for sort Stk gives as basis B the formula u=gcrt
and as step 0 the formula (Ix:Elm)push(u,x)=gv. So, we have as basis
sentence Bs(B,9), (Vu:Stk)[u=gcrt— ¢ (u)], equivalent to ¢(crt), and as
closure sentence Cl(¢,0), (Vu,v:Stk)[e(u)A(@x:Elm)push(u,x)=gv—>0(Vv)],
equivalent to (Vu:Stk)[@(x)—)(Vu:Stk)(‘v’x:Elm)(p(push(u,x))]. Thus, the
inductive axiom Ind[o J(B:{0}) 1s equivalent to
{(p(crt)/\(‘v’u:Stk)[(p(U)——)(Vx:Elm)(p(push(u,x))]}—>(Vw:Stk)(p(w)]. A sentence
in the inductive closure of this specification is
(Vw:Stk)[w=gcrivw=g push(pop(w),top(w))].

7

Our specification NAT_ZR_SUCC for naturals with zero and successor in
figure 2.2 involves two axioms and one inductive axiom shema. An
alternative specification might consist of the two axioms together with
the infinitely many axioms (Vx:Nat)(—x=p,succh(x)), for each n>0 (here
succ(x) stands for the term succ(...succ(x)...) with n occurrences of
succ). They are equivalent specifications (Enderton 1972, p.178, 183),
and this illustrates the fact that equivalent presentations for the same
theory may be quite different, preference for one or another depending
on several factors connected to the use at hand 1.

2.6 Errors and underdetermined operations

We shall now discuss some aspects of our approach concerning
undetermined specifications. This is a central aspect of our liberal
specifications.

The aim of most approaches to specification is to state only enough to
describe the artefact being specified. This aim is sometimes discussed in
the terminology of “what vs. how”, “abstracting from implementation
details”, “representation independence” and so on (Guttag 1977, 1980;
Goguen et al. 1978; Goguen 1977). It is the process of refinement or
development which is to add the details of ‘how’, the details of a
particular representation or implementation. The only meaning which
this addition of detail could possibly have is the extension of the
properties ascribed to the functions and relations used in constructing
the specification. If there is no addition of new properties, but only the
introduction of a new representation, it may be argued that no new
information of any significance has been provided - just a change in
naming conventions (Maibaum ez al. 1991; Maibaum and Turski 1984).

Recall that an axiomatisation G is said to decide a sentence o of its

language iff Gk —c whenever G o. Also, G is called complete iff it decides
every sentence of its language. (An inconsistent axiomatisation is, of
course, trivially complete; a maximally consistent axiomatisation is one
that is both consistent and complete.)

A specification is called complete if for any sentence of its language,
either it or its negation is derivable from the axioms. Complete
specifications are generally very difficult to build. From the point of
view of programming, they are also inappropriate, for they do not leave
room for subsequent design decisions.

So, completeness is not a desirable property of a good abstract
specification. Some approaches weaken this requirement to sufficient

I We examine some issues related to this point when considering liberally
constrained specifications in 2.8.)

8

completeness, which has to do with computing values in terms of
constructors (Guttag 1977, 1980; Guttag and Horning 1978).

We shall now examine some aspects of the idea of computing values
in - terms of constructors and how it is captured by means of the
inductive axioms. For this purpose, let us now examine more closely the
specifications NAT_ZR_SUCC for naturals and STACK[ELEMENT] for stacks in
2.9 (see Spec. 2.2 and 2.3).

Part of the idea of constructor operations - at least from a model-
oriented standpoint - is that every element, being constructed, can be
denoted by a constructor term. In the case of naturals, the constructor
terms are the numerals succ(...succ(zero)...). The analogue of such
numerals for stacks would the terms t(xy,...,X,.;,X,) of the form
push(push(...push(crt,x;)...,Xy.1),X,). Now, Spec 2.3 has among its axioms,
(Vu:Stk)(Vv x:Elm)[pop((push(u,x))=gxu, called pP, and
(Vu:Stk)(Vx:Elm)[top((push(u,x))=g X, called tP. So, for any such term
t(Xq,... ,Xp.1,Xy), With n>0, {pP}F pop[t(X{,....Xp.1,Xp)]=gkt(X1,... X)) and
{tP}E= top[t(X{,... Xy.1-Xn)]=E1mXn. Thus, we can say that axioms pP and tP
enable one to compute the value of pop and top, respectively, on such
constructor terms with n>0, by converting them into a ‘normal form’.
But, we still do not know how to compute them for the case n=0.

We contend that one should not worry about computing the values
pop(crt) and top(crt) from the specification, because these are model-
laden questions which are not relevant. Notice that it is quite natural to
add axiom pop(crt)=gccrt, but we do not have a similar natural
counterpart for top(crt). The usual approaches for the latter involve
partial operations or error elements (Goguen et al. 1978; Guttag and
Horning 1978).

In a nutshell, what is wrong with errors is their existence: life would
be much easier without them. The aim of our approach is making life
casier in so far as formal specifications are concerned. Our logical
approach to formal specifications is directly motivated by program
development ‘and more adequate for this purpose. This approach is
based on a property-oriented viewpoint, which permits, but does not
demand, downplaying issues concerning errors.

The starting point is the following dichotomy:

(i) Programs and specifications are syntactical entities.
(ii) Errors/exceptions are semantical entities.

Let us elaborate these points. Point (i) does not appear to need much
clarification. A program is a syntactical specification of a semantical
object, the function it computes. The introduction gives further detail on
this point.

9

Now let us turn to point (ii). Prototypical cases of errors in
specifications arise in asking for the contents of an empty object, e.g.,
the top of the empty stack or the head of the empty list. We consider
the latter: head(nil). Of course, there is no ‘“natural” value to assign to it.

One way of dealing with head(nil) is saying that the operation
realising head is partial, in particular it is not defined on the object
denoted by nil. Along this line we find, e.g., the approach of (Broy and
Wirsing 1983). A different alternative considers the operation realising
head as total but the value of head(nil) is a special object denoted by
error. The approaches of (Guttag 1977, 1980) and (Goguen et al. 1978;
Goguen 1977) follow basically variations of this line. The main problem
with the latter alternative is error propagation, which clutters up the
specifications, whereas the former has to face the fact that not every
term denotes an object, complicating some logical issues.

Notice that both alternatives arise from a semantical question: what is
the value (denoted by) head(nil) (in a realisation). We offer a third
alternative, mirroring the feeling that there is no “natural” value to
assign to head(nil). We propose to leave the value of head(nil) open.
Let us clarify this proposal. In a realisation, the value of head(nil) is not
to be undefined (the operation realising head is to be total), nor is it an
“abnormal” object denoted by error. Rather, our specification will not
enable us to compute a unique primitive term to denote the value of
head(nil). Thus, we do not require our specification to be sufficiently
complete in the sense of Guttag and Horning (1978). Hence we will have
several realisations of lists differing on the value they assign to
head(nil).

Summing up, we call errors a semantical concern because they arise
from a semantical question "What is the value of a term?", which only
makes sense in the context of a given realisation. Now our proposal of
"Life without errors” looks nice. But is it feasible and useful? Our
proposal embodies a "non-uniqueness” viewpoint: a specification
describes a class of (not necessarily isomorphic) realisations. But, again,
this is our viewpoint couched in semantical terms. Syntactically, our
proposal amounts to dealing with specifications that do not have to be
complete or sufficiently complete.

Now, let us examine more closely our contention that we should not
require that specifications enable prediction of values for operations
(Veloso and Maibaum 1984). We claim that a specification should be
required to predict only the relevant properties of its operations, and
that the stronger requirement concerning all values may lead to
overspecifying the operations, which is contrary to the idea of
abstraction. For this claim we can offer support, related to mathematics
and to programming.

10

The first line of support comes from an analogy with axiomatic
theories in mathematics. When a mathematician studies structures, like
groups or vector spaces, he is interested in the general properties of the
operations, and not in computing the value of each closed term, which is
not possible without some extra information. '

From the viewpoint of programming we offer two considerations.
First, error propagation does not adequately model computing practice:
a program does not remain in an error state forever. When a program
enters an error state, either its execution is aborted or an exception-
handling routine is called. It will be seen that our approach does not
force error propagation axioms into the specifications.

The second programming consideration might be deemed somewhat
utopian. Good programs should not by themselves enter into error
states. Indeed, a good programmer would not ask for the head of a list
without first testing whether it is empty. Of course during the process of
developing and tuning a program, this test may still not be present.
Then what happens with a program that inadvertently tries to compute
head (nil)? This depends on our specification. If we left head(nil) open
then something will come out; only our specification does not predict
what. On the other hand, we may include in our specification
head(nil)=error (with or without error propagation) and then error will
come out.

So, for programming, the contention is that the values of some terms
may be irrelevant for the understanding of a program. We illustrate this
point with an algorithm for determining the union of sets. (This example
will examined with more detail in 2.7.)

We are given two sets S and T and are required to determine their
union. A quite natural approach to this problem is based on the idea of
transferring elements from one of the sets to the other while the former
is not empty. In more detail we iterate the transfer, consisting of
selecting an element of S, removing it from S, and inserting it into T,
while S is not empty.

It is apparent that we have a correct algorithm for union. If we begin
with S=M and T=N. then at the end we have T=MUN (and the algorithm
will terminate if M is finite). What do we need to know about for
arriving at this conclusion? Apparently we need to know that removal
and insertion behave as expected. And what about selecting, does it
matter how the element is selected? This question appears to be totally
irrelevant for the understanding of this algorithm: all that matters is
that an element of S is selected provided that S is not empty. The
question concerning the value of the selection operation on an empty set
is besides the point, because the algorithm never tries to do so. We may
say it is an error, that selection is not defined for the empty set, or just

11

be silent about this case and assert only what is required, which is the
alternative we prefer.

“All that we need to know about selection” would be asserted in an
axiom stating. that, provided a set is not empty, the element selected
belongs to it. Thus, even if we know that S={a,b}, we are still unable to
determine the exact element selected, whether a or b. All that we can
assert is that it is one of a or b. This is an example of an undetermined,
or underspecified, operation

Notice that an undetermined operation should not be confused with a
nondeterministic one. For, sel(ection) is an operation symbol and hence
must in any model be realised by a total function from sets to elements.
Thus, given a specific set in such a model two different applications of
(the realisation of) sel to this set will yield exactly the same result. Proof
theoretically, we can derive from the specification only a disjunction
like

sel[ins(ins(void,a),b))]=Elmavsel[ins(ins(void,a),b))]=E1mb;
without being able to derive either disjunct. But, this is not an indication
of nondeterminism. It is an indication of underdetermined specification.
For whatever reason, we are unable, or unwilling, to pin down any more
precisely what the value of sel applied to a set should be. The decision is
being left to be made at a later time (when we have more information
about the application or at some point in refinement when we wish to
make a design decision which involves knowing more about sel). We may
in some cases never need to decide completely about some detail if this
decision is not required to correctly implement our specification.

Undetermined operations can be very useful for specifying, and
reasoning about, programs and specifications at the appropriate level of
abstraction. We provide the information that is required at this level
and postpone giving more information to some later level of refinement.
For instance, when we have decided to represent sets by sequences, we
may decide to refine choose to select the first element.

Another example of the usefulness of undetermined operations is
provided by sorting algorithms. The idea behind quicksort amounts to
repeatedly splitting a sequence by comparison of its elements with the
pivot. Some details about how the pivot is to be selected may postponed
to a later stage, when their impact on efficiency can be more clearly
assessed.

Summing up, we do not require our specifications to be complete, in
the logical sense, or even sufficiently complete, in the sense of Guttag
and Horning (1978). A specification is required to provide properties of
its symbols; and the information provided may or may not be adequate
for answering a specific question, depending on its level of abstraction.

12

2.7 Reasoning about programs

We shall now examine more closely the adequacy of liberal
specifications for developing, and reasoning about, programs. We shall
give special attention to the issue of underdetermined operations in not
sufficiently complete specifications.

We have claimed that knowledge about the values of some terms may
be irrelevant for the understanding of a program. This is one of the
basic ideas underlying the usefulness of liberal specifications in that
they provide the required information without being forced into
considering irrelevant issues. But, are they really adequate for
reasoning about programs?

In order to give a better indication of the adequacy of liberal
specifications, we examine more closely the our example of union of
sets.

Consider the formal specification SET[ELEMENT] of sets of elements
given in 2.9 as Spec 2.4. Some properties (with implicit universal
quantifications) derivable from this specification are

1.[—empty?(ins(s,x))]; A

2. [blng(x,s)—>(\'/y:Elm)[(blng(y,s)vblng(y,t))<—>

< (blng(y,rem(s,x))vblng(y,ns(t,x)))]

The specification for our desired program is the following formula
is_union(s,t,r) (expressing union in terms of belonging):

(Vy:EIm){blng(y,r)e—>(blng(y,s)vblng(y,t))] (is_union)

The intuitive idea of transferring elements from one set to the other
is expressed in the following invariant is_trnsf(s,t,m,n) (stating that
sUt=mun):

(\7’y:Elm)[(blng(y,s)vblnlg(y,t))(—-)(blng(y,m)vblng(y,n))] (is_trnsf)

Now, consider the annotated program segment in figure 2.2.

{program segment for union of sets}
var S,T: Set {variables S and T over sort Set};
var X:Elm {variable X over sort Set};
while —mempty?(S) do

begin {here —empty?(S) holds}
X:=sel(S) {X is some element from S}
S:=rem(S,X) {element X is removed from S}
T:=ins(T,X) {element X is inserted into T}
end_while
{at completion of the loop empty?(S) holds}.

Fig. 2.2: Program segment for union of sets

13

We shall now see how we can reason about this program segment by
relying on the information provided by the specification. Let us assume
that execution begins with S=M and T=N. We wish to conclude that at
the end we have T=MUN, 1. e. is_union(M,N,T).

Let us first consider partial correctness. For this purpose we first
check the invariance of is_trnsf(S,T,M,N) and from it derive the desired
conclusion. Clearly, at the starting point, since we assume S=m and T=n,
we have is_trnsf(S,T,M,N). Now, to check that is_trnsf(S,T,m,n) is
preserved by the iteration we establish the sentence

—empty?(S)AX=g.sel(S)—(is_trnst(S,T,M,N)—

—is_trnsf(ins(S,X),rem(T,X),M,N)
(with implicit universal quantification), which tollows form our axioms in
view of property 2 above. We can then conclude that if and when the
execution of the loop is completed we will have both is_trnsf(S,T,M,N) and
empty?(S), whence is_union(M,N,T).

Termination is guaranteed only for a finite set M. Since finiteness
cannot be expressed within first-order logic, we have basically two
approaches for termination. They are both based on the idea that
removal of an element belonging to a set produces a subset. The first
one establishes that it produces a proper subset, and the second one
that the resulting set can be denoted by a proper subterm. In either
case we have a binary relation which is known to be well founded on
finite sets.

In the first, subset, approach we consider the following formulae
sbst(s,t) and prsb(s,t) (expressing respectively sct and sct)

(Vx:Elm)[blng(x,s)—blng(x,t)] (sbst)

sbst(s,t)A=sbst(t,s) (prsb)

Then. we derive from our specification (without inductive axioms)

(Vs:Set)(Vx:Elm)[blng(x,s)— prsb(rem(s,x),x)].

In the second, subterm, approach we derive from our specification

(with inductive axioms)

(Vs:Set)(Vx:Elm)[blng(x,s)as=ins(rem(s,x),x)].
It is important to notice that in either approach we do not need
information about sel beyond that provided by its axiom !.
2.8 Liberally constrained specifications

Let us know examine more closely the question of what one wishes to
describe when one writes a specification. This has to do with correctness
and adequacy of specifications.

I More details on erors and related issues are planned to appear in the forthcoming
report Logical Specifications: 3. Extensions of Specitications.

14

Some approaches take the view that a specification specifies a class of
structures (Goguen et al. 1978; Guttag and Horning 1978). We might
adapt this model-oriented viewpoint to our property-oriented approach
simply by saying that a specification describes the properties of a class
of structures. In any case the problem is one of axiomatising, by a
convenient set of axioms, either a set of sentences or class of structures
described, say, by set-theoretical means.

The crucial question is how one gives the object(s) to be specified. We
contend that it is unrealistic to expect that one has, before specifying,
reliable knowledge about the entire class of structures or the set of
properties that will be specified. We therefore suggest a more realistic
approach: ‘specifications with liberal constraints’.

The idea is that at the start of the specification, we do not have
perfect knowledge either of the models or of the properties of the final
product. But, we do know, and insist upon

a certain class Req_Mod of required models (for instance, ‘standard’

models),

a set Req_Prop of required properties (for instance, associativity of

an operation);
and we are willing to accept any specification that satisfies these liberal
constraints, and only those.

As an example of liberally constrained specifications, consider
specifying the ordering of the natural numbers in a language with a
single binary predicate symbol lt. Let us assume that we have very little
a-priori knowledge, so that we take the class Req_Mod of required
models to consist only of the standard model R = <N,<> and as required
properties only that we have a linear ordering, i. e. Req_Prop={1,1,A}
where 1,1, and A are the following sentences expressing irreflexivity,
transivity and linearity: (V x:Nat)-1t(x,x),
(Vx,y,z:Nat)[1t(x,y)alt(y,z)—= 1t(x,2)] and (Vx,y:Nat)[1t(x,y)vx=nyYVIt(y,x)].
Notice that BEATA), so Re Mod(Req_Prop).

Some specifications that meet these constraints are given by the
following axiomatisations:

LOF = {1,t,A}u{0}, where ¢ is (3x:Nat)(Vy:Nat)=lt(y,x);

LO+o0 = {1,T, A }u{+oo}, where 400 is (vx:Nat)(3y:Nat)lt(x,y);

LOD = {1,t.A}u{8}, where & is —1(VX,y:Nat)[lt(x,y)—>(3Z:Nat)(lt(x,z)/\lt(z,y)];

LOF+00 = LOFULO+00 = Req_Propu{¢,+o};

LOFD = LOFULOD = Req_Propu{,6};

LO+ooD = LO+ooULOD = Req_Propu{+e,3};

LOF+ooD = LOFULO+00ULOD = Req_Propu{¢,+00,3};

15

We thus have several specifications meeting these constraints, as
displayed in figure 2.3, which indicates the leeway one has.

Th(m)

LOF 4D

| LOF+eo LOF+D [O+eeD

LOF LO+eo LOD

Cn[Req_Prop]

Fig. 2.3: Liberally constrained specifications

Consider a language L, as well as a class K of structures of L and a set
s of sentences of L. By a specification liberally constrained to required
models K and required properties we mean any specification P=<L,G>
such that KcMod[P] and *cCn[P], and we shall use the notation Spc(X,K]
for the set {P=<L,G>/KcMod[P] & ZcCn[P]} of specifications liberally
constrained to required models K and required properties Z.

Notice that axiomatisations of a class K of structures or of a set X of
sentences are special cases of this liberal notion of specification. Indeed.

Spe(T,T] = {P=<L,G>/T=Cn[P]} is the set of axiomatisations for class for

the theory T=Cn[T], and

Spc(Th(K),K] = {P=<L,G>/K=Mod[P]} is the set of axiomatisations for

the elementary class K=Mod(Th(K)) of structures.

As might be expected, the required models and required properties
must have some compatibility for the existence of liberally constrained
specifications.

16

Proposition Existence of liberally constrained specifications
Given a language L, consider a class K of structures of L and a set X of
sentences of L.

a) Spe(Z,K]=Spc(Z,21NSpe(d K],

b) =cTh(K) iff Spe(Z,K1=@ iff KcMod(Z).
Proof.
a) Clear.
b) If ==Th(K) then P=<L,Th(K)>e Spc(Z.K].
If P=<L,G>e Spc(Z,K] then KcMod[P]=Mod(Cn[P])cMod(Z).
If KcMod(Z) then £2=Cn[Z]=Th(Mod(X))cTh(K).
QOFD

One advantage of this liberal notion of specification, over the usual
ones, is the amount of freedom one has. This can be seen by examining
their theories Cn(Z,K] := {T/KcMod(T) & 2cCn[T]=T}.
Theorem Lattice of liberally constrained specifications
Consider a class K of structures of language L and a set X of sentences of
L. If Spc(Z,K]#@ then the set Cn(Z,K] of theories liberally constrained to
required models K and required properties I forms a complete lattice
under inclusion, with least element Cn[Z] and top element Th(K).
Proof.
Clearly, for any Te Cn(Z,K], Cn[Z]cT, for 2T, and T<Th(K), for KcMod(T).
The empty family @ has inf(&@)=Th(K) and sup(@)=Cn[Z], both in Cn(Z,K].
Now consider a nonempty family .#=Cn(Z,K]. We claim that 5 has infimum
N and supremum Cn[U.Z] , both in Cn(Z,K].
Clearly, "% is the smallest theory containing every theory in %, s0 X%
Since F#J, we have some Te Cn(Z, K] with N F T, so KcMod(T)cMod(N.F.
Thus, NF)e Cn(Z,K], as claimed.
Also, Cn[U.Tis the largest theory contained in every theory in
Since 9%, we have some Te Cn(Z,K] with Tc Cn[U.F], so ZcTc Cn[u29T.
Now, for every Te < Cn(Z,K], KeMod(T) and Tc W Thus,
KcMod(U H=Mod(Cn[U.9T). Hence, Cn[u.FTe Cn(Z.K], as claimed.
OFD
2.9 Example Specifications

We now present some simple examples of specifications. These examples
will show some desirable features of a formalism for presenting
specifications.

17

First the specifications already mentioned. These are Boolean with
Neg(ation) and Less (BOOL_NEG_LESS), Naturals with zero and successor
(NAT_ZR_SUCC), Stacks of Elements (STACK[ELEMENT]) and Sets of Elements

(SET[ELEMENT]).
Spec. 2.1. BOOL_NEG_LESS: Boolean with Neg(ation) and Less

SPEC BOOL_NEG_LESS {Specification of Boolean with Neg(ation) and Less}
DECLARATIONS { Description of symbols}
Sorts {List of sorts}
Bool {The (only) sort is Bool}
Operations {List of (non-nullary) operations}
neg (Bool)—Bool {neg is from Bool into Bool}
Constants {List of constants}
tr,f1: Bool {tr and fl are constants of Bool}
Predicates {List of predicates besides =ggo1}
less? (Bool.Bool) ' {less? over Bool and Bool}
AXIOMS {List of axioms}
(Vx:Bool)(x=pyo tIVX=poolfD) {tr and fl exhaust Bool},
—tr=gqoifl {tr and fl distinct},
(Vx:Bool)(—neg(x)=p,o1X) {neg changes values},
neg(tr)=gyqfl {negaton of tr is fl},
(Vx,y:Bool)[less?(x,y) <> (x=gooflAX=Bgoit1)] {definition of less?}.

END_SPEC BOOL_NEG_LESS

Spec. 2.2. NAT_ZR_SUCC: Naturals with zero and successor

SPEC NAT_ZR_SUCC {Specification of Naturals with zero and successor}
DECLARATIONS
Sorts
Nat {The (only) sort is Nat}
Operations
succ (Nat)— Nat {succ transforms Nat to Nat}
Constants
zero: Nat {zero is a constant of Nat}
Predicates {No predicates, other than =g}
AXIOMS .
(Vx:Nat)—zero=y,succ(x) {zero not in the range of succ},
(Vx,y:Nat)[succ(x)szsucc(y)—aXzNMy] {succ injective},
Nat:Ind(x=ngzero; {succ(x)x=na¥ }) {Nat inductive on zero and succ}.

18

THEOREMS {Sample consequences}

(Vx:Nat)[p(x)—@(succ(x))] {inductive schema},
| (Vy:Nat)[—y=ngzero— (Ix:Nat)y=y,succ(x)] {inductive reachability},
(Vy:Nat)[—y=yngsucc(y)] {succ has no fixpoint}.

END_SPEC NAT_ZR_SUCC

Spec. 2.3. STACK[ELEMENT]: Stacks of Elements

SPEC STACK[ELEMENT] {Specification of Stacks of Elements}
DECLARATIONS
Sorts
Stk, Elm {The sorts are Stk and Elm}
Operations
push (Stk,Elm)— Stk {push gives Stk from Stk and Elm}
pop (Stk)— Stk {pop transforms Stk to Stk}
top (Stk)—>Elm {top gives Elm from Stk}
Constants
crt: Stk {crt is a constant of Stk}
Predicates
is_null? (Stk) {is_null? is over Stk}
AXIOMS
(Vu:Stk)(Vx:Elm)(—crt=gpush(u,x)) {crt not in the range of push},
(Vu:Stk)(Vx:Elm)[pop((push(u,x))=gu {axm pP},
(Vu:Stk)(Vx:Elm)[top((push(u,x))=g X {axm tP},

(Vu:Stk)(is_null?(u)e u=g crt),
Stk:Ind(u:Stkcrt;{(Sx:Elm)push(u,x)zstkv}) {Stk inductive on crt and push}

THEOREMS {Sample consequences}
{ (p(crt)/\(Vu:Stk)[(p(u)e(Vx:Elm)(p(push(u,x))] }=(Vw:Stk)e(w)],
Let t(Xq,... X1, Xg):=push(push(... push(crt,x()...,Xp.1),Xy) {Let block}

with x,...,X,.1.X:Elm
top[t(xl,... vxn-l’xn)]:Elmxn
poplt(X s ... Xp X)=s ekt (X 5. Xp.1)

{value of top},

{value of top},

End_Let t(x;,....Xy.1,Xpn) {End let block};
(Vw:Stk)[w=gcrtv w=gpush(pop(w),top(w))].
COMMENTS {General remarks}

Specification of pop and top are underdetermined:
the values of pop(crt) and top(crt) are left open.

END_SPEC STACK[ELEMENT]
19

Spec. 2.4. SET[ELEMENT]: Sets of Elements

SPEC SET[ELEMENT] {Specification of Sets of Elements}
DECLARATIONS
Sorts
Set, Elm {The sorts are Set and Elm}
Operations
ins, rem (Set,Elm)— Set {ins and rem give Set from Elm & Stk}
sel (Set)—Elm {sel gives Elm to Set}
Constants
void: Set {void is a constant of Set}
Predicates
empty? (Set) {empty? is over Set}
blng (Elm,Set) {blng is between Elm & Set}
AXIOMS
(Vs,t:Set)(Vx:Elm) {Global quantification (for all axioms))
[empty?(s)¢>s=g,void] {void vs. empty?},
[empty?(s)<>(Vy:Elm)—=blng(y,s)] {empty? vs. blng},
(Vy:Elm)[blng(y,ins(s,x))e»(yzElmvalng(y,s))] {behaviour of ins},
(Vy:Elm)[blng(y,rem(s,x))<—>(ﬂy:EImXAblng(y,s))] {behaviour of rem},
[—empty?(s)—blng(sel(s),s)] {sel on nonempty set},
[ste[tH(Vy:Elm)(blng(y,s)<——>blng(y,t))] {=ger vs. bing}
Set:Ind(empty?(s);{(3x:Elm)s=g,.ins(s,x)}) (Stk inductive on crt and push}
THEOREMS {Sample consequences}
{(p(void)/\/\(‘v’s:Set)[(p(s)—a(\‘/x:Elm)(p(ins(s,x))]}—e(Vt:Set)(p(t)] {schema},
Quant (Vs:Set)(Vx:Elm) {Quantification block}
empty?(s)v(3t:Set)(Ix:Elm)s=g.(ins(t,x))] {inductive reachability},
ins(ins(s,x),X)=geins(s,x) {idempotent ins},
ins(ins(s,X),y)=geins(ins(s,y),x) {ins commutes},
[—empty?(ins(s,x))]
blng(x,ins(s,x))
—blng(x,rem(s,x))
End_Quant (¥s:Set)(vVx:Elm) {End quantification block};
Let t:=ins(ins(void,x),y)) with x,y:Elm {Let block}
sel(t)=g pxvsel(t)=gimy {undetermined sel},
pop[t(X i, .. Xn - Xp) I=sikt(X 15 Xpo1) {value of top},
End_Let t(x,,..., Xp-1-Xn) {End let block};

(Vs:Set)(Vx:Elm)rem(ins(s,x),X)=ge rem(s,x),
20

(Vs:Set)(Vx:Elm)rem(ins(s,x),x)zSetrem(s,x).
COMMENTS . {General remarks}
Specification of sel is underdetermined:
can say sel[ins(ins(void,a),b))] is aor b, but not which one!
sel[ins(ins(void,a),b))]=g|mb.
END_SPEC SET[ELEMENT]
We now present a specification for a simple version of the integers:
with zero, successor and predecessor ordered by <.

Spec. 2.5. INT: Integers with zero, successor and predecessor ordered by <

SPEC INT {Integers with zero, successor and predecessor ordered by <}
DECLARATIONS
Sorts
Int
Operations
sc, prd (Int)— Int
Constants
zr: Int
Predicates
Int<Int {< infix between Int & Int}
AXIOMS
(Vx,y:Int)[x<y——y <x] {< antisymmetric},
(Vx,y.z:Int)[(x<yAy<z)—x <z] {< transitive},
(Vx,y:Int)[x<yvx =p y vy <x] {< linear},
(Vx,y:Int)[x<sc(y)e> X<y VX =1,Y] {< vs. sc},
(Vx,y:Int)[prd(x)<y > X<yvXx =p,y] { prd vs< },
(Vx:Int)[prd(sc(x))=pxAsc(prd(x))=r,<x] { sc & prd inverse},
THEOREMS {Sample consequences}
(Vx:Int)—x<x {< ireflexive},

(Vx,y:Int)[—x<y—=(X =1, Y VY <x)],
(Vx:Int)[x<sc(x)aprd(x)<x],

(Vx,y:Int)[x<y—(sc(x)<sc(y)aprd(x)<prd(y))] {< transitive},
For n>0 and x:Elm let {For block}
sch(x):=sc(...(sc(x))...) & prd?(x):=prd(...(prd(x))...) [both n times]
x<sc(x)Aaprd™(x)<x {no sc or prd loops},
End_For sc™(x) & prd® {End for block};
END_SPEC INT

21

A data type provided by several programming languages is integers
with the usual arithmetic operations and predicates. It can be obtained
by extending INT. (Extensions will be examined more closely in the next

section.)
Spec. 2.6. INT_ARITHM: Integers with arithmetic operations and predicates

SPEC INT_ARITHM := EXT of INT by {Extension of INT}
DECLARATIONS { Description of new symbols}
Sorts {No new sort}
Operations {List of new (non-nullary) operations}
Hntl— Int {outfix Inl = absolute value}
Int +,+.- Int— Int {binary infix +,%,-}
Constants {No new constant}
Predicates {List of new predicates}
Int<Int {< infix between Int & Int}
int_div (Int,Int,Int,Int) {int_div (m,n,q,r): quotient q, remainder r}
AXIOMS {List of new axioms}
Quant (Vx,y:Int) {Quantification block}
[XSye (X <YyVX =1y Y)] {definition of <},
(X+zr=[XA[X+5C(Y) =1 SC(X+Y)AX+Prd(Y) =1 Prd(x+y) } {+}
{(X-2r=1 XA [X-5C(y)=1nPrd(x+y) AX-prd(y)=rysc(x-y) } {-1,
(X zr=1, ZEA[X#SC(Y)=[q X * Y +XAX#PId(Y)=[pX#y-X } {1,
{(Ixl=py © [(ZTEXAY =1, X)V(X <ZIAY=15-X)]} {definition of lel}
End_Quant (Vx,y:Int) (End quantification block};

(Vx.y,uw:Int)[int_div(x,y,u,w)e> (Zrsuau <lylax=p,y*u+w)] {int-div}

END_SPEC INT_ARITHM

2.10 References

Arbib, M. and Mannes, E. (1975). Arrows, Structures and Functors : the
Categorical Imperative. Academic Press, New York.

Barwise, J. ed. (1977). Handbook of Mathematical Logic. North-Holland,
Amsterdam.

Bauer, F., L. and Wéssner, H. (1982). Algorithmic Language and Program
Development. Springer Verlag, Berlin.

Darlington, J. (1978). A synthesis of several sorting algorithms. Acta
Informatica, 11 (1), 1-30.

Ebbinghaus, H. D., Flum, J. and Thomas, W. (1984). Mathematical Logic.
Springer-Verlag, Berlin.

Enderton, H. B. (1972). A Mathematical Introduction to Logic. Academic
Press; New York.
Ehrich, H.-D. (1982). On the theory of specification, implementation and
' parameterization of abstract data types. J. ACM, 29 (1), 206-227.

Ehrig, H. and Mahr, B. (1985) Fundamentals of Algebraic Specifications,
1: Equations and [Initial Semantics. Springer-Verlag, Berlin.

Ledgard, H. and Taylor, R. W. (1977) Two views on data abstraction.
Comm. Assoc. Comput. Mach., 20 (6), 382-384.

Guttag, J. V (1977). Abstract data types and the development of data
structures. Comm. Assoc. Comput. Mach., 20 (6), 396-404.

Maibaum, T. S. E. (1986). The role of abstraction in program
development. In Kugler, H.-J. ed. Information Processing '86. North-
Holland, Amsterdam, 135-142.

Maibaum, T. S. E., Sadler, M. R. and Veloso, P. A. S. (1984). Logical
specification and implementation. In Joseph, M. and ‘Shyamasundar
R. eds. Foundations of Software Technology and Theoretical
Computer Science. Springer-Verlag, Berlin, 13-30.

Maibaum, T. S. E. and Turski, W. M. (1984). On what exactly is going on
when software is developed step-by-step. tProc. 7h Intern. Conf. on
Software Engin. IEEE Computer Society, Los Angeles, 528-533.

Maibaum, T. S. E, Veloso, P. A. S. and Sadler, M. R. (1985). A theory of
abstract data types for program development: bridging the gap?. In
Ehrig, H., Floyd, C., Nivat, M. and Thatcher, J. eds. Formal Methods
and Software Development; vol. 2: Colloquium on Software
Engineering. Springer-Verlag, Berlin, 214-230.

Maibaum, T. S. E, Veloso, P. A. S. and Sadler, M. R. (1991). A logical
approach to specification and implementation of abstract data
types. Imperial College of Science, Technology and Medicine, Dept.
of Computing Res. Rept. DoC 91/47, London.

Manna, Z. (1974). The Mathematical Theory of Computation. McGraw-
Hill, New York.

Parnas, D. L. (1979). Designing software for ease of extension and
contraction. IEEE Trans. Software Engin., S (2), 128-138.

Shoenfield, J. R. (1967). Mathematical Logic. Addison-Wesley, Reading.

Smith, D. R. (1985).The Design of Divide and Conquer Algorithms. Science
Computer Programming,5 37-58.

Smith, D. R. (1990). Algorithm theories and design tactics”. Science of
Computer Programming., 14, 305-321.

23

Smith, D. R. (1992). Constructing specification morphisms. Kestrel
Institute, Tech. Rept. KES.U.92.1, Palo Alto.

Turski, W. M and Maibaum, T. S. E. (1987). The Specification of Computer
Programs. Addison-Wesley, Wokingham, .

van Dalen, D. (1989). Logic and Structure (2nd edn, 3rd prt). Springer-
Verlag, Berlin.

Veloso, P. A. S. (1984). Outlines of a mathematical theory of general
problems. Philosophia Naturalis, 21 (2/4), 354-362.

Veloso, P. A. S. (1985). On abstraction in programming and problem
solving. 2nd Intern. Conf. on Systems Research, Informatics and
Cybernetics. Baden-Baden.

Veloso, P. A. S. (1987). Verifica¢do e Estrutura¢do de Programas com
Tipos de Dados. Edgard Bliicher, Sdo Paulo.

Veloso, P. A. S. (1987). On the concepts of problem and problem-solving

method. Decision Support Systems, 3 (2), 133-139.

Veloso, P. A. S. (1988). Problem solving by interpretation of theories. In
Carnielli, W. A. ; Alcintara, L. P. eds. Methods and Applications of
Mathematical Logic. American Mathematical Society, Providence, .
241-250.

Veloso, P. A. S. (1992). On the modularisation theorem for logical
specifications: its role and proof. PUC - RJ, Dept. Informitica Res.
Rept. MCC 17/92, Rio de Janeiro.

Veloso, P. A. S., Maibaum, T. S. E. and Sadler, M. R. (1985). Program
development and theory manipulation. In Proc. 3rd Intern.
Workshop on Software Specification and Design. [EEE Computer
Society, Los Angeles, 228-232.

Veloso, P. A. S. and Maibaum, T. S. E. (1992). On the Modularisation
Theorem for logical specifications. Imperial College of Science,
Technology & Medicine, Dept. of Computing Res. Rept. DoC 92/35,
London.

Veloso, P. A. S. and Veloso. S. R. M. (1981). Problem decomposition and
reduction: applicability, soundness, completeness. In Trappl, R.; Klir,
J. . Pichler, F. eds. Progress in Cybernetics and Systems Research.
Hemisphere, Washington, DC, 199-203.

24

