ISSN 0103-9741

Monografias em Ciéncia da Computagdo
n° 33/94

Logical Specifications: 3. Extensions of
Specifications

Paulo A. S. Veloso
Thomas S. E. Maibaum

Departamento de Informdatica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22453-900
RIO DE JANEIRO - BRASIL



PUC RIO - DEPARTAMENTO DE INFORMATICA ISSN 0103-9741

Monografias em Ciéncia da Computagdo, N° 33/94
Editor: Carlos J. P. Lucena ’ Novembro, 1994

Logical Specifications: 3. Extensions of Specifications *

Paulo A. S. Veloso

Thomas S. E. Maibaum**

* Research partly sponsored by the Brazilain agencies CNPqg, RHAE and
FAPERJ, British agency SERC and European Community agencies.

** Dept. of Computing, Imperial College of Science, Technology and
Medicine, London, UK.



In charge of publications:

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentagdo e Informagdo

PUC Rio — Departamento de informdtica

Rua Marqués de Sao Vicente, 225 — Gavea

22453-900 — Rio de Janeiro, RJ

Brasil

Tel. +55-21-529 9386 Telex +55-21-31048 Fax +55-21-511 5645
E-mail: rosane@inf.puc-rio.br



LOGICAL SPECIFICATIONS: 3. EXTENSIONS OF SPECIFICATIONS

Paulo A. S. VELOSO and Thomas S. E. MAIBAUM
{e-mail: veloso@inf.puc-rio.br and tsem@doc.ic.ac.uk}

PUCRioInf MCC 33 /94

Abstract. We present basic concepts and results concerning extensions of logical
specifications and illustrate their use in constructing specifications. We start by briefly
examining the idea of hidden symbols in specifications. Then, we introduce some
concepts concerning extensions of languages and of presentations, as well as
properties such as conservativeness and eliminability. We then examine separately
extensions by the introduction of predicates, operations, constants and sorts, with
emphasis on criteria for conservativeness. In addition to classical definitions, we also
consider. and compare, constraints (inner, outer, Skolemisation, and pre and post
conditions), as well as inductive predicates. The methods we consider for introducing
new sorts are product, discriminated union, subsort, quotient and enumeration, as
found in many programming languages. Finally, we apply these ideas to the
treatment of errors and to construction of specifications. This report is a draft of the
third section of a handbook chapter. Other reports cover the remaining sections.

Key words: Formal specifications, program development, axiomatic specifications, extensions of
specifications, conservative extensions, eliminability, introduction of predicate,
operations, constants and sorts, definitions, constraints, inductive predicates,
Skolemisation, pre and post conditions, product, discriminated union, subsort,
quotient, enumeration, treatment of errors, construction of specifications.

Resumo. Apresentamos conceitos e resultados bésicos sobre extensdes de
especificacdes logicas ilustrando seu emprego em construcao de especificagoes.
Comecamos com um breve exame da idéia de simbolos ocultos em especificagGes. A
seguir, introduzimos alguns conceitos relativos a extensdes de linguagens e de
apresentacdes, além de propriedades como conservatividade e eliminabilidade.
Passamos entdo a examinar separadamente extensdes por introdugéo de predicados,
operacdes, constantes e sortes, enfatizando critérios para conservatividade. Além de
definicdes classicas, consideramos e comparamos restricdes (internas, externas,
skolemizacio, e pré e pés condigdes), bem como predicados indutivos. Os métodos
considerados para a introduzir novos sortes sdo produto, uniao discriminada,
subsorte, quociente e enumeragdo, como encontrados em vdrias linguagens de
programacao. Finalmente, aplicamos essas idéias ao tratamento de erros e a
construcdo de especificagdes. Este relatério é um esbogo da terceira secao de um
capitulo de um manual. Outros relatérios cobrem as demais segGes.

Palavras chave: Especificacdes formais, desenvolvimento de programas, especificagoes
axiomdticas, extensdes de especificacdes, extensdes conservativas,
eliminabilidade, introdugdo de predicados, operagdes, constantes € sortes,
definicdes, restri¢des, predicados indutivos, skolemizacdo, pré e pos condicdes,
produto, unifo discriminada, subsorte, quociente, enumeragao, tratamento de
erros, construcdo de especificagdes.



NOTE

This report is a draft of the third section of a chapter in a forthcoming
volume of the Handbook of Logic in Computer Science

Other reports, corresponding to the remaining sections, have been issued or
are in preparation. The plan of the chapter - and series of reports Logical
Specifications - is as follows.

Introduction and Overview MCC 13/94, June 1994, (v+11 p)
Specifications as Presentations MCC 26/94, July 1994, (vi+24 )
Extensions of Specifications

Interpretation of Specifications

Implementation of Specifications

Parameterised Specifications

Conclusion: Retrospect and Prospects.

The chapter - and series of reports - is intended to provide an account of
the logical approach to formal specification development.

Any comments or criticisms will be greatly appreciated.

The next report in this series is planned to be Logical Specifications: 4.
Interpretations of Specifications, covering:

unsorted and many-sorted translations and interpretations;

composition, decomposition and internalisations of translations;

variations of translations and interpretations, relativisation, translation of
equality, sort tupling;

interpolation and modularity of extensions and of interpretations.



ACKNOWLEDGEMENTS

Research reported herein is part of an on-going research project. Partial
financial support from British, European Community and Brazilian agencies
is gratefully acknowledged. The hospitality and support of the institutions
involved have been very helpful. Collaboration with Martin R. Sadler, Sheila
R. M. Veloso and José L. Fiadeiro was instrumental in sharpening many
ideas. The authors would like to thank the following for many fruitful
discussions on these and related topics: Carlos J. P. de Lucena, Samit Khosla,
Atendolfo Pereda Bérquez, Douglas R. Smith, Haydée W. Poubel and M.
Claudia Meré. Special thanks go to Tarcisio H. C. Pequeno and Roberto Lins

de Carvalho



CONTENTS *

3. EXTENSIONS OF PRESENTATIONS

3.1 INTRODUCTION
3.2 SPECIFICATION CONSTRUCTION AND HIDDEN SYMBOLS
3.3 EXTENSIONS OF LANGUAGES AND PRESENTATICNS
3.4 CONSERVATIVE AND ELIMINABLE EXTENSICNS
3.5 EXTENSIONS BY PREDICATES

3.5.1 Extensions by Definitions of Predicates

3.5.2 Extensions by Constraints on Predicates
3.5.3 Extensions by Inductive Predicates

3.6 EXTENSICNS BY OPERATICNS
3.6.1 Extensions by Definitions of Operations

3.6.2 Extensions by Constraints on Operations

3.6.3 Comparison of Constructs for adding Operations

3.7 EXTENSIONS BY CONSTANTS
3.8 EXTENSIONS BY SCRTS
3.8.1. Extensions by Product of Sorts
3.8.2 Extensions by Sum of Sorts
3.8.3 Extensions by SubSorts
3.8.4 Extensions by Quotient of Sorts
3.8.5 Extensions by Sort Enumeration
3.8.6 Comments on Sort Constructs
3.9 APPLICATIONS OF EXTENSICNS
3.9.1 Treatment of Errors
3.9.2 Case Studies
3.10 EXAMPLE SPECTFICATICNS

3.11 REFERENCES

* See the preceding note for an explanation of the numbering system

OO AN

» N B

LBBEEREBEBEBRR® oo



List of Figures
Fig. 3.1: Two ways of extending presentations
Fig. 3.2: Inner‘ constraint on operation
Fig. 3.3: Outer constraint on operation
Fig. 3.4: Pre and post condition on operation
Fig. 3.5: Definition vs. inner and outer constraint on operation
Fig. 3.6: Comparison among constraints for operation
Fig. 3.7: Dispensing with product sort
Fig. 3.8: Operation with argument in product sort
Fig. 3.9: Operation with result in product sort
Fig. 3.10: Operations with result and argument in quotient sort
Fig. 3.11: Sequence of specifications leading to rationals

Fig. 3.12: Construction history of specification for rationals

BB &ERBRBEE o

List of Example Specifications
Spec. 3.1. BOOL: Boolean values 3
Spec. 3.2. BOOL_EXT_NEG&LESS: Boolean extended by negation and ordering 33



3 Extensions of Specifications

Specifications as theory presentations are not given whole, they have to be
constructed to suit the purpose at hand. One might claim that the subject
matter of specification engineering is the study and practice of presentation
construction - and, as we shall see later, a variant of it, translation. (Even
management of software projects can be seen in terms of theory
construction: how can one control the construction of very large theories.)

- Important tools for the construction of specifications are related to
extensions: one can construct a, possibly large, specification by starting from
a small one and extending it in steps. In this process of presentation
construction, one generally wishes to preserve - as oposed to revise - certain
properties. This is the basic idea underlying modularity.

The structure of this section is as follows. We start in 3.1 (Introduction) by
presenting some simple examples, indicating what extensions are and some
of their uses. Then we briefly illustrate the use of extensions in constructing
specifications and comment on the role of hidden symbols in 3.2 and
examine some concepts related to extensions of languages and specifications
in 3.3. In 3.4 we examine the concepts of conservativeness and eliminability.
The next four subsections consider separately the addition of predicates,
operations, constants and sorts. In 3.5 we examine extensions by addition of
predicate symbols: by definitions, by outer and inner constraints and by
induction. Extensions by operations are considered in 3.6, which examines,
and later compares, definitions, constraints (outer, inner, Skolemisation, and
pre and post conditions). In 3.7 we briefly examine extensions by constants,
with emphasis on the simultaneous introduction of several constants by
Skolemisation. Extensions by sorts, which are important but more complex,
are dealt with in 3.8. We examine constructs similar to those found in many
programming languages: four constructs that introduce a new sort (together
with some conversion operations) as a product, a subsort, a quotient, or a
discriminated union of existing sorts, as well as the introduction of a new
sort by simply enumerating its elements. Some applications We also
comment on these constructs and their use in program development. We
then examine some applications illustrating the use of extensions in
development of specifications. The first one, more general, will address the
issues related to errors. The second one will consist of case studies showing
the construction of extensions of integers to naturals and rationals, which
illustrate the use of extensions for building specifications, hinting at some
desirable features of systems providing support for such task. Our Example



Specifications of this section are collected in 3.10.

3.1 Introduction

A specification 'describes' (properties of) some objects expressed by
sentences of a specific language. In dealing with specifications it is often
useful to compare a specification with parts of it in smaller languages. Also,
a useful approach to constructing specifications is to start from somewhat
simple specifications which will be extended.

An extension is obtained by adding new symbols (with their syntactical
declarations) and new properties (expressed by new axioms). A simple
example will indicate what extensions consist of as well as how they can be
used in constructing larger specifications.

Assume that we wish to specify the Bolean values with negation and
ordering. We may start by specifying the Bolean values, and then extend it
by adding negation and less (symbol for them and their properties).

So, we may start form the specification BOOL for the Bolean values given as
Spec. 3.1 in 3.10. We now extend it by adding operation negation and
predicate less?, obtaining Spec. 3.2: BOOL_EXT_NEG&LESS in 3.10.

Extensions also provide a way of comparing presentations. For a simple
example, assume that we have two presentations of the ordering of the
natural numbers: one based on It (less than) and another one based on le
(less than or equal). As such, they are quite different, even linguistically.
But, we can extend them to a common language, where they can be
compared. We can extend the former by introducing le by means of the
(defining) axiom Vx,y[le(x,y)<(lt(x,y)vx=y)]. Similarly, we can extend the
latter by means of Vx,y[lt(x,y)<>(le(x,y)A—=x=y)], which defines It in terms of
le. These extensions to the common language turn out to be equivalent, as
one might expect. (Here, since we have a single sort, we have left it implicit
in equality and quantitifications, a simplification we shall often resort to.)

3.2 Specification construction and hidden symbols
We shall now briefly illustrate the use of extensions in constructing
specifications and comment on the role of hidden symbols.

A simple example illustrating the idea of specification construction may be
obtained by examining how to formalise the notion of natural numbers with
a "less than" relation defined on them. Here, the language consists of the sort
Nat, and the symbols succ (unary operation), zero (constant) and < (infix
binary predicate).

One may arrive at an entire specification somehow; for instance, by



discovering in Enderton (1972, Section 3.2, p.184) the following
axiomatisation Ap:

Vy(—y=zero —»3x y=succ(x)) (S3)
VX, y(x<succ(y)<>X<yvx =Yy) (L1)
V' X—X<Zero (L2)
VX,y(X<yVvX =yVy <X) (L3)
VX,y(X<y——y <X) ' (L4)
VX,y,z[X<y—(y<z—X <z)] (L5)

If, on the other hand, we had to construct such a presentation from
scratch, it might be wise to start from a simpler one, say that of the ordering
with only <, and later extend it by introducing the remaining symbols.

Thus, we may start by describing < as a strict ordering that is linear,
discrete, has a beginning but no end. In other words, we start from the
following axiomatisation G. (involving only <):

VX—X<X (ir)
VX,¥,Z[(X<yAy<z)—X <z} (tr)
VX,y(X<yVX =yVvy <X) (In)
Vx3Iyx<y (nl)
—Vx3yy<x (ft)
Vx,y{x<y—3u[x <un-3z(x <zaz <u)]} (dc+)
Vx,y{x<y—3v[v <ya—3z(v <zAz <y)]} (dc-)

We now extend the above presentation G. by definitions for zero and succ:
Vy(y=zero «<>—3x x<y) (Dz)
Vx,y[y=succ(x)e>x<y—3z (X <zZAz <y)] (Ds)

thereby obtaning presentation Gy.

Note that (Dz) is consistent with (ft) because of the existence and
uniqueness of those values which are minimal with respect to <, and (Ds) is
consistent with (dc+).

Now Gp was obtained in steps, and is more trustworthy than A, if we had
written the latter in a single swoop. In fact, they are equivalent since either
one generates Th(<N,S,0,<>). Which specification is preferred depends very

much on factors to do with intended use, starting point for formalisation,
even history of modifications during formalisation (Maibaum et al. 1991).



In this example we have so far assumed that we wished to specify the
naturals with zero and successor, as wel as their ordering. Assume now that
we actually wished to specify the naturals with zero and successor. Notice
that Th(<N,S,0>) is not finitely axiomatisable (Enderton 1972, p. 178-187), in
contrast with Th(<N,S,0,<>). Thus, it might be interesting to retain the
previous axiomatisation Gy (or Ap) for Th(<N,S,0,<>) and add the proviso that
< is not really part of the language. This is part of the idea of a hidden
(predicate) symbol.

Hidden symbols are often found in the literature (Guttag and Horning
1978). The idea is that some symbols of a specification are flagged as
hidden. This serves two distinct, but related, purposes

To the user of the specification, it signals that such a symbol may be

used in reasoning, but should not be invoked by a program.

To the implementor of the specification, it signals that he needs not to

bother with implementing such a symbol by procedures.

In short, a hidden symbols is just like an ordinary symbol from the
viewpoint of declarative reasoning, but it is not guaranteed to have a
procedural realisation. The motivaton is simplifying specifications without
burdening the implementation. Like hidden predicates, illustrated in the
above example, hidden operations and hidden sorts are often found useful.
3.3 Extensions of languages and presentations
Extending specifications involves extending the languages and the sets of
axioms. We shall now examine some concepts related to extensions of
languages and specifications. '

Given languages L’ and L”, we say that L’ is a sub-language of L”, or that L”
extends L’, (notation L’cL”) iff each extra-logical symbol (sort, operation, or
predicate) of L’ is a symbol of the same kind in L” with the same
declaration, which also is to occur with the variables and their declarations
as well. In other words, L” can be thought of as obtained from L’ by the
addition of new symbols and their syntactical declarations; so each formula
of L’ is a formula of L”, bu the latter may have new formulae not in L’. Thus,

if L'’cL” then Srt(L’)cSrt(L”), Prd(L’)cPrd(L”), Opr(L’)cOpr(L”), and
Var(L’)cVar(L”). Also, Trm(L’)cTrm(L”) and Frml(L’)cFrml(L”).

For theories T’ and T”, we say that T’ is a sub-theory of T”, or that T”
extends T’ iff T'cT” as sets of sentences. For specifications P’=<L’,G’> and
P’=<L”,G”>, we say that P” is an extension of P’, which we denote by P’cP”, iff
L’cL” and Cn[P’]cCn[P”], i. e., we have inclusion of languages and theories



generated.

The important point to note is that extension amounts to inclusion
between theories and not between axiomatic presentations of theories, even
though it is defined as a relationship between specifications. When
constructing an extension one generally adds new axioms to the existing
ones, so that one also gets inclusion between axiomatisations.

The relation of extension between specifications is clearly reflexive and
transitive. Transitivity is of special interest in view of our idea of using
extensions to construct specifications in steps.

Given a theory T” over language L” and a sub-language L’cL”, the

restriction of T” to sub-language L’ is the theory T’VL’ := {oe Sent(L’)\T’Ec}
consisting of the sentences of L’ that are in T” (Shoenfield 1967, p. 95).
Similarly, the restriction of specification P’=<L”,G”> to sub-language L’cL” is
the specification P"VL’ := <L’,Cn[P”]YL’>. Notice that restriction does not
necessarily preserves finite axiomatisability. As mentioned in 3.2,
Th(<N,S,0,<>) is finitely axiomatisable, but its restriction by forgetting <,
which is Th(<N,S,0>), is not so (Enderton 1972, p. 178-187).

After constructing a specification, by adding new symbols and axioms,
some details of the construction history may be considered no longer
relevant, then one can use restriction to hide them. For instance, upon
constructing the signed integers as pairs <s,n> of signs and naturals, one may
decide to hide the original sorts, together with some operations. Also, a
combination of extension with restriction can be used to ‘rename’ symbols.
For a simple example, reconsider our discussion of the presentation of the
ordering of the natural numbers based on It (less than) in 3.1. Assume that
we wish a more user-friendly infix <. We can clearly extend our
presentation introducing < by the (defining) axiom Vx,y[x<y<>1t(x,y)]. The
effect of now restricting by forgetting 1t will be that of renaming It as <.

If L’ is a sub-language of L”, then a structure for L” consists of realisations
for the symbols of L’ and for the symbols only of L”. Thus, given a structure
# for language L”, if we restrict it to L’, by forgetting the realisations for the
symbols of L’, we obtain a structure ft{L’ for L’, called the reduct of #l to
sub-language L’cL”. We also say that #fl is an expansion of ML’ to language
L” (Shoenfield 1967, p. 43; van Dalen 1989, p. 116). Since satisfaction of a
sentence depends only on the realisations of its extra-logical symbols, for a
sentence o of L’: fii=o iff ML Fo.




3.4 Conservative and eliminable extensions

We now briefly examine two properties that an extension may or may not
have: conservativeness and eliminability. The former is specially important
in stepwise refinement, and both properties are characteristic of extensions
by definitions.

When performing an extension one expects an increase in both deductive
and expressive powers. On the other hand, one often does not wish to
disturb the smaller theory. When the extension only adds properties of the
new symbols, without disturbing the old ones, one has a conservative
extension, which does not increase the deductive power for the properties of
the old symbols. Similarly, the increase in expressive power may be
inessential, in which case our extension has the property of eliminability.

Versions of conservativeness and eliminability are important also in the
algebraic approach, which emphasises equations between ground terms
(Ehrig and Mahr 1985). Here we consider general versions by means of
relativisations to sets of formulas.

Consider theories T’ and T” as well as a set £ of sentences common to both
underlying languages. We say that T” X-extends T’ (T’2T’[Z]) iff for each
sentence oce X, T’Ec whenever T’k o; and that T” Z-conserves T’ ((T"2T’[Z])) iff
for each sentence ceX, T’ko whenever T”Fo. Now, consider a theory T and
sets of formulae ¥ and © of its language. We say that T eliminates ¥ in
favour of © (T:¥=0) iff for every formula ye ¥ there exists a formula 6 ©

such that Tk (y<0)

Some special cases of these concepts are found in the literature. For
instance, if we specialise £ to equalities between ground terms of L’ and ¥
and ©, respectively, to equalities of the form v=gt’ and v=(t” (with 'e Nm(L’)
and t’e Nm(L”)), we get the versions used for initial algebras (Ehrig and
Mahr 1985). Also, quantifier elimination (Enderton 1972, p. 181; Shoenfield
1967, p. 83) can be regarded as a special case of ¥-©-eliminability.

For specifications P’=<L’,G’> and P"=<L”,G”> we are generally interested in
special versions of the above concepts. By a conservative extension (denoted
P’<P”) we mean an extension P’cP” such that, for every sentence ¢ of L’,
oe Cn[P”] iff oe Cn[P’], i. e. Cn[P”] Sent(L’)-conserves Cn[P’]. By an eliminable
extension (denoted P’<P”) we mean an extension P’cP” such that for every
formula ye Frml(L”) there exists a formula 8e Frml(L’) with (y<0)e Cn[P”], i.
e. Cn[P”] eliminates Frml(L”) in favour of Frml(L").



between specifications are reflexive and transitive.

Eliminability can be reduced to elimination of the atomic formulae, from
which the other are constructed. Indeed a simple charaterisation of
eliminability is as follows. Extension P’cP” is eliminable iff for each atomic
formula oe (Atfm(L”)-Atfm(L’)) there exists a formula 6 of L’ such that
(a>0)e Cn[P”]. :

Conservative extensions play important roles in developing specifications,
in particular in parameterisation and implementation. Part of this
importance stems from the fact that they preserve consistency: a
conservative extension of a consistent specification is consistent. In the case
of maximal consistency, the converse also hols: for a maximally consistent P’,

an extension P”oP’ is conservative iff P” is consistent.

Now, consider a specification P’=<L’,G’> and assume we wish to extend it to
P”’=<L”,G”>, where G"=G’UN with N being the set of new axioms. There are
basically two ways to proceed, depending on whether the first step extends
the language or keeps it fixed, as illustrated in figure 3.1.

1. We first extend the languages, from L’ to L”, and then add the set N of
new axioms.

2. Within language L’, we first extend G’ to some set Go G’ of sentences of
L’, and then extend the languages, from L’ to L”, and add a set N” of
sentences of L”.

Both relations <, of conservative extension, and <, of eliminable extension,

<L'G> C <L".G> <L,G>
M M
<L".G'U N> <L'G> < <L".G UN">

Fig. 3.1: Two ways of extending presentations

In the second approach above, the first step involves selecting a set of
axioms in the smaller language. A natural choice for this intermediate step is
the restriction P”VL’ of P” to L’. Then we get the bonus that the second
extension, from P”VL’ to P” is conservative. In fact, this provides a simple,
albeit not very useful, characterisation of conservativeness: an extension
P’cP” of specifications is conservative iff P’ is equivalent to the restriction
P”JL’ of P” to sub-language L’=Lang(P’) (P’=P"VL’).

Checking conservativeness a-posteriori is in general not easy. We shall
later examine some ways of guaranteeing it by construction. Some useful



criteria for conservativeness are given in the next result (Shoenfield 1967, p.
65, 95), which uses model-oriented counterparts of conservativeness. An
extension P’cP” is expansive (notation P’ <P”) iff every modelffl’e Mod[P’] has
an expansion to a model #l”e Mod[P”], 1. e. MLl =M. A less restrictive variant
is elementary expansiveness: extension P'cP” is elementarily expansive iff
for every #i’e Mod[P’] there exists some model #f”e Mod[P”] such that Mm-LlL is
elementarily equivalent to M’ (#”IL =Ml").

Proposition Model-theoretic criterion for conservativeness

An extension P’cP” of specifications is conservative iff it is elementarily
expansive. In particular, an expansive extension is conservative.

In the first approach above, the first step amounts to simple addition of
new symbols without any new axiom. This is an extremely simple case of
extension, which we may call an extension by symbols. An extension by
symbols is an extension P’cP” where Axm(P”)=Axm(P’). Clearly, since the
nothing is required of the new symbols, we may realise them as we please.
Thus, an extension by symbols is expansive, hence conservative.

Property-oriented versions of the above criterion for conservativeness are
provided in the next proposition, which generalises the idea that
conservative extensions preserve consistency.

Proposition Property-oriented criteria for conservativeness
For an extension P’cP” of specifications the following are equivalent.

a) Extension P’cP” is conservative.

b) For any set of sentences £ of Lng(P’), if Axm(P’)uZX is consistent, then so

is Axm(P’)UZ.

c) For any set of sentences T of Lng(P’), if Axm(P)uZ is maximally

consistent, then Axm(P’)uZ is consistent.

We view assertion (c) as a property-oriented version of elementary
expansiveness. This underlines an important methodological point in our
approach: we do not care to distinguish elementary equivalent structures,
because they have the same properties, as expressed in the language.

As mentioned, conservative extensions play a crucial role in our approach,
but conservativeness is generally not easy to check a-posteriori. So it is
interesting to have constructs for extension that guarantee this property.
Two extreme cases of conservative extensions are extensions by symbols
and extensions by definitions. The former is not very interesting in practice
because nothing is said about the new symbols, which renders them unlikely



to be useful in implementations. The latter are quite useful, but are
sometimes too restrictive, since they do not leave room for further
refinement. ,

In constructing an extension one may proceed in steps, each step adding a
few symbols and axioms. Each such step, as seen above, may in turn be
decomposed into first adding the new symbols and then the new axioms.
The first step is an extension by symbols, hence conservative (and generally
not eliminable). The properties of the composite extension will heavily
depend on the second step, addition of the new axioms.

In the sequel we shall examine a few methods for extending a
specification, with emphasis on criteria for conservativeness. Some of these
methods are traditional in logic, whereas others have their origin in program
development.

We shall consider separately the addition of predicates, operations,
constants and sorts. The reason for this separation is the distinct effects that
these additions have on the language. For the case of sorts, we shall examine
sort introduction constructs akin to those found in many programming
languages. For the other cases, we shall examine classical explicit definitions,
as well as some slightly more liberal constructs, which will be of particular
interest in the case of introducing new operations. Extensions where no new
sort is introduced are often called enrichments (Ehrig and Mahr 1985;
Goguen et al. 1978).

In examining extensions it is sometimes convenient to consider the
removal of symbols. Removal illustrates why sorts are more difficult to
handle. One can remove a single predicate, operation or constant symbol.
But, when removing a sort, one must also remove the other symbols that
touch it (include it in their profiles) for obtaining a language.

3.5 Extensions by predicates

The introduction of predicate symbols is in general not very problematic.
When one adds new predicate symbols to a language one has new (atomic)
formulae, but no new terms or variables.

A case of particular importance is that of extension by definition of a new
predicate. This occurs in our example BOOL_EXT_NEG&LESS, where the
introduction of predicate symbol less? in BOOL is by means of the defining
axiom (Vx,y:Bool)[less?(X,y)<(X=pooiflAY=Booltr)] (see Spec. 3.2 in 3.10). The
idea is that the effect of the new predicate less? is explained by the old
formula (X=pg,0ifIAY=gooitr). Another simple example stems from the
interdefinability between It and le mentioned in 3.1.



We call language L” an extension of L’ by predicate symbols iff the only
new symbols in L” are predicate symbols over sorts of L’, i. e. Srt(L’)=Srt(L”),
Opr(L’)=Opr(L”), Var(L’)=Var(L”), and Prd(L’)cPrd(L”). Then, Trm(L’)=Trm(L")
and Frml(L’)cFrml(L”). _

Let us now examine the introduction of a new predicate symbol. The
situation is as follows. We have a specification P’=<L’,G’> and a symbol r not
in language L’. We wish to extend P’ to P”’=<L”,G”> where r is introduced as a
predicate symbol over given sorts si,...,Sy,already in L’. For this purpose we
first form language L” := L’U{r(sy,...,Sy)}, called the extension of L’ by the
addition of predicate symbol r over sorts Sq,...,Sp.

The next step will be the addition of some sentence(s) of language L” as
new axiom(s), presumably connecting r to the other symbols. We shall
examine separately various forms such new axioms may have and their
consequences, mainly in connection with conservativeness. These forms are
called (classical, explicit) definition, constraints and inductive closure.

3.5.1 Extensions by definitions of predicates

The introduction of a new (predicate) symbol by classical definition occurs
when the new axiom, in this case called defining axiom, provides an explicit
definition for this new symbol in terms of the old ones.

Our example BOOL_EXT_NEG&LESS shows the defining axiom
(Vx,y:Bool)[less 7(X,y)<>(X=gooifIAY=pooitr)] for predicate symbol less?. The idea
is that one may view the new atomic formula less?(x,y) as an abbreviation
for the old formula (X=gg0flAY=Booitl)-

Let us first review the nature of a definition for a predicate.

Let L be a language with a predicate symbol r over sorts sp,...,Sp. A
definition of predicate symbol r is a sentence d(r\p) of the form:
(Vvissp ... (Vs r(ve,...,vp)opl (3(r\p))

where vi,...,v,, are variables ranging over sorts s;,...,s; and p is a formula,
called the definiens of r, with no free occurrences of variables other than

V{,...,Vym. The specification Def(r\p) := <L,8(r\p)> is called the definition of
predicate symbol rin terms of formula p.

The reason for the name for specification Def(r\p)=<L,8(r\p)> is the
following model-oriented property: fle Mod[Def(r\p)] iff #[r]=#M[p]. Thus,
predicate r is indeed explained by formula p.

Now, consider the sub-language L'=L-{r} of L obtained by removal of

10



symbol r, and assume that the definiens p is in L*. We then have
eliminability: for every formula y of L there exists a formula e(y) of L* such
that 8(r\p)E [y < e(y)]. Another basic property of definition is unique
expandability: each structure ffl for sub-language L™ has a unique expansion
to a model Mi'e Mod[Def(r,p)]. Thus, definitions are conservative and
eliminable, properties which characterise them.

Proposition Characterisation of definition of predicate

Consider the sub-language L* = L-{r} of L obtained by removal of a predicate
symbol r. Then, an extension P=<L,G> of P*=<L*G*> is both conservative and
eliminable iff P is equivalent to <L,G"U{8(r\p)}> for some formula p of | S

Proof.
(&) From the preceding well-known remarks.
(=) Let r be over sorts sy,...,Sp.
Consider the atomic formula r(vy,...,vy) of L. By eliminability, we have a
formula p of L* such that (Vv;:8¢)...(VV:s)t(Vy,...,vp)>ple Cn[P].
Let 8(r\p) be the sentence (Vvy:8y)...(VVy:Spu)r(vy,...,vp)ep] of L and
consider P*:=<L.G*U{8(r\p)}>. We claim that P¥ is equivalent to P.
Since &(r,p)e Cn[P], we have P*cP.
For PcP*, consider a sentence te G. We will show that te Cn[P¥].
By eliminability, we have a sentence o=e(t) of L* such that 3(r\p)F [t<>o].
Now, since te G, oe Cn[P], and conservativeness yields ce Cn[P*]. Thus,
0eCn[G*U{3(r\p)}] and te Cn[P¥], as claimed.
QFD
Finally, specification P"=<L”,G”>, with
language L’=L’uU{r(sy,...,Sy)} being the extension of L’ by the addition of
predicate symbol r over some sorts Si,...,Sy, of L’, and
axiomatisation G”=G’U{8(r\p)} the extension of G’ by the definition
predicate symbol r with definiens p a formula of sub-language L’,
is called the extension of P’=<L’,G’> by definition of the predicate symbol r
(with defining axiom §(r,p)). We shall sometimes use the notation
PD_DEF[r(sy,...,8p)\0](P) for <L’ U{r(sy,...,5m) },G U{0(r\p) }>.
The introduction of a single new predicate by definition can be
generalised to the case of several predicates. We call specification P"=<L”,G”>

11



an extension of P’=<L’,G’> by definitions of predicate symbols iff L” is an
extension of L’ by predicate symbols and G” := G’U{&(r)\re Prd(L”)-Prd(L’)},
where, for each re Prd(L”)[s;...s,]-Prd(L’), 8(r) is a defining axiom of the
form (Vv :sy)...(Vvg:sp)r(vy,....,vp)epl, where p is a formula p of L’ with no
free occurrences of variables other than vy,...,v,, called the definiens of r.
The basic properties of unique expandability, conservativeness and
eliminability also generalise to this case.

3.5.2 Extensions by constraints on predicates

The defining axiom of a new predicate is a biconditional, a crucial feature for
guaranteeing eliminability. Its effect is forcing the realisation of the new
predicate to be equal to that of its definiens. It is sometimes convenient to
relax this equality to inclusion. This leads to the idea of inner and outer
constraints, which will be more interesting in introducing new operations.

Let L be a language with a predicate symbol r over sorts sy,...,s;,, and
consider a formula p with no free occurrences of variables other than
Vi,...,Vy (over sorts sp,...,Sy). An outer constraint for predicate r is a sentence
o(r\p) of the form

(Vviss)...(Vvpisp)r(ve,....vp)—pl (o(r\p))
where p is called the outer constraint on r. The specification Out(r\p) :=
<L,o(r,p)> is called the outer constraint of predicate symbol r under formula
p. Similarly, an inner constraint for predicate r is a sentence i(r\p) of the
form

(Vvissy)...(Vvpisplp—=1(vy,..., vl ((r\p))
where p is called the inner constraint on r. The specification Inn(r\p) :=
<L,u(r,p)> is called the inner constraint of predicate symbolr over formulap.

The reason for the names of specifications Out(r\p)=<L,o(r\p)> and
Inn(r\p)=<L,1(r\p)> is the following model-oriented property:
file Mod[Out(r\p)] iff M[ricM[p] and Me Mod[Inn(r\p)] iff Mr]oM(p].

Now, specification P”=<L”,G”>, where _

language L”=L’U{r(sy,...,S)} is the extension of L’ by the addition of

predicate symbol r over some sorts si,...,Sp. of L’, and

axiomatisation G”=G’u{o(r\p)} is the extension of G’ by an outer constraint

on predicate symbol r with constraint p a formula of sub-language L’,

is called the extension of P’=<L’,G’> by outer constraint on the predicate

12



symbol r (with outer constraint o(r\p)). Similarly, the extension of P’=<L’,G’>
by inner constraint p on predicate symbol r is the specification
P’=<L’U{r(s;,....8q) },G u{1(r\p)}>, where constraint p is a formula of sub-
language L’. We shall sometimes use for these extensions the notations
PD_OUT[r(sy,...,S)\0]1(P’) and PD_INN[r(sy,...,sp)\p1(P’).

The connections established by constraints are rather loose. The idea
behind constraints is splitting the biconditional of a defining axiom into two
conditionals. Indeed a defining axiom &(r\p) of the form
(Vviisy)... (Vvgisp)r(vy,...,.vp)epl is equivalent to the conjunction
o(r\p)ai(r\p) of its corresponding outer and inner constraints. So we no
longer have eliminability but we still have expansiveness.

Proposition Properties of extension by constraint on predicate

Assume that specification P”=<L”,G”> is an extension of P’=<L’,G’> by outer or
inner constraint on a predicate symbol. Then, extension P’cP” is expansive,
hence conservative.

3.5.3 Extensions by inductive predicates

When dealing with graphs one often considers reachability predicates. For a
unsorted example, consider unary predicate r under axiom
Vy{r(y)e [y=cvIx(r(x)af(x)=y)]}, where c is a constant and f a unary
operation. This illustrates the introduction of a new predicate r by a
“recursive definition”, which is available even without considering inductive
constructors.

Let L be a language with a predicate symbol r over sorts sj,...,S, and
consider two formulae: B with no free variables other than y;,...,y, (over
SOIts Sy,...,Sy), and y with no free variables other than x,...,Xp,yq,...,Ym (Over
SOrtS Si,...,8m,8],... Sy ). An inductive constraint for predicate r is a sentence
«{r\B,y) of the form

(VY158 (VY STV 150> Ym) S BV (IR 351 (X 8 ) (F(X 1. X )AYW) ] }
where B and y are called the inductive basis and inductive step for r. The
specification Ind_CI(r\B,y) := <L,*(r\B,y)> is called the inductive closure of
predicate symbol r under basis B and step .

The reason for the name for specification Ind_Cl(r\B,y)=<L”,*(r;B,y)> is as
follows, considering a unsorted unary predicate to simplify the notation. The
inductive constraint *(r\B,y) is equivalent to the conjunction of the following

13



sentences:

Vy[B(y)—-1(y)] {r includes B},

VVy[(r(x)ay(x,y))—r1(y)] {r closed under vy},

Vy[r(y)—= [B(y)vIx(x(x)Ay(x,y)]1].
Thus, a structure i for L where #[r] is the closure of M[P] under M[y] is a
model of Ind_CIl(r\B,y).
A caveat for the unattentive reader: care must be exercised not to read into
the inductive constraint *(r\B,y) more than is written; it does not force #i[r]
to be exactly the closure of M[P] under M[y]. Indeed, reconsider our
introductory example Vy{r(y)e [y=cvIx(r(x)af(x)=y)]}. Consider a
nonstandard model M of the naturals, i. e. a copy of the naturals plus a few
copies of the integers (Enderton 1972; Ebbinghaus et al. 1984; van Dalen
1989), with M[c]=0e N and #i[f] being successor in N and within each copy of
Z . Then, the elements reachable from #Mi[c] via M[f] constitute exactly the
standard copy N. A possible model for #(r\y=c,y=f(x)) is obtained by taking
M[r] to consist of N plus some copies of Z. (If we have an inductive axiom
like r(c)AVx[r(x)—=r(f(x))]1—=Vyr(y), it will force #i[r] to be all of the domain.)
In any case, #i[r] does not consist only of the elements reachable from #i[c]
via #([f]. Notice, however, that this problem affects only those with model-
oriented eyes; our approach does not even perceive it, since we do not
discriminate elementarily equivalent models.

As before, we are mainly interested in the case where the basis and step
formulae B and y are in sub-language L’. Consider the case where
L”=L’u{r(s¢,...,sy)} is the extension of L’ by the addition of predicate symbol r
over sorts $j,...,Sy,. Then, specification P”’=<L’U{r(sy,...,54)},G U*(r\B,y)}> is
called the extension of P’=<L’,G’> by inductive closure of the predicate
symbol r (with basis B and step y) and will sometimes be denoted by
PD_INDCLI[r(sq,...,5m)\BWI(P’).

The basic properties of these extensions are similar to those of extensions
by constraints. ‘

Proposition Properties of extension by inductive closure of predicate
Assume that specification P”=<L”,G”> is an extension of P’=<L’,G’> by inductive
closure of a predicate symbol. Then, extension P’cP” is expansive, hence
conservative.

As before, expandability is not unique and we cannot ensure eliminability.

14



3.6 Extensions by operations

The introduction of operation symbols requires some care. When one adds
new operation symbols to a language one has new terms and (atomic)
formulae, but no new variables. The basic idea is extracting functions from
relations. A formula with free variables denotes, on a structure, a relation.
We wish to "extract" a function from such a relation. '

A case of particular importance is that of extension by definition of a new
operation. This appears in our example BOOL_EXT_NEG&LESS (see Spec. 3.2 in
3.10), where operation symbol neg is introduced into BOOL by means of the
new axiom (VX,y:Bool)(—neg(x)=g,0X), Which has the effect of explaining the
new atomic formula neg(x)=g,,;y by means of the old formula
[(X=BoolfIAY=BooltD)V(X=BooltT AY=BootfD].

We call language L” an extension of L’ by operation symbols iff the only
new symbols in L” are operation symbols between sorts of L’, i. e.
Srt(L’)=Srt(L”), Prd(L’)=Prd(L”), Var(L')=Var(L”), and Opr(L’)cOpr(L”). Then,
Trm(L’)cTrm(L”) and Frml(L’)cFrml(L”).

Let us now examine the introduction of a new operation symbol. The
situation is as follows. We have a specification P’=<L’,G’> and a symbol f not
in language L’. We wish to extend P’ to P”=<L*“,G”> where f is introduced as an
operation symbol involving given sorts si,...,s, and s, already in L’. For this
purpose we first extend L’ to L” := L’U{f(sy,...,s,)—>s}, called the extension of
L’ by the addition of operation symbol f from sorts sy,...,S, t0 s.

The next step will be the addition of some sentence(s) of language L” as
new axioms. In the sequel we shall examine various forms such new axioms
may take and their consequences, mainly in connection with
conservativeness.

If conservativeness is to be achieved, the introduction of a new operation
symbol imposes requirements on new axioms with respect to the starting
specification. These requirements may be too restrictive in the case of
definitional extensions, which renders constraints more interesting in this
case.

3.6.1 Extensions by definitions of operations

The introduction of a new operation symbol by classical definition occurs
when its behaviour is explained in terms of the the old symbols. In other
words, its defining axiom should describe its graph by means of the
available concepts.

15



Let L be a language with an operation symbol f from sorts s;,...,s, to s. A
definition of operation symbol f is a sentence 3(f\6) of the form:

(Vx;:87)... (VXu:8 (VY ) [(Xy,... . Xp)=y 0] (3(f\0))
where xi,...,X,,y are variables ranging over sorts S;,...,8;,s and 0 is a formula,
called the definiens of f, with no free variables other than x,...,x,,y. The

specification Def(f\6) := <L,3(f\6)> 1is called the definition of operation symbol
fin terms of formula 6.

The reason for the name of specification Def(f\6)=<L”,5(f\6)> is, as in the
case of predicates, the property: flle Mod[Def(f\0)] iff M[f]=M[6]. Thus, the
graph of operation f is the relation realising 6. The defining axiom equates
the graph of operation f with a relation, so this relation should the graph of
some function. These requirements are expressed by the existence and
uniqueness conditions. The existence condition 3(8) for formula 6 is the
following sentence of L

(VX1:81)... (VXq:80)(TY:8)0(X 1, X, ¥) (3(6))
and the uniqueness condition !(8) for formula 6 is the sentence
(VX1:8)-- (VXS (VY Y [ oo XY IAB(K s XY ]9y =y} (1))

These requirements indicate the restricitve nature of classical definitions
of operation symbols, because 3(f\0)=3(8)A!(0).

But, first let us examine eliminability. For this purpose, let us consider, as
before, the sub-language L'=L-{f} of L obtained by removal of symbol f, and
assume that the definiens 6 is in L*. We have eliminability (of formulae,
even if not of terms): the operation symbol f can be eliminated from any
formula. This is the content of the following well-known result.

Proposition Eliminability of defined operation symbol
Consider the sub-language L*=L-{f} of L obtained by removal of a operation
symbol f. If 6 is a formula of L*, then, for every formula y of L there exists a

formula e(y) of L* such that §(f\8)F [y<>e(y)]

Proof outline.

For each term f(t;,...,t;),in view of the defining axiom

(VX1:81)... (VXp:Sp)(VYS)E(X ..., Xg)= Yy 0(X ..., Xp,Y)], We have
(Vy:s)[E(ty,....tp)=ye0(tq,... .t )]

If terms t;,..., and t, have no occurrence of f, we can eliminate f(t;,...,tp)=gy
in terms of formula 6(ty,...,t,,y) of L.

16



This indicates how to eliminate the innermost occurrences of f.
QFED

Now, specification P”"=<L”,G”>, with

language L” := L’U{f(sy,...,sp)—>s} being the extension of L’ by the addition

of operation symbol f from sorts sg,...,s, to s of L’, and

axiomatisation G”=G’U{8(f\0)} the extension of G’ by the definition

operation symbol f with definiens 6 a formula of sub-language L’
is called the extension of P’=<L’,G’> by definition of the operation symbol f
(with defining axiom §(f\0)). In other words, an extension by definition of a
new operation symbol f has a single new axiom of the form
(Vxy:87) ... (VXp:8)(Vy:s)[f(Xy,... ,Xp)=sy«> 0], with 6e Frml(L’). We shall
sometimes use the notation OP_DEF[f(sy,...,8,)—>s\0](P’) for this extension
<LU{f(sy,...,5p)—s}1,G U{8(1\8) }> of P’=<L’,G’>.

Actually, our concept of extension by definition of an operation symbol is
not exactly the usual one (Shoenfield 1967, p. 59; van Dalen 1989 , p. 147).
This is due to the fact that, in introducing an operation symbol by
definition, one has to take some care in order to obtain a conservative
extension. These precautions are expressed by the existence and uniqueness

conditions. The next proposition shows that they are indeed necessary, and
sufficient, for the extension to be conservative.

Proposition Properties of extensions by definition of operation
Assume that specification P’=<L”,G”> is an extension of P’=<L’,G’> by
definition of an operation symbol in terms of formula 6 of L’. Then, the
following are equivalent.

a) Extension P’cP” is conservative.

b) The existence 3(8) and uniqueness !(6) conditions for 6 are in Cn[P’].

c) Each model ffilce Mod[P’] has a unique expansion to a model fife Mod[P”].
Proof.
(a=b) Because P”F3(08)A!(8) and the latter is a sentence of L’.
(b=>c) Given ffle Mod[P’], since ffi=3(8)A!(8), the relation M[6] is the graph of a
function. By setting M{[f]=M[6], we obtain the expansion fii'e Mod[P”], which
is the only one satisfying &(f\0).
(c=a) By the model-theoretic criterion for conservativeness.
OFD

17



As in the case of predicates, conservativeness together with eliminability
characterise these extensions.

Proposition Characterisation of extension by definition of predicate
Assume that L” is the extension of L’ by the addition of an operation symbol.
Then, the extension from P’=<L’,G’> to P”=<L”,G”> is both conservative and
eliminable iff P” is equivalent to an extension of P’ by definition of the new
operation symbol.

3.6.2 Extensions by constraints on operations
The restrictive nature of classical definitions leads one to consider two
generalisations. The basic idea is relaxing the tight connection imposed by
classical definitions - forcing equality of realisations - to less stringent ones
with looser connections on realisations (Veloso and Veloso 1990). We shall
now consider four such methods: inner and outer constraints, Skolem
functions and pre and post conditions.

Inner and outer constraints require the graph of the new function to
include, or to be included in, a given relation. The requirements for
conservativeness are weaker than in the case of definition, namely
uniqueness, for inner constraint, and existence, for outer constraint.

Outer constraints are similar to the traditional method of extending a
theory by means of Skolem functions, which has many applications in
automated theorem proving. The requirement for conservativeness is again
existence, as suggested by the very idea of eliminating existential
quantifiers in favour of new function symbols.

We then consider another variation motivated by programming, namely
the specification of the input-output behaviour of a program by pre and post
conditions. The requirement for conservativeness turns out to be akin to
existence. An example of pre and post conditions on an operation is provided
by the axiom (Vs:Set)[—empty?(s)— blng(sel(s),s)] of selection in Sets of
Elements (see Spec. 2.4: SET[ELEMENT] in 2.9).

After examining these four extension methods, we shall compare them,
among themselves and with definitions, with respect to their power in 3.6.3.

A. Inner constraints on operations

We begin by examining inner constraints: the idea is extracting a function
whose graph contains a given relation. We have a formula 6, representing a
relation and wish to introduce a function whose graph is contrained to
include the relation represented by 6. We illustrate this underlying idea (for
the case of unary operation) by means of the geometrical visualisation in

18



figure 3.2, where we have marked on the x;-axis the domain of the relation
denoted by formula 6.

y
[

e

X1

Doms
Fig. 3.2: Inner constraint on operation

Let L be a language with an operation symbol f from sorts s;,...,s; to s, and
consider a formula ® with no free occurrences of variables other than

X1,... X,y (Over sorts Si,...,8;,8). An inner constraint for operation f is a
sentence 1(f\0)
(VX1:87) ... (VXS (YY) [0(Xps... X Y) 2 E(X 5., Xp)=6Y ] (1(£\9))

where 0 is called the inner constraint on f. Specification Inn(f\@) := <L,1(f\6)>
is called the inner constraint of operation symbol f over formula 6. The
reason for this name is as for the case of predicates: ffile Mod[Inn(f\6)] iff
Mf]oMm6]

We are particularly interested in the case where the constraint 6 on f is in
sub-language L’ and language L’=L’U{f(sy,...,s,)—>s} is the extension of L’ by
the addition of operation symbol f from sorts si,...,s; to s. We then call
specification P”=<L’uU{f(s{,...,85)—>s},G’u{u(f\8)}>, sometimes denoted
OP_INN[f(sy,...,8,)—>s\8](P’), the extension of P’=<L’,G’> by inner constraint 6
on operation symbol f.

The basic properties of these extensions are given in the next result,
which shows that a necessary and sufficient requirement for

19



conservativeness is presence in Cn[P’] of the uniqueness condition
(Vx1:81) ... (VXYY Y i) {[0(X 1, X, Y IAB(X .. X, Y ]2y =y}
Proposition Properties of extension by inner constraint on operation
Assume that specification P”=<L”,G”> is an extension of P’=<L’,G’> by inner
constraint © on an operation symbol. Then, the following are equivalent.

a) Extension P’cP” is conservative.

b) The uniqueness condition !(6) is in Cn[P’].

c) Extension P’cP” is expansive.
Proof.
(a=Db) and (c=>a) are as in the case of extension by definition.
(b=c) Given #’e Mod[P’], since M’ !(0), the relation #’[0] is the graph of a
function on its domain. Take M”[f] to be an arbitrary extension of the latter
to a total function.

OFD
B. Outer constraints on operations

Let us now move on to the dual of inner constraints: outer constraints. Here
the idea is extracting a function whose graph is included in a given relation.
A geometrical visualisation of the effect of an outer constraint (for the case
of unary operation) is provided in figure 3.3.

y

X1

Fig. 3.3: Outer constraint on operation

As before, let L be a language with an operation symbol f from sorts
S{,...,S, to s, and consider a formula ® with no free occurrences of variables

20



other than Xi,....X,,y (over sorts si,...,S;,s). An outer constraint for operation f
is a sentence o(f\@)

(VX1:8)) ... (VXS (VY [E(X en X)) =Y = 0(X 1500, X Y)] (o(f\B))
where 0 is called the outer constraint on f. Specification Out(f\6) := <L,o(f\6)>
is called the outer constraint of operation symbol f under formula 6. The
reason for this name is as before: flie Mod[Out(f,6)] iff M[f]cM[O]

In the case where the constraint © on f is in sub-language L’ and
L”=L"uU{f(s{,...,s;)—> s} is the extension of L’ by the addition of operation
symbol f from sorts s;,..,s, to s, we call specification
P’=<L’U{f(sy,...,8,)—>s},G’u{o(f,0) }>, denoted OP_INN[f(sy,...,s,)—>s\8](P’), the
extension of P’=<L’,G’> by outer constraint ® on operation symbol f.

The basic properties of these extensions are given in the next result,
showing that a necessary and sufficient requirement for conservativeness is

presence of the existence condition (Vx1:81)... (VXq:85)(y:8)0(Xp,...,Xp,Y) in
Cn[P’].
Proposition Properties of extension by outer constraint on operation
Assume that specification P”=<L”,G”> is an extension of P’=<L’,G’> by outer
constraint 8 on an operation symbol. Then, the following are equivalent.

a) Extension P’cP” is conservative.

b) The existence condition 3(0) is in Cn[P’].

¢) Extension P’cP” is expansive.
Proof.
(a=Db) and (c=a) are as before.
(b=c) Given #’e Mod[P’], the Axiom of Choice gives a function #”[f] whose
graph is included in the relation #f’[8] with the same domain. Since i’k 3(0),
this function is total.
OFD
C. Skolem functions

The geometrical visualisation in figure 3.3 reminds one of the important
logical idea of Skolemisation. Indeed, the intuitive role of a Skolem function
is selecting a value.

Informal arguments often involve the following line of reasoning: given
that for each a there exists some b such that g(a,b), pick one such b and call

21



it f(a)) (to record the fact that the chosen b may very well depend on a).
This choice function is what is called a Skolem function. This idea generalises
the process of introducing constants as witnesses in Henkin’s proof of the
completeness theorem (van Dalen 1989, p. 145). It is also instrumental for
the process of eliminating existential quantifiers in favour of new function
symbols, which is quite important for several methods of automated
theorem proving (Manna 1974, p. 125, 126).

Consider a language L with an operation symbol f from sorts sg,...,s; to s,
and a formula 6 of L with no free occurrences of variables other than
X[5..., X,y (Over sorts sy,...,8,,8). A Skolem axiom for operation f is a sentence
c(f\0)

(VX1:87)...(VX:8)0(X1,... . Xppf(X1,...,Xy) (o(f\0))
where 6 is called the Skolemised formula. Specification SkI(f\@) := <L,c(f\6)>
is called the Skolemisation of formula ® by operation symbol f. The reason
for this name should be clear.

In case the Skolemised formula 6 is in sub-language L’ and
L”=L’u{f(sy,...,s5)—>s} is the extension of L’ by the addition of operation
symbol f from sorts s;,.. ,s, to s, we call specification
P’ =<L’U{f(s},...,85)—s},G U{c(f\8) }> the extension of P’=<L’,G’> by operation
symbol f as Skolemisation for 6 is the specification
P"=<L’U{f(s},...,8p)—s},G’U{c(f\0)}>. When convenient we use for such Skolem
extension the notation OP_SKLI[f(sy,...,5,)—>s\8](P").

The basic properties of Skolem extensions are those of outer constraint: an
extension P” of P> by an operation symbol as Skolemisation is conservative
iff the existence condition 3(8) is in Cn{P’]

D. Pre and post conditions for operations
Let us now consider another method for introducing a function symbol, one
directly suggested by programming considerations.

The specification of the input-output behaviour of a program usually
consists of two formulas, namely a pre-condition ¢(x) and a post-condition
y(x,y). The pre-condition is intended to describe the inputs one is interested
in, whereas the post-condition describes how the outputs are to be related to
the inputs (Manna 1974, p. 164). If we use f to denote the function
computed by the program, then what is required is that whenever input a

satisfies ¢@(x) then wy(a,f(a)) holds.

22



This situation can be given a geometrical visualisation in the same spirit
as our previous ones. In the present case, pre-condition ¢@(x) describes a
subset of the x-axis, and post-condition y(x,y) describes a region of the Xx-y
plane as before. So, function f represents a plane curve contained in the
region corresponding to the post-condition at least within the vertical stripe
over the set corresponding to the pre-condition.

y
i

X1
Doms
Fig. 3.4: Pre and post condition on operation

These considerations suggest another method of introducing an operation
symbol: by means of pre and post conditions.

Let L be a language with an operation symbol f from sorts sy,...,s; to s, and
consider two formulae: ¢ with no free variables other than xi,...,x, (over
sorts sp,...,S,;), and y with no free variables other than x,,...,x,,y (over sorts
S1s...,80,8). A pre-post condition for operation f is a sentence m(@\f\y) of the
form

(Vx1:87)... (VXS (VY8 [O(X 1, .. . X)) DW(X - o X £(X 505 X)) ] (m(o\f\y))
where ¢ is called the pre-condition and vy the post-conditon for f. The
viability condition for pre-condition ¢ and post-conditon y is the following
sentence ®(Q,y)

(VX1:81). .. (VXiSpO(X . X)) =2 (FYOW(X g5 X V)] (o(,¥)).

Specification PPC(@\f\y) := <L,n(@\f\y)> is called operation symbol f under
pre-condition ¢ and post-conditon y The reason for this name is as before:

23



file Mod[PPC(op\f\y)] iff the restriction of M[f] to M[e] is included in M[vy].
Notice that n(o\f\y)F o(o,y).

In case the pre and post conditions ¢ and y for f are in sub-language L’
and L”=L"U{f(s{,...,s,)—>s} is the extension of L’ by the addition of operation
symbol f from sorts sq,.. ,s, to s, we call specification
P’=<L’U{f(sy,...,85) =8 },G’U{n(o\D\y) } > the extension of P’=<L’,G’> by operation
symbol f under pre-condition ¢ and post-conditon y. A notation for such
extension is OP_PPC[{(s,...,s5)—>s\@,y](P’).

The basic property of an extension of P’=<L’,G’> by an operation symbol
under pre and post conditions is the equivalence of the three conditions: (a)
conservativeness, (b) the viability condition ®(¢,y) in Cn[P’], and (c)
expansiveness.

3.6.3 Comparison of constructs for adding operations

We have examined five methods for introducing a new operation symbols
and the corresponding requirements for conservativeness. Now, let us
examine some relationships among these various ways of extending a theory
by the introduction of an operation symbol.

We are considering the process of extending a specification P’=<L’,G’>" to a
new specification P"=<L’U{f(sy,...,85)—s},G’u{a}>, where a is the new axiom
introducing operation symbol f on the basis of a formula 6 of L’. We have
examined the following five methods.

Definition: OP_DEF[{(sy,...,5,)—>s\8](P’), with o of the form
(Vxq:81). .. (Vs )(Vy:) [f(X1,...,.Xp)=y >8] (8(f\0))
and condition for conservativeness P’=3(8)A!(8).

Inner constraint: OP_INN[f(sy,...,s,)—>s\0](P’), with o of the form
(Vx1:81) . (VXS (VYY) [0(Xy,... X Y) 2 E(X1,... . Xp) =Y ] (w(f\e))
and condition for conservativeness P’F !(0).

Outer constraint: OP_OUT[f(sy,...,8,)—>s\8](P’), with o of the form
(Vxp:81)... (VX8 (Vy:s)[f(xq,... . Xp) =y = 0(X1,... . X, ¥)] (o(f\8))
and condition for conservativeness P’E3(0).

Skolem extension: OP_SKLI[f(sy,...,8,)—>s\8](P’), with o of the form
(Vx1:51)... (VX:80)0(X 1,0 X, £ (X 50005 Xp)) (c(f\8))
and condition for conservativeness P’E3(0).

24



Pre and post conditions: OP_PPC[f(sy,...,5,)—>s\@,y](P’), with o of the form
(Vx1:81)... (VX)) (VY8 0(X ... X)) DW(X g, X £(X 5.0, Xp))] (m(o\f\y))
and condition for conservativeness P’F o(o,y).

Let us first compare classical (explicit) definition with constraints. It
seems intuitively clear that the former is a special case of the latter. Indeed,
a motivation for considering constraints was the quest for a method that is
less restrictive than definitions. The next proposition, illustrated in figure
3.5, states this intuition in a precise form.

Outer A !(8)< Definition« Inner A 3(9)
i U U
3(6) A X6) EC)PN()] (6) A3(6)
Fig. 3.5: Definition vs. inner and outer constraint on operation
Proposition Definition vs. inner and outer constraint on operation

Assume that specification P”=<L”,G”> is a conservative extension of P’=<L’,G’>.
If L’=L”-{f} then the following are equivalent. ,

a) Specification P” is equivalent to an extension of P’ by definition.

b) P” is equivalent to an extension of P’ by outer constraint and P’ !(6).

c) P” is equivalent to an extension of P’ by inner constraint and P’F3(6).
Proof outline.
(a=>b&c) Because 8(f\0)F o(f,0)AL(f,0).
(b=a) The axiom of outer constraint forces the graph of f to be included in 6,
and the uniquess condition forces their equality.
(c=a) is dual to (b=a).
OFD

Let us now compare the constraints for operation among themselves. As

we have already hinted at, by properties of equality, we have the
equivalence between outer constraint

(VX1:8D)... (VX SV Y8 (X, . X )=y 2OB(X ..., X, Y)] (o(f\0))
and Skolem axiom
(VX1:87)... (VX:8)0(X 1, ..., X o (X 1500 X)) (o(f\6))

Moreover, each one of these two is equivalent to pre and post conditions, as
shown in the next result.

25



Proposition Outer constraint, Skolem and pre and post condition

Assume that specification P”=<L”,G”> is an extension of P’=<L’,G’>. If L’ = L”-
{f}, then the following are equivalent.

a) P” is equivalent to an extension of P’ by outer constraint.

b) P” is equivalent to a Skolem extension of P’.

c) P” is equivalent to an extension of P’ by pre and post conditions.
In each case, the requirements for conservativeness are equivalent.

Proof outline.

(ae=b) As noted o(f\6) and o(f\@) are equivalent.

(b=c) Take @(xy,...,Xy) a8 Xj=5 XjA...AXp=s Xp and y(Xq,...,Xp,y) as 6(Xq,...,Xp,¥)-
Then o(f\@) and n(o\f\y)) are equivalent, as are 3(8) and w(9,y).

(c=>a) Given @(Xy,...,X,) and W(Xy,...,Xp,Y), take 0(Xy,...,X,,y) as
[o(X{s....Xn) =W (X(,...,Xp,Y)]. Then n(@\f\y)) and o(f\6) are equivalent, as are
o(e,y) and 3(8).

OFD

Also, inner constraints can be viewed as special cases of outer constraints.
Proposition Inner vs. outer constraint on operation

Any extension P”’=<L”,G”> of P’=<L’,G’> by inner constraint on operation
symbol f is equivalent to an extension P of P° by outer constraint on f.
Moreover, P” is a conservative extension of P’ iff P is so.

Proof outline.
Given 6(xXy,...,X,,y), select a new variable z of the same sort as y, and take
0’ (X1,...,Xp,y) as (Vz:8)[0(Xy,...,Xy,Z2)—>Z=.y]. Then 1(f\6) and o(f\8’) are
equivalent, as are !(6) and 3(0’).
OFD
The comparisons among constraints for operation are illustrated in figure
3.6. More details can be found in (Veloso and Veloso 1990).
pre&post < Skolem < outer < inner

Fig. 3.6: Comparison among constraints for operation

3.7 Extensions by constants

We regard constants as nullary operations (with no arguments, only results).
So, extensions by constants are special cases of those by operations. But for
the case of constants one can get more information (Veloso and Veloso

26



1991). An example of definition of a constant appears in Sets of Elements
(see Spec. 2.4: SET[ELEMENT] 1in 2.9), where axiom
(Vs:Set)[empty?(s)e> s=g.void] defines constant void in terms of predicate
empty?.

The case of constants is particularly simple, due to the absence of
arguments. We can consider the simultaneous introduction of several
symbols. We call language L” an extension by constants of L’ iff the only new
symbols in L” are constant symbols involving sorts of L’. Thus, we have some
new names (ground terms). In particular, the extension of language L’ by
constant symbols cq,... ,c, over sorts sj,...,Sx will be denoted by
L’u{cy:sq,..-»CxiSk )

We shall now examine the simultaneous introduction of constants via
Skolemisation. This uses the idea of Skolem constant, a simple special case of
Skolem function (van Dalen 89, p.144-146). We shall simplify the notation
by restricting ourselves to the unsorted case. since the many-sorted one
adds no conceptual difficuity.

Consider a formula ¢ of language L of the form ¢(yy,...,yg), with no
variables other than the displayed ones occurring free in it. Let language L#
be obtained from L by the addition of some new constants, Cy,...,Cg being
among them. Replace every free occurrence of each variable y; in 0(Yis---5Yk)
by the new constant c;; this yields the sentence ¢(cy,...,Cx) of L#. This sentence
0(Cq,...,Cx) is called a Skolemisation of the sentence 3y;...3y¢(¥y....¥y) of L.

Now, consider theories T over L, and T# over L¥. We call T an extension by
Skolem constants of T iff every new axiom of T* is a Skolemisation of some
consequence of T. Notice that, in this case, every new constant ¢ of I* occurs
in a single new axiom of T*, called its constraining axiom.

The following lemma recalls a simple result concerning these concepts. Its
proof is simpler than its well-known counterpart for Skolem functions
(presented for outer constraints in 3.6.2), in that it does not require the
Axiom of Choice.

Lemma Expansiveness of extension by Skolem constants

If T is an extension by Skolem constants of T then T* is an expansive, hence
conservative, extension of T.

Proof outline.

Consider a model # of T. Let ¢(cy,...,ck) be a new axiom of T#. It is the
Skolemisation of Jyy...3yxd(yq,...,yx), which is a consequence of T. Thus, il

27



can be expanded to a structure which is a model of ¢(cy,...,c¢). Since each
new constant occurs in a single new axiom, we can thus expand #l to a model
M* of T,

oD

We can now characterise the conservative extensions by a set of new
constants formed by the addition of only finitely many new axioms.
Proposition Finite conservative extensions by Skolem constants
Consider a language L’, and let L” be obtained from L’ by the addition of a
set C of new constants. Consider a theory T’ over L’ and its extension T” over
L” obtained by adding to T’ a finite set £ of sentences of L”. Then, the
following are equivalent.

a) The extension T’cT” is conservative.

b) T” is equivalent to an extension by Skolem constants of T’.

c) The extension T'cT” is expansive.

Proof outline.

(a=Db) Let o be the conjunction of the new axioms in Z. Clearly, T'U{c} is
equivalent to T”. We shall now show that T’U{c} is equivalent to an extension
by Skolem constants of T’. First, ¢ has only finitely many new constants, say
k of them. By resorting to an alphabetic variant, if necessary, we may
assume that variables yy,...,yx do not occur in 6. Now, let ¢* be obtained from
o by replacing each new constant c; by a corresponding new variable y;.
Then, ¢ will be equivalent to a Skolemisation of 3y;...3y,c™ But, the latter is
a sentence of L’ in Cn(T”), whence in Cn(T’), by conservativeness.
(b=>c)&(c=a) By the preceding lemma.

QD

This result shows that extensions by Skolem constants turn out to be the
most general conservative extensions by addition of constants.

These ideas apply to the many-sorted case as well.

Consider a language L with constant symbols cy,...,cx over sorts Sq,...,Sy,
and a formula ¢ of L with no free occurrences of variables other than yi,...,yg
(over sorts Sp,...,Sg). A (joint) Skolem axiom for constants cy,...,Cy is a
sentence G(Cj,...,c \¢) of the form ¢(cy,...,cy), where ¢ is called the Skolemised
formula. Specification Skl(cy,...,cx\0) := <L,o(cy,...,cx\9p)> is called the
Skolemisation of formula & by constant symbols cy,... ,Cy.

28



When the Skolemised formula ¢ is in sub-language L’ and
L”=L’U{cy:8y,... ,ck:S} is the extension of L’ by the addition of constant
symbols C{,... ,Cx over sorts Si,.. ,sx, we call specification
P’=<L’u{cy:S,...,.ck:8¢ },G U {o(Cy,...,c\0) } > the extension of P'=<L’,G’> by
constant symbols cq,...,cy as Skolemisation for ¢. A convenient notation for
such extension is CN_SKL[c;:S{,...,Ci:S\0](P’). This extension is conservative
iff (Iy;:sy)...(Ayg:sy)¢d is a consequence of P’.

3.8 Extensions by sorts

We shall now consider the introduction of new sorts. This is of importance
because it occurs often in implementing formal specifications, when new
sorts are “constructed” from the concrete ones. In this context, one generally
introduces some new sort(s) and then some new predicate, operation and
constant symbol(s) that require these sort(s).

For a simple example consider the overused implementation of stacks by
arrays with indices. Here one wishes to represent a stack by means of an
array, containing the elements stored in the stack, together with an index,
indicating the position of the topmost element. Now, the specification of
arrays has three sorts: Arrays, Indices, and Elements. One then wishes to
extend it by adding a product sort ArraysxIndices. But, not every pair <a,i>
will represent a stack; only a subsort (consisting of those with i<size(a)).
Further, pairs with arrays differing only above their indices are to be
identified (for they represent the same stack), so one wishes a quotient sort.

The cases of extensions we have examined so far account only for the
introduction of new predicate, operation and constant symbols, i. e. cases of
enrichment. We call language L” an enrichment of L’ iff the only new
symbols in L” are predicate, operation and constant symbols involving sorts
of L’, i. e., Prd(L’)cPrd(L”), Opr(L’)cOpr(L”), but Var(L’)=Var(L”). Then,
Trm(L’)cTrm(L”) and Frml(L’)cFrml(L”), but Srt(L’)=Srt(L”).

The introduction of a new sort is more complex than the previous ones. A
reasons for this has already been indicated by examing removal. One can
remove a single predicate, operation or constant symbol, by itself. But, when
removing a sort, one must also remove the other symbols that touch it
(include it in their profiles) if a language is to be obtained.

Now looking from the viewpoint of addition, if one wishes to add a symbol
involving some sort not already in the language, one must introduce this
new sort as well. And when one adds a new sort to a language one gets not
only new (atomic) formulae, but new variables as well. For, upon adding a

29



new sort t, one also has:

a new equality symbol =, over sort t, and

new variables over sort t.

We thus have new variables, and hence new terms, in addition to new
(atomic) formulae.

The simplest case would be the addition of a single new sort by itself. This
is a symbol extension, always conservative, but of little interest. For, one
generally wishes to have some information, provided by new axioms, about
the behaviour of the new elements.

In the sequel we shall examine a few methods for extending a
specification by sorts, with emphasis on criteria for conservativeness. These
sort introduction constructs are akin to those found in many programming
languages (Ghezzi and Jazayeri 1982; Hoare 1974; Wirth 1973).

We shall consider four constructs that introduce a new sort as a product, a
subsort, a quotient, or a discriminated union of existing sorts (Meré and
Veloso 1991). These introduce a new sort together with some conversion
operations. Another construct, also found in programming languages,
introduces a new sort by simply enumerating its elements.

3.8.1 Extensions by product of sorts

Assume that we wish to extend the naturals to the (signed) integers. Then it
is natural to consider introducing a product sort BoolxNat. Here Bool stands
for the two signs: plus and minus. Also, a product sort can be used to
represent regular polygons by pairs: number of edges (a natural) and edge
size (a real). ,

The sort construct product introduces a new sort consisting of the records
(ordered pairs) of objects of the given sorts together with the corresponding
selectors. Thus, its realisations have a new set T=S;xS,, together with its two
projections py:T— Sy, with pi(<a;,azy)=ay.

Consider language L* consisting of

sorts t, s; and s,, as well as

operation symbols p;, from sort t to s;, and p,, from t to s,.

We call this language L* the language for for sort tas product of sorts s; and

Ssr.
An explication of sort t as the product of sorts s; and s, is the set
X(t\p;—~$,p2—8,) consisting of the following two sentences of L*

(VX1:8)(VXn:80)(3y:0[p1(¥)=s X1AP2(Y) =5 X2] (pjs)

30



(Vy,y" :Ol(P1(¥)=s P1(¥)AP2(Y)=s,p2(y )2 Y=1y’] (pji)
Sentence (pjs) states that the projections are jointly surjective, and (pji)
states that the projections are jointly injective. Specification
Prod(t\py:81,pa:8y) = <L*,{(pjs),(pji)}> is called the explication of sort t as the
product of sorts s; and s,, with projections py(t)—>s; and p,(t)—s;.

The reason for the name of specification Prod(t\pj—sy,pp—8;) =
<L,x(t\p;—$1,p2—>S2)> stems from the properties of its models. Clearly,
Prlod(t\p1—>sl,p2—>sz) has models $ such that #[t]=#[s;]xB[s,]; such models,
where sort t is realised as the set of ordered pairs of elements of #[s;] and
$[s,], may be called canonical models. Now, given a structure fi for language
L*, file Mod[Prod(t\p;—s;,py—S)] iff M is isomorphic to some canonical model
. Thus, for ffle Mod[Prod(t\p;—s,p;—5s,)] the realisation #[t] of sort t has
indeed the behaviour of the cartesian product of f#i[s;] and fi[s,].

Now, given a language L extending L*, we may remove from L sort t and
operations p; and p,, thereby obtaining its sub-language L, := L-L*. We then
have expandability: each structure i for sub-language L, has a unique, up to
isomorphism, expansion to a model M*e Mod[Prod(t\p;—$;,pp—82)].

Eliminability is to be expected. Indeed, in a realisation, an object a of sort
T can be regarded as a pair ¢aj,a;>. So, it is reasonable to replace a relation
R, involving T by its ‘paired version’ R,, involving S; and S,, so that
<...,a,...>eRiff ¢...,a;,a,,...7€eR,.

Formally we have to face the fact that we now have variables over the
product sort t. This can be overcome by means of a connection, which
indicates how to translate variables ranging over t as pairs of variables over
s, and s,. The idea is as follows. Consider variables y, over t, and vy,...,Vp,
over sorts other than t. Select two new variables, x’, over s;, and X’, over s,,
distinct from vy,...,v,. Now, consider the pairing connection p(y»x’,x”)
established by formula p;(y)=s X’ Ap;(¥)=sX". When one has several variables

Yi1,... ,Yyx over sort t, one uses a conjunct connection
P(Y > X3X A AP(Yi XX ). Under such connection, we can eliminate sort t
and projections p; and p, from formulae of L: we have eliminability under
connection.

Proposition Eliminability of product sort under connection
Given a language L extending L*, consider the sub-language L, := L-L" of L

31



obtained by removal of sort t and operations p; and p,.
Given a set of variables yy,...,yx, over t, and vy,...,vy, over sorts other than t;
select, for each variable y;, two new variables, x;, over s;, and x;”, over s,,
distinct from v;,...,v,, and consider the pairing connection
P(Y1»X15X e YK X ) established by conjunction
[P1(yD)=s X1'AP2(Y D=5, X17]A - .AlP1(Yi)=s Xk AP2(Yk)=s,X]. Then, for each formula
y of L, whose free variables are among yi,...,y¥x,Vy,....Vp, there exists a
formula vy, of L, (whose free variables are among X X{"....XX V1{s---»Vm)
such that the formula, with implicit universal quantification,
P(Y X 13X e Yo XX )2 [We v, ] is a consequence of Prod(t\p;—sy,py—s7).
Proof outline.
We proceed by induction on the structure of formula y of L.
An atomic formula of L is either an equality between variables of sort t, or
else the result o of replacing, in an atomic formula o’ of L., occurrences of
variables x’, over s;, and x”, over s,, by pi(y) or pa(y).
Setting o:=a’, we have pl(y)zslx’/\pz(y):zszx”i= [aeo].
Quantifying over sorts other than t causes no problem.
For y of the form (Vy:t)8 we set y,:= (VX' :s1)(VXx”:s,)0,. Then, since the
projections are jointly bijective, we apply the inductive hypothesis.
OED

This proposition can be read as: any relation definable in language L
corresponds to a relation definable in the sub-language L.=L-{t,p;,p;} of L
obtained by removal of sort t and projections p; and p,. In particular, for
each formula 6 of L, with no variable ranging over sort t, there exists a
formula 6, of L, called its paired version, such that X(t\p;—S{,p—S7)F [06,].

Now, consider a specification P’=<L’,G’> where language L’ has
sorts s; and s,,
but neither sort t nor operations p; or p,.

Then, specification P”=<L”,G”> with
language L” := L’u{t,p;(t)—>s;,pa(t)—>s,} being the extension of L’ by the
addition of sort t and operation symbols p;, from sort t to sy, and p,,
from sort t to s,, and
axiomatisation G”=G’U{x(t\p;—s;,p—Ss;)} the extension of G’ by the
explication of sort t as the product of sorts s; and s,, with projections

32



p1(t)— sy and py(t)— sy,
is called the extension of P’=<L’,G’> by introduction of sort t as the product of
sorts sy and s,, with projections pi(t)—>s; and p,(t)—>s,, and is denoted by
SR_PROD[t\p;—81,p2—82]1(P).

Extensions by introduction of a sort as product of existing ones are clearly
conservative. They are convenient, but dispensable in the sense that a
relation r, involving a product sort, can be replaced by a relation r, not

involving the product sort, which does the same job. This situation is similar
to the case of It and le, mentioned in 3.1: predicates r and &5, are

interdefinable in the context of the product explication, as illustrated in
figure 3.7. We shall comment some more on this point later on in 3.8.6.

p _t=slxs2  pn addt o P"4r define I /T N (P"+r)+rx

|| 8

P. add Ty P"‘ t=s1xs2 \P* +prd._def.iM’<__)(P* +prd)+1'

Fig. 3.7: Dispensing with product sort.

The point is that extensions by product sort behave very much like
classical extensions by explicit definition of predicates. The situation is
reminiscent of that of matrices vs. systems of linear equations: the former
provide conceptual convenience, but can in principle be dispensed with in
favour of the latter.

3.8.2 Extensions by sum of sorts

Some programming languages provide a construct like “variant record”.
Since records are already handled by the product construct, we can
concentrate on the “variant” part. This is the idea of sum, or discriminated
union: having a sort with objects of diverse natures. This may be useful, for
instance, in representing graphs: one may use distinct representations for
sparse and non-sparse graphs.

The sort construct sum (or discriminated union) introduces a new sort
consisting of alternatives - objects of either one of the given sorts together -
with the corresponding constructors. Since the elements of this new set
need not be represented in the same way as their originators, one also
introduces conversions. Thus, its realisations have a new set T=S;+S,
(disjoint union), together with its two insertions i :Sy—T.

Consider language L' consisting of
sorts t, s; and s,, as well as _
operation symbols i;, from sort s; to t, and iy, from s, to t.

33



We call this language L' the language for for sort tas sum of sorts s; and s,.
An explication of sort t as the sum of sorts s; and s, is the set
+(t\s;=1;ls,=>i5) consisting of the following four sentences of L*:

(Vy:)[(Fxy:8)y=d1(X)DV(FX2:187)y=(2(X,)] (ijs)
(VX 1:51(VX5:89)11 (X1 )=(d0(X5) (id1)
(Vxl,ul:s1)[i1(xl)ztil(ul)—éxlzslul] (iil)
(VX2,up:82) [15(X2)=¢dp(Up) > Xp=s 5] (ii2)

Sentence (ijs) states that the images of the insertions cover the new sort,
whereas sentence (idi) states that these images are disjoint. Sentences (iil)
and (ii2) express the injectivity of each insertion. Specification

Sum(t\s;=1lsy=iy) := <L, +(t\s;=i;Is,=1i,)> is called the explication of sortt as
the sum of sorts s; and s, with insertions i;(s{)—t and iy(s;)—>t.

The reason for the name of specification Sum(t\s;=>1ils,=1,) =
<L,+(t\s;=i;lsp=1,)> stems from its model-oriented properties.. Clearly,
Sum(t\s;=1iqlsp;=1i,) has models @ such that @W[t]=W[s;]+WU[s;,]; such models,
where sort t is realised as the disjoint union of @[s;] and @®[s,], may be called
canonical models. Now, given a structure i for language L ¥,
flle Mod[Sum(t\s;=>i;lsy=>i,)] iff M is isomorphic to some canonical model U.
Thus, for Mle Mod[Sum(t\s;=1i;ls,=1,)] the realisation #[t] of sort t has indeed
the behaviour of the discriminated union of fM[s;] and #M[s,].

Now, consider a specification P’=<L’,G’> where language L’ has
sorts s; and s,,
but neither sort t nor operations i; or i,.
Then, specification P’=<L”,G”> with
language L”:=L’U{t,i;(s;)—>t,iy(sy)—>t} being the extension of L’ by the
addition of sort t and operation symbols i;, from sort s; to t, and i, from
sort s, to t,
axiomatisation G”=G’uU{+(t\s;=1;Isy=i,)} the extension of G’ by the
explication of sort t as the sum of sorts s; and s,, with insertions
il(Sl)—)t and i2(52)"9 t,
is called the extension of P’=<L’,G’> by introduction of sort t as the sum of
sorts s; and s,, with insertions ij(s;)—t and iy(s;)—t, and is denoted by
SR_SUM[t\s;=1ls,=1,](P’).
Extensions by introduction of a sort as sum of existing sorts are clearly

34



conservative. Also, in a realisation an object a of sort T can be regarded as
an alternative: either a; of sort Sy, or a, of sort S;. So, a unary relation R
over T can be viewed as a (disjoint) union R;+R, of two relations R;, over §,,
and R,, over S,. In general, a relation R, involving sort T, can be regarded as
a (disjoint) union of relations, its ‘alternant’ versions, each one involving sort
Sy or S, where R involved T.

The preceding argument indicates that a relation is definable in language
L” iff it is definable in the sub-language L’. Extensions by sum of sorts have
a kind of eliminability under conversion, slightly more complex than in the
case of product. For a formula 6 of L”, with no variable ranging over sort t,
there exists a formula 6, of L’called its alternant version, such that
+(t;87:11185:15)F [8650,].

Thus, extensions by sum sort behave very much like classical extensions
by explicit definition of predicates. They are, like products, a dispensable
convenience, from the purely logical viewpoint.

3.8.3 Extensions by subsorts

For many purposes it is convenient to deal with a subsort, rather than a full
sort. For instance, in talking about division, the non-zero naturals are the
ones to be safely used as denominators.

The sort construct subsort introduces a new sort consisting of the objects
of the given sort S satisfying the relativisation predicate r, in the spirit of
the set-theoretical specification axiom. Thus, its realisations have a new set
T={ae S:r(a)}, together with its the insertion j;T— S (since the elements of this
new set T need not be represented in the same way as those of S).

Consider language L= consisting of

sorts t and s, as well as
a unary predicate symbol r over sort s, and

a unary operation symbol j from sort t to s.

We call this language L= the language for for sort tas the subsort of sort s
relativised tor. :

An explication of sort t as the subsort of sort s relativised to r (with
insertion j(t)—>s) is the set c(t\s:r,j) consisting of the following two sentences

of LS
(Vx:9)[r(x)> Ty:t)x=j(y)] (o)
Vy,y’ O[(y)=dg(y )= y=y’] (ij)

35



Sentence (jr) states that the image of operation j is (the extension of) the
relativisation predicate (thus defining r in terms of j), whereas sentence (ij)
expresses the injectivity of operation j qualifying it as an insertion.
Specification Sbst(t\s:r,j) := <L<,{(jr),(ij)}> is called the explication of sort t as
the subsort of sort s relativised to relativisation predicate r, with insertion
j)—s.

The reason for the name of specification Sbst(t\s:r,j) := <L<,c(t\s:r,j)> comes
from its model-oriented properties. Clearly, Sbst(t\s:r,j) has models & such
that &[t] = {ae &[s]:&Fr(x) [a]l}; such models, where sort t is realised as the set
of the objects of the given sort s satisfying the relativisation predicate r,
may be called canonical models. Also, given a structure #f{ for language LS
file Mod[Sbst(t\s:r,j)] iff M is isomorphic to some canonical model &. Thus, for
file Mod[Sbst(t\s:r,j)] the realisation #M[t] of sort t has indeed the desired
behaviour, since it can be regarded as consisting of the objects of the given
sort s satisfying the relativisation predicate r.

Consider the sub-language L,:=L=-{t,j} obtained by removing from L= sort t
and operation j, thus consisting only of sort s and unary predicate r over s..
Now, a consequence of the reflexivity of equality is (Jy:t)y=,y (model-
theoretically #M[t]#). Thus {(jr)}k (Ix:s)r(x). Notice that the latter is a
sentence v(r) of L expressing that (the extension of) the predicate r must be
nonempty (#[r]#<). We shall call this sentence v(r) of L_ the non-voidness
requirement for relativisation predicate r.

Now, consider a language L’ extending L., and assume that sort t and
operation j are not in L’ We shall say that c(t\s:r,j) is applicable to a
specification P’=<L’,G’> iff the non-voidness requirement v(r) is in Cn[P’]. In
such case, we shall call specification P”=<L’uU{t,j(t)—>s},G’u{c(t\s:r,j)}> the
extension of P’=<L’,G’> by introduction of sortt as the subsort of sort s under
relativisation predicate r (with insertion j(t)— s) - and denote it by
SR_SBST[t\s:r,j](P’).

The reason for imposing the above requirement is that it is a necessary
condition for conservativeness of the extension. That it is sufficient as well
can be seen because of the following characterising property.

Proposition Characterisation of models of extension by subsort

Let P’=<L”,G’u{c(t\s:1,j)}> be the exténsion of P’=<L’,G’> by introduction of
sort t as the subsort of sort s under relativisation predicate r. Given a

36



structure #” for language L”, consider its reduct fff’ to language L’. Then
M1’ Mod[P”] iff #’e Mod[P’] and, up to isomorphism, M”[t] = {ae fil’[s]:H’F r(x)
[al}.

Thus the realisation of the new sort t has indeed the desired behaviour.
We also have expandability: each model #fle Mod(P’) has an expansion
MiSe Mod[P”]. Moreover, in a realisation, a relation M involving sort T, can be
replaced by a relation M_, its ‘relativisation’, doing the same job.

So, we have eliminability under connection, as in the case of product. The
idea is similar: we use a connection for translating variables ranging over t
as variables over s. Consider variables y, over t, and vy,...,vy, OvVer sorts
other than t. Select a new variable x over s, distinct from vy,...,vy,. Now,
consider the insertion connection j(y»x) established by formula x=j(y).
When one has several variables y;,...,yx over sort t, one uses a conjunct
connection j(y1»X{)A....Aj(yx»Xy,). Under such connection, we can eliminate
sort t and insertion j from formulae of L”.

Proposition Eliminability of subsort under connection

Let P’=<L”,G’u{c(t\s:r,j)}> be the extension of P’=<L’,G’> by sort t as the
subsort of sort s under relativisation predicate r (with insertion j(t)—s).
Given a set of variables yj,...,yg, over t, and vq,...,vy,, over sorts other than t;
select, for each variable y;, a new variable x;, over s, distinct from vy,...,Vp,
and consider the insertion connection j(y;»Xy,,....Yk»Xg) established by
conjunction j(y{)=¢X{A....Aj(¥x)=¢Xk. Then, for each formula y of L”, whose free
variables are among yi,...,¥k,Vi,-...Vy, there exists a formula y_ of L’ (whose
free variables are among Xi,...,Xy,V{,...,Vp) such that the formula, with
implicit universal quantification, j(y;»Xy,....Y»Xp)—=[we>w] is a consequence
of P”.

Proof outline.

We proceed by induction on the structure of formula y of L”.

An atomic formula of L” is either an equality between variables of sort t, or
else the result o of replacing, in an atomic formula o’ of L’, occurrences of
variables x, over s, by j(y).

Setting o_:=a’, we have x=gj(y)F [ae>a].

Quantifying over sorts other than t causes no problem.

For v of the form (Vy:t)0 we set y_:= (Vx:s)[r(x)—>6.]. Then, since the insertion
is bijective onto r, we apply the inductive hypothesis.

37



QED

So, a relation definable in language L’ corresponds to a relation definable
in the sub-language L”. In particular, for each formula 6 of L”, with no
variable ranging over sort t, there exists a formula 6_ of L’, called its
relativised version, such that c(t\s:r,j)F [6<—>9g].

Thus, extensions by subsort, being conservative under requirement and
eliminable, are very much like classical extensions by explicit definition of
operations.

3.8.4 Extensions by quotient of sorts

In some cases it is convenient to identify objects of a given sort. For
instance, in specifying the (signed) integers by extending the naturals by a
product sort BoolxNat, one may wish to identify minus zero with plus zero, i.
e. <fl,zero> with <¢tr,zero>.

The sort construct quotient introduces a new sort consisting of the
equivalence classes of the objects of the given sort S under a given
equivalence relation q over it, a usual set-theoretical construction. Thus, its

realisations have a new set T={[a/q]:ae S}, together with its canonical
projection p:S— T mapping each element a of S to its g-class [a/q].

Consider language L consisting of

sorts t and s, as well as

a binary predicate symbol q over sort s, and

a unary operation symbol p from sort s to t.

We call this language L' the language for for sort tas quotient of sort s
under predicate q.

An explication of sort t as the quotient of sort s under equivalence
predicate q (with canonical projection p(s)—t) is the set /(t\s/q,p) consisting
of the following two sentences of L

(Vy:t)(3x:8)y=p(X) (sp)

(Vx,x7:8) [P(X)=p (X )>q(X,x")] (pq)
Sentence (sp) expresses the surjectivity of operation p, whereas sentence
(pq) states that the q is the kernel of operation p (thus defining q in terms
of p). Specification Quot(t\s/q,p) := <L/,{’(sp),(pq)}> is called the explication of
sort t as the quotient of sort s under equivalence predicate q with canonical
projection p(s)—t.

As before, the reason for the name of specification

38



Quot(t\s/q,p):=<L/,/(t\s/q,p)> stems from properties of its models. For,
Quot(t\s/q,p):=<L/,/(t\s/q,p)> has models @ such that @[t] = {[a/@[q]:ac @[s]};
such models, where sort t consists of the g-classes of the elements of sort s
under equivalence relation #[q], may be called canonical models. Also, given
a structure i for language L/, fle Mod[Quot(t\s/q,p)] iff M is isomorphic to
some canonical model @. Thus, for ffle Mod[Quot(t\s/q,p)] the realisation f[t]

of sort t has indeed the desired behaviour, since it can be regarded as
consisting of the g-classes of the objects of sort s under equivalence relation

Mlq].

Indeed, consider the sub-language Lq:=L/-{t,p} obtained by removing from
I/ sort t and operation p, thus consisting only of sort s and binary predicate
q over s.. In view of the equality axioms, some consequences (pq) are
(Vx:8)q(x,x), (VX,x’:8)[q(x,X")—q(x’,x)] and (Vx,x",x":8)[(q(X,X")Aq(X",X”)—>q(x,x")].
Notice that these are sentences of L, expressing that (the extension of) the
predicate q must be an equivalence relation. We shall call their conjunction
e(q) the equivalence requirement for predicate q.

Now, consider a language L’ extending L,, and assume that sort t and
operation p are not in L’ We shall say that /(t\s/q,p) is applicable to a
specification P’=<L’,G’> iff the non-equivalence requirement &(q) is in Cn[P’].
In such case, we shall call specification P"=<L’U{s,p(s)—t},G’U{/(t\s/q,p)}> the
extension of P’=<L’,G’> by introduction of sort t as the quotient of sorts
under equivalence predicate q (with canonical projection p(s)—>t) - and
denote it by SR_QUOT[t\s/q,p](P’) .

The above requirement is imposed because it is a necessary condition for
conservativeness of the extension. That it is sufficient as well follows from
the following characterising property.

Proposition Characterisation of models of extension by quotient

Let P’=<L”,G’uU{/(t\s/q,p)}> be the extension of P’=<L’,G’> by sort t as the
quotient of sort s under equivalence predicate q. Given a structure f#i” for
language L”, consider its reduct #f’ to language L’. Then M”e Mod[P”] iff
' Mod[P’] and, up to isomorphism, #"[t] = {[a/#’[q]:ac M’ [s]}.

This property also shows that the realisation of the new sort t indeed
behaves as consisting of the equivalence classes under q of the objects of the
given sort s.

We have eliminability under connection, as in the case of subsort. The idea
is similar: we use a connection for translating variables ranging over t as

39



variables over s. Consider variables y, over t, and vy,...,vy, over sorts other
than t. Select a new variable x over s, distinct from vq,...,v,. Now, consider
the projection connection p(y»x) established by formula y=,p(x). When one
has several variables yy,...,y, over sort t, one uses a conjunct connection
P(Y1»X)A....AP(Y»Xy,). Under such connection, we can eliminate sort t and
projection p from formulae of L”.

Proposition Eliminability of quotient sort under connection

Let P’=<L”,G’u{/(t\s/q,p)}> be the extension of P’=<L’,G’> by introduction of
sort t as the quotient of sort s under equivalence predicate q (with canonical
projection p(s)—t).

Given a set of variables yq,...,yy, over t, and vy,...,v,,, over sorts other than t;
select, for each variable y;, a new variable x;, over s, distinct from vy,...,vp,
and consider the projection connection p(y;»Xy,,...,Yx»Xyg) established by
conjunction y;=p(X{)A....Ay=P(Xgx). Then, for each formula y of L”, whose
free variables are among yi,...,¥i,Vy,..-,Vy, there exists a formula y, of L’
(whose free variables are among Xi,...,Xy,Vy,...,Vy) such that the formula,
with implicit universal quantification, p(y;»Xy,....yp»X)=> [y yl is a
consequence of P”.

Proof outline.

Clearly the terms of L” with sort in L’ are terms of L’. Also, each term of L”
with sort t is either a variable over sort t, or p(t) for some term t of L’ with
sort s. With this classification we can handle the three cases of new atomic

formulae of L”: p(t)=p(t’), y=p(t) and y=.y’.
Quantifying over sorts other than t causes no problem.
For y of the form (Vy:t)0 we set y,:= (Vx:5)8, and use the inductive
hypothesis together with P’k (Vy:t)(Ix:s)p(y:x)A(Vx:s)(Ty:t)p(y:X).
QOFD
So, a relation definable in language L’ corresponds to a relation definable
in the sub-language L”. In particular, for each formula 6 of L”, with no
variable ranging over sort t, there exists a formula 6 of L’,its projected

version, such that /(t\s/q,p)F [0 8]

Thus, extensions by quotient sort, like those by subsort, are conservative
under requirement and eliminable, much as classical extensions by explicit
definition of operations.

40



3.8.5 Extensions by sort enumeration
In extending the naturals to the (signed) integers, we suggested in 3.8.1 that
it was natural to consider a product sort BoolxNat, where Bool stands for the
two signs: plus and minus. Instead of adding the last comment, it may be
better to use more mnemonic names for the signs, i. e. use SignxNat, where
Sign={plus, minus}. Another example, along the same line is a sort
day_of_week enumerated by its constants:Sun, Mon, Tue, Wed, Thu, Fri, Sat.
This is the idea of introducing a (finite) sort by enumeration of its elements.
The sort construct enumeration introduces a new sort conmsisting of the
objects named by the constants, a usual way to decribe a finite set. Thus,

their realisations have a new set T={a,...,ay}.

Consider language L° consisting of

sort t, as well as

constants cj,...,C, over sort t.

We call this language L° the language for for sort tas tthe enumeration by
constants Ccy,...,Cy.

An explication of sortt as the enumeration by constants cy,...,Cg is the set
=(t\{Cy,...,Cx}) consisting of the following two sentences of L®:

[(=C{=(CaA. .. AmC1=CIIA(MCI=CIA ... AmCo=(CIA ... AC =Ck] (dec)

(Vy:)ly=ic1v... vy=ecgl (ce)
Sentence (dc) states that the constants are pairwise distinct, and (ce) that
they exhaust sort t. Specification Enum(t\{cy,...,C}) = <L®,{(dc),(ce)}> is called
the explication of sort t as the enumeration by constants Cq,...,Cy.

The reason for this name for specification Enum(t\{cy,...,cp}) =
<8,=(t\{cy,... ,cx})> is clear: flic Mod[Enum(t\{cy,... .cx D1 iff Mt] =
{#[c,],... . Mlc,]}. Thus, the realisation #M[t] of sort t exhibits the desired
behaviour.

Now, given a language L extending L°, we may remove from L sort t and
constants cy,...,Cy, thereby obtaining its sub-language L.:=L-L*. We then have
expandability: each structure i for sub-language L. has a unique, up to
isomorphism, expansion to a model #i°e Mod[Enum(t\{cy,...,c¢})].

Assume that sort t and constants cy,...,c, are not in L’, and consider the
language extension L”=L’U{t,cq,...,cx:t} of L’ by the addition of sort t and
constants cy,...,c, over sort t. Now, given a specification P’=<L’,G’>, we call

41



specification P”=<L’uU{t,cy,...,c,:t},G’U{=(t\{cy,...,c}) } > the extension of P’=<L’,G’>
by introducton of sort t as the enumeration by constants cq,...,Cx - and
denote it by SR_ENUM/[t\{c,... ,c,}](P’). Clearly, any such extension is
conservative.

3.8.6 Comments on sort constructs

We have been examining five methods for extending a specification by
sorts, so as to guarantee conservativeness. These sort introduction constructs
are formalisations of counterparts found in many programming languages.
We shall now examine some further aspects of these constructs, related to
their use in program development.

A. Some simple variations
Let us first consider some simple variations and comparisons, mainly
extensions of enumerations and iterated constructs.

We have considered four constructs for introducing a new sort connected
to existing ones by means of conversions. As such, they can be given
parameterised specifications (Meré and Veloso 1991). Two of them, product
(introducing records) and sum or discriminated union (introducing
alternatives) are similar to classical extensions by definition of predicate, in
that they are conservative and eliminable. The other two, namely subsort
and quotient are eliminable but have requirements for conservativeness,
and resemble classical extensions by definition of operation.

Another construct that we have considered introduces a new sort by
simply enumerating its elements. Let us take a closer look at enumeration.

First consider the case of introducing a sort with a single element. For
Enum(t\{c}) the two new axioms reduce to just one, namely (Vy:t)y=,c, which
is the Skolemisation of the logically valid sentence (Vy:t)(3z:t)y=.z. Thus,
Enum(t\{c}) is equivalent to an extension by Skolem constant (see 3.7) of a
symbol extension (see 3.4) by a new sort. This is the only enumeration
needed, for we can reduce Enum(t\{ci,...,cp}) to Enum(t\{c}) by means of
discriminated union: Enum(t\{c,...,cy}) is a restriction of the sum.
Enum(t\{c D)+...+Enum(t\{c}).

In programming languages, the enumeration construct sometimes
introduces an ‘ordered enumeration’, with a linear ordering
C{<{... <{€i<(Cis1<(.--<{Ck. One can obtain such ordered enumeration as an
extension of Enum(t\{c{,...,c}) by the definition of predicate <; with the
defining axiom

42



(VY:(VY O {y<y @ [=C1AY =€)V .. V(¥y=C1aY =€V ... VI(¥=Ck-1AY =C)]}
One can then, if so desired, introduce successor and predecessor operations
by definition.

Let us now consider subsort and quotient, which bear some similarity
with each other. In each case the conversion is introduced by relying on a
given predicate. Given the extension, this predicate is related to the
conversion via a definition: the relativisation predicate as the image of the
insertion and the equivalence predicate as the kernel of the canonical
projection. We shall shortly comment on more resemblances between them.

Consider now product and sum, which take two argument sorts. These
binary constructs can be iterated to yield n-ary iterated versions. For
instance, iterated product gives T=S;x(S,xSj3), with typical element
a=<ay,<a,,a3>> where a,=p;(p,(a)) and a;=p,(p,(a)). Alternatively, one can
obtain flat n-fold versions. For product, one has T=S;xS,xS; with typical
element a=c<aj,a,,a3> where a,=p,(a) and az=p3(a). One can easily generalise
the given specifications to n sorts: products with n projections
Prod(t\p;—S$1,... ,pp—>Sy) and sums with n insertions Sum(t\s;=1i;l...1s,=>1,). Of
course, these n-fold versions are conservative as well as eliminable under
connections.

B. New conversion operations

Now, let us examine the appropriateness of these sort constructs for
program development. We shall be mostly concerned with their repertoires
of conversion operations.

We have mentioned at the end of 3.8.1 that extensions by introduction of
a sort as product of existing sorts are convenient, but dispensable. Let us
now elaborate on this point (see figure 3.7). Assume that we have extended

P’=<L’,G’> to P’=<L”,G”> by defining the new sort t as the product of sorts s;
and s,, already in L’, with projections p; and p,. We now wish to further

extend P” by adding some new symbols. For definiteness, let us say that we
wish to introduce a new predicate symbol r involving the new sort t. So, we

have specification P=<L,G> extending P’=<L”,G”>. Instead of introducing this
predicate, we can introduce predicate 1, its profile being the result of

replacing, in the profile of r, occurrences of t by s;,s,. We can obtain an
extension P*=<*G*> extending P’=<L’,G’> by predicate symbol r,, so without
product sort, which does the same job as P=<L,G>. For, predicates r and r
are interdefinable in the context of the product sort. A similar situation

43



occurs with sum of existing sorts, because a sum sort adds no really new
definable relations: a relation R, involving a sum sort, can be regarded as a
(disjoint) union of relations, not involving it, as argued in 3.8.2.

The preceding arguments indicate that product and sum are dispensable
as supporting sorts for new relations. Let us now examine the analogous
situation for operations and more specifically how sort constructs are
employed in program development.

The usage of sort constructs in programming is related to the idea of
program development methods on the basis of data structures, such as
Jackson’s method (Jackson 1980). The analysis of this usage will suggest the
convenience of having some extra - inverse-like conversion operations - in
our four parameterised sort constructs

Let us start with the case of product, which introduces records as ordered
pairs. Immediately upon introducing this new sort, one has no operations,
besides the projections, involving it. Consider a procedure; its input
parameters have to be processed and an output value is to be produced as a
result.

If some of its input parameters ranges over a product sort t, no operation
is supplied for this. Indeed, the very purpose of the projections is
decomposing an object of the product sort t into its components, which can
be processed by the operations available on the component sorts s; and s,.
Thus, projections p; and p, enable one to define an operation f’ with
argument in a product sort t on the basis of available operations with

arguments in the component sorts s; and s,, as illustrated in figure 3.8.
f

{ =me o= ==~ === =g b

Sz
Fig. 3.8: Operation with argument in product sort.

Consider now the case where the output value of the procedure ranges
over a product sort t. Assuming that the components of this output value
have been obtained, one has to form a record from these components. So,
one needs a binary operation from s; and s, into product sort t. In other
words, with such an operation m(s;,s;)—t, one can define an operation g

44



with result in a product sort t on the basis of available operations g; and g,
with results in the component sorts s; and s,, as illustrated in figure 3.9.

Fig. 3.9: Operation with result in product sort.

Our specification Prod(t\p;—s;,pp—s;) in 3.8.1, for the explication of sort t
as the product of sorts s; and s,, does not provide such an operation
m(s,s,)—>t. But, thanks to axioms (pjs) and (pji), it can easily be introduced
by the following defining axiom

(VX138 )(VX2:8)(Vy: ) [m(x,X)=y > (P1(¥)=s X 1AP2(Y) =5 X2)]-
We thus obtain a specification Prod_cnv(t\p;—S;,p—83,(s;,82)—> m) for
product with conversions as an extension by definition of
Prod(t\p;—s1,p2—582).

Consider now the case of quotient. We already have the canonical
projection p(s)—>t, which enables us to produce an operation g’ with result in
the quotient sort t from an available operation g with result in the old sort s.
For likewise producing an operation f’ with argument in the quotient sort t
from an available operation f with argument in sort s, we would need a
conversion j(t)—s, which chooses representatives. These situations are
illustrated in figure 3.10.

a —is s 25t t - s - b

| [
a N t t s b

Fig. 3.10: Operations with result and argument in quotient sort.

This situation will be clarified by examining the dual case: that of subsort.
We already have a insertion j(t)—s and we need a conversion p(s)—>t, in the
opposite direction. We can introduce it by the new axiom (Vy:t)p(j(¥))=ty.
Although it is not a definition, it is a conservative extension, being
equivalent to one by pre and post conditions (see 3.6.2). It guarantees that
the new conversion p behaves as inverse to the insertion j over the
(extension of the) relativisation predicate, which is enough: its behaviour

45



outside this region 1is irrelevant.

Now consider a sum t of sorts s; and s,. By means of the insertions i; and
i,, a pair of operations g; and g,, with results in the old sorts s; and s,,
generates an operation g with result in the sum sort t. For likewise defining
operations with arguments in a sum sort t one would resort to a case-like
akin to variant record. For this, one needs operations a;(t)—s; and a,(t)—s,,
for selecting alternatives “depending where the object came from”. One can
conservatively introduce them by (ka:sk)ak(ik(xk)zskxk.

These new constructs with (programming-motivated) conversions are
conservative extensions of the simpler constructs for sort introduction. With
these new conversions, subsort and quotient become very similar, having
the same repertoire of operations with equivalent definitional extensions.
This duality is akin to that between equivalence relations and partitions.

C. Other sort constructs

Finally, let us briefly mention other constructs for sort introduction. For the
needs of implementation it may convenient to have additional sort
constructs, as in some programming languages.

A property shared by the constructs we have examined is that of
producing only finite sorts (from finite sorts). In particular, enumeration
generates finite sorts with elements named by the constants provided.

Some programming languages provide additional constructs for sort
introduction. Some such constructs, like powerset and mapping (similar to
“array”), still preserve finiteness, but others, like sequences, generate
(denumerably) infinite sorts from finite sorts. We defer these constructs to
the section on parameterised specifications.

3.9 Applications of extensions

We shall now examine some applications illustrating the use of extensions in
development of specifications. The first one, more general, will address the
issues related to errors. The second one will consist of case studies showing
the construction of extensions of integers to naturals and rationals. These
case studies will illustrate the use of extensions for building specifications,
hinting at some desirable features of systems providing support for such
task.

3.9.1 Treatment of errors

We shall now examine some issues concerning the treatment of errors,

mainly error introduction and propagation, in formal specifications. These
issues are motivated by programming considerations.

46



We have not been paying much attention to the question of errors. This is
due to our emphasis on ‘liberal’ specifications (see 1.6, 2.6 and 2.7). But,
when one thinks of an abstraction of a data structure, some questions, which
we dismissed in 2.6 as semantical, model-oriented ones, concerning empty
structures crop up: what is the top of an empty stack, what is the root of a
null tree? Since such objects are usually in a parameter sort, there seems to
be no natural element to be returned. A usual solution amounts to returning
an error constant (see 2.6). Now, we shall take a closer look at these
questions.

The pragmatical reason for the lack of emphasis on errors is based on the
following idea: a correct, well done program never asks for the top of a stack
without first testing whether it is empty (see 2.6). This appears reasonable,
once one has a good program on hand. But, and during its development and
“tuning”? In these phases error messages may be helpful. In addition, in the
case of ‘public’ specifications in a library, it may be interesting to warn the
user against potentially dangerous situations. We shall now briefly examine
some aspects concerning specifications with errors.

Consider stacks of elements. A formal specification P=<L,G> for its error-
free verson was given in 2.9 as Spec. 2.3: STACK[ELEMENT]. We now wish to
introduce a new constant (nullary operation) symbol in sort Elm to denote
the top of the empty stack. This may be regarded as an extemsion of P=<L,G>
to P’=<L’,G’>. We obtain it by adding the new constant err_elm of sort Elm
together with the axiom top(crt)=gjmerr_elm. This new axiom is (equivalent
to) a definition of err_elm. Hence, the extension PcP’ is expansive and
conservative (see 3.7 and 3.6.1). ,

We now have an error constant for designating the top of the empty
stack. But, note that this new constant err_elm is of sort Elm; hence it may
be pushed onto a stack. In other words, language L’ has new terms, such as
push(u, err_elm), of sort Stk, that are not in L. If we ask for the the values of
these new terms, it seems natural to say that one has an error situation: only
it is a error concerning stacks rather than one concerning elements as
before. So, let us introduce a new constant symbol err_stk to denote the
stack obtained from the empty one by pushing err_elm. Once more, this is
an extension from P’=<L’,G’> to P’=<L”,G”>, with L”=L’u{err_stk:Stk} the
extension of L’ by the addition of constant err_stk of sort Stk and
G”=G’u{push(crt,err_elm)=g,err_stk}. Notice that term push(crt,top(crt)) was
already in language L. In going from P to P’ we provided a new name,
namely push(cr ,err_elm ) for it; we now have another new name for it in L”:

47



err_stk. Once again, we have an extension P’cP” by definition of a constant,
hence expansive and conservative.

The extension from P’ to P” dealt with part of the question of error
propagation, by introducing a constant symbol err_stk to denote the result
of pushing err_elm onto the empty stack. We have not yet explicitly stated
what happens when one pushes err_elm onto other stacks. Again, it seems
natural to say that such actions result in erroneous stacks. The idea that
pushing an err_elm results in an erroneous stack can be captured by an
error propagation axiom like (Vv:Stk)push(v,err_elm)=gerr_stk_pae. Let us
call this extension P*. The error propagation axiom is the Skolemisation of
the sentence (Ix:Elm)(Ju:Stk)(Vv:Stk)push(v,x)=gyu of L. The lattter sentence
is a consequence of P* but not of P. Thus, the extension PcP* is not
conservative, and neither are P’cP* or P’cP*. A similar problem would arise
if we identified err_stk_pae with err_stk or if wished to introduce an error
constant for pushing any element onto err_stk.

In general, an extension by error propagation axioms is not conservative.
One way to recover conservativeness amounts to relativising the old axioms
to error-free situations. This appears to be the idea behind the so-called “OK
equations” (Goguen et al. 1978). A disadvantage of this approach is its poor
legibility: it clutters up the “normal” axioms, expressing the FIFO behaviour
of stacks, because of the possible anomalous behaviour.

Also, notice that error propagation is not so important from the standpoint
of program development. For, one is not so interested in the behaviour of a
program after entering an error state which it cannot leave. In such
situations one generally expects the system to take over, either aborting
program execution or invoking a special routine (see 2.6).

The problem appears to reside not so much in error propagation per se,
but rather in insisting on error constants. From the programming veiwpoint
this gives rise to ‘sink’ states. From the specification standpoint one
sacrifices conservativeness or legibility.

One might consider using error operations, rather than constants, which
appears more in line with error handling and recovery. The very notation
err_stk_pae, with ‘a’ for “arbitrary”, suggests replacing its axiom by one like
(Vv:Stk)push(v,err_elm)=gerr_stk_pae(v), where err_stk_pae(v) 1S now an
operation from Stk to Stk that names the erroneous stacks tagged with the
cause for error.

A version of this suggestion, more tuned with the ‘liberal’ spirit, uses error
predicates in lieu of constants or operatons. We would replace constant

438



err_elm by predicate is_err_elm and its axiom top(crt)=gjgperr_elm by the
more liberal, -inner constraint, version is_err_elm(top(crt)). Similarly, we
could use predicate is_err_stk for errors of sort Stk. The axiom
push(crt,err_elm)=g err_stk of constant err_stk would be replaced by
is_err_stk(push(crt,err_elm)) and error propagation for push would be
expressed by an axiom like
(Vu:Stk)(Vx:Elm)[(is_err_stk(u)vis_err_elm(x))—is_err_stk(push(u,x))], with
(Vu:Stk)[is_err_stk(u)—is_err_elm(top(u)] for top. Thus such error predicate
are like (simultaneously) inductive predicates (see 3.5.3)

3.9.2 Case studies

We shall now present two case studies showing construction of extemsions of
integers to naturals and rationals, which illustrate the application of our
extension methods for constructing specifications.

A data type for integers is built into many programming languages. We
shall now indicate how to construct specifications for representing the
naturals and the rationals, the latter corresponding to the data type reals,
also built into several programming languages. We shall examine two case
studies showing how to use our extension constructs, mainly sort constructs,

to express the naturals as the subsort of non-negative integers, and

to mimic the usual construction of the rationals as equivalence classes of

fractions with integer numerator and positive integer denominator.

A. Naturals as subsort of integers.

We wish to construct a specification for the naturals with zero and successor.
We start from the specification INT for the integers with zero, successor and
predecessor ordered by < (see Spec. 2.5 in 2.9).

We first introduce into INT the unary predicate non_neg over sort Int by
the definition (Vv:Int)[non_neg(v)«zr<v]. We can then establish the non-
voidness requirement (3Iv:Int)non_neg(v) (see 3.8.3). We can thus
conservatively introduce a new sort Nat as the subsort of Int with
relativisation predicate non_neg, together with corresponding insertion
insrt(Nat)— Int as well as conversion retr(Int)—> Nat in the opposite direction,
the latter being constrained by a pre-post-condition axiom (see 3.8.6).

We can now introduce constant zero of sort Nat and operation succ from
Nat to Nat by the definitions (see 3.8.6) zero=y,.retr(zr) and
succ(X)=yaretr(sc(insrt(x))). Notice that this populates sort Nat with names
(for the naturals).

Among the consequences of this extended specificaton, we have

49



(Vy:Nat)[—y=yNgizeroe (Ix:Nat)y=n,succ(x)],
(Vx,y:Nat)[succ(X)=paSucc(y)—>x=Nayl, and

for each n>0 (Vx:Nat)—x=p,succc™(x), where
succ™(x) stands for succ(...(succ(x))...) [n times].
Thus, we can conclude (see, e. g. Enderton 1972, p. 178-187) that our
specification is an extension of NAT_ZR_SUCC given by Spec. 2.2 in 2.9.
So, we have constructed a series of specifications
P,:=PD_DEF[non_neg(Int)\z r<v](INT);
P,:=SR_SBST[Nat\Int:non_neg,insrt](P,),
P;:=0OP_PpPC[retr(Int)— Nat\non_neg(x),insrt(y)= x> retr(x)=n,y1(P2);
P4:=CN_DEF[zero:Nat\y=y,retr(zr)}(P3),
P5:=OP_DEF[succ(Nat)—->Nat\yzNatretr(sc(insrt(x)))](P4);
each one conservatively extending the preceding one. We can now take
the restriction of Psto the sub-language consisting only of zero and succ. We
then obtain a specification NATL:=RESTR[{zero,succ}](Ps) for naturals with zero
and successor, such that
NATL is an expansive, so conservative, extension of INT, and
NATL is equivalent to NAT_ZR_SUCC.
B. Rationals from integer arithmetic.
We now wish to construct a specification for the rationals, by mimicking

their usual representation as equivalence classes of fractions with integer
numerator and positive integer denominator.

We will proceed in successive steps as displayed in figure 3.11.

INT _ ARITHM

add prod add quot

FrRTN >RATL

add sub ~L

Pos_INT

Fig. 3.11: Sequence of specifications leading to rationals.
0. We start from the specification INT_ARITHM for the integers with

arithmetic operations and predicates (see Spec. 2.6 in 2.9).

1. Our first step is the introduction of a sort for the positive integers.

This construction is analogous to the preceding one. From relativisation
predicate is_pos, we obtain, as subsort, a new sort Pos_int with injective
insertion ins(Pos_int)— Int as well as opposite surjective conversion
rtr(Int)—> Pos_int. We can then introduce constant one and operation scc,
which populates sort Pos_int with names. '

50



2. Our next step is the introduction of a sort for the fractions.

We construct sort Frtn as the product of sorts Int and Pos_int with
projections nm(Frtn)— Int and dn(Frtn)— Pos_int as well as conversion
mkfr(Int,Pos_int)— Frtn in the opposite direction (see 3.8.6).

3. The third step is the introduction of equivalence of fractions.

We have the familiar idea: fractions n/d and n’/d’ represent the same
rational when n*d’ =n’+«d. We code this idea of equivalence of fractions into a

definition for binary predicate eqv over sort Frtn:
(Vz,2’:Frtn)[eqv(z,2’ )¢>nm(z)*ins(dn(z’))=p,nm(z’ ) *ins(dn(z))].

We can then establish the equivalence requirement e(eqv) (see 3.8.4). We
can thus conservatively introduce a new sort Ratl as the quotient of Frtn
under equivalence predicate eqv, with corresponding canonical projection
val(Frtn)— Ratl as well as injective opposite conversion rpr(Ratl)— Frtn (see
3.8.6).

4. Our fourth step is the introduction of arithmetic on rationals.

We will illustrate this step with a few simple cases; other arithmetic
operations and predicates can be similarly introduced (see 3.8.6).

First, recall that equality of rationals is equivalence of the corresponding
fractions: u=g, u <>eqv(rpr(u),rpr(u’)).

We can introduce constant 0/1 on sort Ratl by the definition
0/1=g,val(mkfr(zr,one)). Similarly, each pair of names for Int and Pos_int
generates a name for a rational: m/n=g,,val(mkfr(m,n)).

An operation unary minus on sort Ratl can be introduced by a definition
like mns(u)=g,qval(mkfr(zr-nm(rpr(u)),dn(rpr(u)))).

So, starting from Py=INT_ARITHM, we have constructed a sequence of
specifications
1. Py:=PD_DEF[is_pos(Int)\zr<v](Py),

P’ :=SR_SBST_CNV[Pos_int\Int:is_pos,ins,rtr](P;),

| :=CN_DEF[one:Pos_int\yzpos_imrtr(sc(zr))](P’ 1)

P*,:=OP_DEF[scc(Pos_int)— Pos_int\y=py, inrtr(sc(ins(x)))1(P7);

2. P,:=SR_PROD[Frtn\nm- Int,dn—»Pos_int](P*}),

P’2:=OP_DEF[mkfr(Int,Pos_int)—>Frtn\nm(y)=slx1Adn(y)=szx2](P2);

3. Py:=PD_DEF[eqv(Frtn,Frtn)\nm(z)*ins(dn(z’))=p,;nm(z’)*ins(dn(z)](P’3),
P’;:=SR_QUOT_CNV[Ratl\Frtn/eqv,val,rpr](P3);
4. P,:=CN_DEF[0/1 :Ratl\y=g,qval(mkfr(zr,one))1(P’3),

51



P’,:=0OP_DEF[mns(Ratl)Ratl\y=g,qvl(mkfr(zr-nm(rpr(u)),dn(rpr(u))))1(P4)
each one conservatively extending the preceding one.

Figure 3.12 provides a bird’s eye view of the construction history of this
specification for rationals.

- is_pos 1
0
tr scc
\ one
mkfr
nm dn
2 Frtn
/ i j
eqv
——\v
Ratl
3 /
mns 0/1
4

Fig. 3.12: Construction history of specification for rationals.
The final specification constructed for rationals has the following features

52



we can use it for reasoning about rational arithmetic,

we still have access to the representation of the rational as fractions,

its expression as extensions records the trace of its construction.
If we wish to hide details, such as representation and history of
construction, we can now take its restriction to the sub-language consisting
only of sort Ratl and the desired arithmetic operations and predicates. We
then obtain a specification RATL for rational arithmetic that is a conservative
extension of INT_ARITHM.

3.10 Example Specifications
Spec. 3.1. BOOL: Boolean values

SPEC BOOL {Specification of Bool(ean values)}
DECLARATIONS
Sorts
Bool {The (only) sort is Bool}
Operations {(No (non-nullary) operations}
Constants
tr,fl: Bool {tr and fl are constants of Bool}
Predicates {No predicates (except equality)}
AXIOMS
(Vx:B0ool)[X=p oo ttVX=goifl] {tr and fl exhaust Bool},
—tr=gooifl {tr and fl distinct}.

END_SPEC BooL
Spec. 3.2. BOOL_EXT_NEG&LESS: Boolean extended by negation and ordering

SPEC BOOL_EXT_NEG&LESS := EXT of BOOL by {Extension of BOOL}
DECLARATIONS { Description of new symbols}
Sorts {No new sort}
Operations {List of new (non-nullary) operations}
neg (Bool)—>Bool {neg is from Bool into Bool}
Constants {No new constant}
Predicates {List of new predicates}
less? (Bool,Bool) {less? over Bool and Bool}
AXIOMS {List of new axioms}

(Vx,y:Bool)[—neg(x)=pgy01X] {a property of neg},

53



(Vx,y:Bool)[less?(X,y)e>(X=gooifIAY=B o1 ()] {a definition of less?},
END_SPEC BOOL_EXT_NEG&LESS
3.11 References
Arbib, M. and Mannes, E. (1975) Arrows, Structures and Functors :@ the
Categorical Imperative. Academic Press, New York.

Barwise, J. ed. (1977) Handbook of Mathematical Logic. North-Holland,l
Amsterdam.

Bauer, F., L. and Wossner, H. (1982) Algorithmic Language and Program
Development. Springer Verlag, Berlin.

Broy, M. (1983) Program construction by transformations: a family of
sorting programs. In Breuman, A. W. and Guiho, G. (eds) Automatic
Program Constructiom, Reidel, Dordrecht.

Broy, M., Pair, C. and Wirsing, M (1981) A systematic study of models of
abstract data types. Centre de Recherche en Informatique de Nancy
Res. Rept. 81-R-042, Namcy.

Broy, M. and Pepper, P. (1981) Program development as a formal activity.
IEEE Trans. Software Engin., SE-T (1)14-22.

Broy, M. and Wirsing, M (1982) Partial abstract data types. Acta
Informatica, 18 47-64.

Byers, P. and Pitt, D. (1990) Conservative extensions: a cautionary note.
Bull. EATCS,41, 196-201.

Darlington, J. (1978) A synthesis of several sorting algorithms. Acta
Informatica, 11 (1), 1-30.

Dahl, O., Dijkstra, E. and Hoare, C. (1972) Structured Programming.
Academic Press, New York.

Ebbinghaus, H. D., Flum, J. and Thomas, W. (1984) Mathematical Logic.
Springer-Verlag, Berlin.

Enderton, H. B. (1972) A Mathematical Introduction to Logic. Academic
Press; New York.

Ehrich, H.-D. (1982) On the theory of specification, implementation and
parameterization of abstract data types. J. ACM, 29 (1), 206-227.
Ehrig, H. and Mahr, B. (1985) Fundamentals of Algebraic Specifications, I:

Equations and Initial Semantics. Springer-Verlag, Berlin.

Gehani, A., D., McGettrick (1986) Software Specifications Techniques.

54



Addison-Wesley, Reading.

Ghezzi, C., Jazayeri, M. (1982) Programming Languages Concepts. Wiley,
New York.

Goguen, J. A.; Thatcher, J. W. & Wagner, E. G. (1978) An initial algebra
approach to the specification, correctness and implementation of
abstract data types. In Yeh, R. T. (ed.) Current Trends in Programming
Methodology: Prentice Hall, Englewood Cliffs, . 81-149.

Guttag, J. V (1977) Abstract data types and the development of data
structures. Comm. Assoc. Comput. Mach.,20 (6), 396-404.

Guttag, J. V (1980) Notes on type abstraction. IEEE Trans. Software Engin., 6
(1),.

Guttag, J. V. and Horning, J. J. (1978) The algebraic specification of abstract
data types. Acta Informatica, 10 (1), p. 27 - 52.

Hoare, C. A. R. (1972) Proof of correctness of data representations. Acta
Informatica, 4, 271-281.

Hoare, C. A. R. (1974) Notes on data structuring. In Dahl et al. 1(974); 83-
174.

Hoare, C. A. R. (1978) Data Structures. In Yeh, R. (ed.) Current Trends in
Programming Methodology, Vol IV. Prentice Hall, Englewood Cliffs, 1-
11.

Jackson, M., A. (1980) Principles of Program Design. Academic Press,
London.

Ledgard, H. and Taylor, R. W. (1977) Two views on data abstraction. Comm.
Assoc. Comput. Mach., 20 (6), 382-384.

Maibaum, T. S. E. (1986) The role of abstraction in program development.
In Kugler, H.-J. ed. Information Processing '86. North-Holland,
Amsterdam, 135-142.

Maibaum, T. S. E., Sadler, M. R. and Veloso, P. A. S. (1984) Logical
specification and implementation. In Joseph, M. and Shyamasundar R.
eds. Foundations of Software Technology and Theoretical Computer
Science. Springer-Verlag, Berlin, 13-30.

Maibaum, T. S. E. and Turski, W. M. (1984) On what exactly is going on
when software is developed step-by-step. tProc. 7h Intern. Conf. on
Software Engin. IEEE Computer Society, Los Angeles, 528-533.

55



Maibaum, T. S. E, Veloso, P. A. S. and Sadler, M. R. (1985) A theory of
abstract data types for program development: bridging the gap?. In
Ehrig, H., Floyd, C., Nivat, M. and Thatcher, J. eds. Formal Methods and
Software Development; vol. 2: Colloquium on Software Engineering.
Springer-Verlag, Berlin, 214-230.

Maibaum, T. S. E, Veloso, P. A. S. and Sadler, M. R. (1991) A logical approach
to specification and implementation of abstract data types. Imperial
College of Science, Technology and Medicine, Dept. of Computing Res.
Rept. DoC 91/47, London.

Manna, Z. (1974) The Mathematical Theory of Computation. McGraw-Hill,
New York.

Meré, M. C. ; Veloso, P. A. S. (1992) On extensions by sorts.. PUC - RJ, Dept.
Informatica, Res. Rept. MCC 38/92, Rio de Janeiro..

Pair, C. (1980) Sur les modeles des types abstraites algébriques. Centre de
Recherche en Informatique de Nancy Res. Rept. 80-p-042, Namcy.

Parnas, D. L. (1979) Designing software for ease of extension and
contraction. IEEE Trans. Software Engin., S (2), 128-138.

Pequeno, T. H. C. and Veloso, P. A. S. (1978) Do not write more axioms than
you have to. Proc. Intern. Computing Symposium, Taipei, 487-498.

Shoenfield, J. R. (1967) Mathematical Logic. Addison-Wesley, Reading.

Smirnov, V. A. (1986) Logical relations between theories. Synthese, 66, p.
71 - 87.

Smith, D. R. (1985) The Design of Divide and Conquer Algorithms. Science
Computer Programming, 5 37-58.

Smith, D. R. (1990) Algorithm theories and design tactics. Science of
Computer Programming., 14, 305-321.

Smith, D. R. (1992) Constructing specification morphisms. Kestrel Institute,
Tech. Rept. KES.U.92.1, Palo Alto.

Turski, W. M and Maibaum, T. S. E. (1987) The Specification of Computer
Programs. Addison-Wesley, Wokingham.

van Dalen, D. (1989) Logic and Structure (2nd edn, 3rd prt). Springer-
Verlag, Berlin.

Veloso, P. A. S. (1984) Outlines of a mathematical theory of general
problems. Philosophia Naturalis, 21 (2/4 ), 354-362.

56



Veloso, P. A. S. (1985) On abstraction in programming and problem solving.
2nd Intern. Conf. on Systems Research, Informatics and Cybernetics.
Baden-Baden.

Veloso, P. A. S. (1987) Verificacdo e Estrutura¢do de Programas com Tipos
de Dados. Edgard Bliicher, Sdo Paulo.

Veloso, P. A. S. (1987) On the concepts of problem and problem-solving

method. Decision Support Systems, 3 (2), 133-139.

Veloso, P. A. S. (1988) Problem solving by interpretation of theories. In
Carnielli, W. A. : Alcantara, L. P. eds. Methods and Applications of
Mathematical Logic. American Mathematical Society, Providence,
241-250.

Veloso, P. A. S. (1991) A computing-like example of conservative, non-
expansive, extension. Imperial College of Science, Technology and
Medicine, Dept. of Computing, Res. Rept. DoC 91/36, London.

Veloso, P. A. S. (1992) Yet another cautionary note on conservative
extensions: a simple example with a computing flavour. Bull. EATCS,
46, 188-192.

Veloso, P. A. S. (1992) On the modularisation theorem for logical
specifications: its role and proof. PUC - RJ, Dept. Informdtica Res. Rept.
MCC 17/92, Rio de Janeiro.

Veloso, P. A. S. (1992) Notes on interpretations of logical specifications.
COPPE-UFRIJ Res. Rept. ES-277/93, Rio de Janeiro.

Veloso, P. A. S. (1993) The Modularization Theorem for unsorted and

many-sorted specifications. COPPE-UFRJ Res. Rept. 'ES-284/93, Rio de
Janeiro.

Veloso. P. A. S. and Maibaum, T. S. E. (1984) What is wrong with errors:
incomplete specifications for abstract data types. UFF, ILTC, Res. Rept.,
Niterdi.

Veloso, P. A. S., Maibaum, T. S. E. and Sadler, M. R. (1985) Program
development and theory manipulation. In Proc. 3rd Intern. Workshop
on Software Specification and Design. IEEE Computer Society, Los

- Angeles, 228-232.

Veloso, P. A. S. and Maibaum, T. S. E. (1992) On the Modularisation
Theorem for logical specifications. Imperial College of Science,
Technology & Medicine, Dept. of Computing Res. Rept. DoC 92/35,
London.

57



Veloso, P. A. S. and Veloso. S. R. M. (1981) Problem decomposition and
reduction: applicability, soundness, completeness. In Trappl, R.; Klir, J. ;
Pichler, F. eds. Progress in Cybernetics and Systems Research.
Hemisphere, Washington, DC, 199-203.

Veloso, P. A. S. and Veloso. S. R. M. (1990) On extensions by function
symbols: conservativeness and comparison. COPPE-UFRJ Res. Rept. ES-
288/90, Rio de Janeiro.

Veloso, P. A. S. and Veloso, S. R. M. (1991) Some remarks on conservative
extensions: a Socratic dialogue. Bull. EATCS, 43, 189-198.

Veloso, P. A. S. and Veloso, S. R. M. (1991) On conservative and expansive
extensions. O que no faz pensar: Cadernos de Filosofia, 4, 87, 106.

Veloso, P. A. S. and Veloso, S. R. M. (1991) On conservative and expansive
extensions: why and how they differ. Imperial College of Science,
Technology & Medicine, Dept. of Computing Res. Rept. DoC 91/30,
London.

Wirsing, M., Pepper, P. and Broy, M. (1983) On hierarchies of abstract data
types. Acta Informatica 20 (1) 1-33.

58



