ISSN 0103-9741

Monografias em Ciéncia da Compufagdo
n° 01/95

On Some General Logical Properties
Related to Interpolation and Modularity

Paulo A. S. Veloso

Departamento de Informdtica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAQ VICENTE, 225 - CEP 22453-900

PUC RIO - DEPARTAMENTO DE INFORMATICA

Monografias em Ciéncia da Computacdo, N° 01/95 ISSN 0103-9741
Editor: Carlos J. P. Lucena January, 1995

On Some Gerieral Logical Properties
Related to Interpolation and Modularity *

Paulo A. S. Veloso

* Invited Lecture, X Encontro Brasileiro de Logica, Itatiaia, July 1993; revised
version (to appear in Colecido CLE - Anais do X Encontro Brasileiro de Logica,

Itatiaia, RJ.

in charge of publications:

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentag¢do e Informag¢do

PUC Rio — Departamento de Informatica

Rua Marqués de Sdo Vicente, 225 — Gavea

22453-900 — Rio de Janeiro, RJ

Brasil

Tel. +55-21-529 9386 Telex +55-21-31048 Fax +55-21-511 5645

E-mail: rosane@inf.puc-rio.br

ON SOME GENERAL LOGICAL PROPERTIES
RELATED TO INTERPOLATION AND MODULARITY

Paulo A. S. VELOSO
fe-mail: veloso@inf.puc-rio.br}

PUCRioInf MCC 01/95

Abstract , _

We examine connections among some logical properties, such as interpolation and
cut, underlying the modularity property for interpretations and conservative
extensions, which is crucial in the logical approach to formal program and
specification development. In this context, a specification is a theory presentation,,
implementations and parameter instantiations being defined in terms of
interpretations and conservative extensions. To handle these concepts, one must be
able to complete (pushout) rectangles, a construction preserving conservativeness by
the Modularisation Theorem. A closer analysis of its proof reveals that it relies on
some basic logical properties, related to versions of interpolation and the deduction
theorem. We examine these properties and some connections among them, aiming
at clarifying their roles, and illustrating the use of internalisation techniques. This
provides conditions and alternative formulations for modularity and these logical
properties of the consequence relation. Interpolation, for instance, can be formulated
as conservativeness preservation. We emphasise a connective-independent
approach.

Key words: Formal specifications, Logical theories, Axiomatic presentations, Interpolation,
Modularity, Cut, Conservative extensions, Interpretations, Internalisation,
Program development, Logical approach

Resumo

Sio examinadas algumas conexdes entre propriedades l6gicas, como interpolagdo e
corte, subjacentes & propriedade de modularidade para interpretacGes e extensoes, a
qual é crucial no enfoque légico para desenvolvimento formal de programas e
especificagdes. Neste contexto, uma especificagdo é uma apresentacao de uma teoria,
implementagbes e instantiaces de parametros sendo definidos em termos de
interpretagbes e extensdes conservativas. Para tratar estes conceitos,precisa-se
completar retdngulos (de somas amalgamadas), construgdo que preserva
conservatividade pelo Teorema da Modularizacdo. Uma analise mais detalhada de
sua demonstracio revela que ela se baseia em algumas propriedades légicas,
relacionadas a versdes de interpolagio e do teorema da dedugao. Estas propriedades, e
suas interconexdes, sio examinadas para clarificar seus papéis e ilustrar o uso de
técnicas de internalizacdo. Isto fornece condigdes e reformulagbes para modularidade
e para essas propriedades logicas da relagdo de conseqiiéncian. Interpolagédo, por
exemplo, pode ser formulada em termos de preservacao de conservatividade.
Enfatiza-se um enfoque independente de conectivos.

Palavras chave: Especificagoes formais, Teorias 16gicas, Apresentacdes axiomaticas,
Interpolagdo, Modularidade, Corte, Extensdes conservativas, Interpretacdes, Internalizacéo,
Desenvolvimento de programas, Enfoque 16gico.

CONTENTS

1. INTRODUCTION

2. MODULARITY IN SOFTWARE DEVELOPMENT
2.1 THE LOGICAL APPROACH TO FORMAL SPECIFICATIONS
2.2 IMPLEMENTATIONS OF LOGICAL SPECIFICATIONS
2.3 PARAMETERISED LOGICAL SPECIFICATIONS

3. MODULARITY IN CLASSICAL FIRST-ORDER LOGIC
3.1 VARIATIONS OF MODULARITY
3.2 JOINT CONSISTENCY AND EXTENSION MODULARITY
3.3 INTERNALISATION VIA TRANSLATION DIAGRAM
3.4 REDUCTION OF INTERPRETATION TO EXTENSION MODULARITY
3.5 VARIATIONS OF INTERNALISATION: KERNEL AND QUOTIENT
4. INTERPOLATION IN CLASSICAL FIRST-ORDER LOGIC
4.1 SIMPLE INTERPOLATION
4.2 INTERPOLATION-LIKE PROPERTIES RELATED TO CUT
5. MODULARITY AND INTERPOLATION
5.1 RELATIVISED CONSEQUENCE RELATION
5.2 VERSIONS OF MODULARITY
5.3 VERSIONS OF INTERPOLATION

5.4 CONNECTIONS BETWEEN MODULARITY AND INTERPOLATION
5.5 CONDITIONS FOR MODULARITY AND INTERPOLATION

6. CONCLUSION
REFRENCES

O O Ut ph W NN

1. INTRODUCTION

We examine some connections among modularity properties, concerning
preservation of conservativeness, and interpolation-like properties of the
consequence relation. The motivations for this investigation stem from
two main sources in logic and in software development.

On the one hand, modularity of extensions is connected to some important
logical results, such as Robinson’s Joint Consistency, Craig’s Interpolation
and Beth’s Definability theorems, known to be related to each other. It is
thus of interest to examine more closely these connections.

On the other hand, the generalisation of modularity of extensions to
interpretations, is a crucial property in the logical approach to formal
program and specification development. In this context, a specification is a
theory presentation, and implementations as well as instantiations of
parameters are defined in terms of interpretations and conservative
extensions. In order to handle these concepts, one must be able to
complete a rectangle by means of a pushout construction [Goldblatt '79;
Ehrich '82]. The Modularisation Theorem asserts that this construction
preserves conservativeness; its proof involves Craig’s Interpolation
Lemma and internalisation techniques.

A closer analysis of this proof reveals that it actually relies on some basic
logical properties, related to versions of interpolation and the deduction
theorem. A more detailed examination of these connections is important in
establishing conditions for modularity.

Software development can rely on diverse specification formalisms, based
on equations, Horn clauses, first-order sentences, etc. So, an analysis not
tied down to a particular formalism would be of interest. We are thus led
to a connective-independent approach, somewhat akin to Tarski’s classical
work on the consequence relation [Tarski '30]. We do not, however, keep
the language fixed, since we examine conservativeness and interpolation.

We examine these properties and some connections among them, aiming
at a clarification of their roles. This provides conditions and alternative
formulations for modularity and these logical properties of the
consequence relation. For instance, both interpolation and the Deduction
Theorem can be formulated in terms of conservativeness preservation.

This paper consists of three parts. In the first one (section 2) we briefly
review the logical approach to formal specifications and examine the role
played by modularity in formal software development. The second part
focus on variations of modularity and interpolation in Classical First-Order
Logic: in section 3 we examine joint consistency and modularity of
extensions as well as some internalisation techniques related to

1

modularity of interpretations; section 4 concentrates on properties akin to
interpolation and cut. The third part (section 5) then investigates some
interconnection .among these properties in a connective-free context by
resorting to relativised consequence relations. The final section briefly
comments on some extensions and future developments.

We employ the usual terminology and notation for logical concepts
[Shoenfield '67; Enderton '72; Chang + Keisler '73]. We use the notations

Yo, or 6e Cn(T), to state that sentence o is a consequence of the set T of
sentences.

2. MODULARITY IN SOFTWARE DEVELOPMENT

We shall now briefly examine some motivations for interpretati%n
modularity stemming from software development. Interpretation
modularity guarantees the preservation of conservativeness under an
“orthogonal” interpretation, which is of importance in formal stepwise

development.

Interpretation Modularity is a crucial property in the formal development
of specifications and programs in a stepwise manner [Turski + Maibaum
'87; Veloso '87]. Its importance arises mainly from its role in two
situations, namely in composing implementations and in instantiating
parameterised specifications.

2.1 THE LOGICAL APPROACH TO FORMAL SPECIFICATIONS

The logical approach to formal specifications employs the formalism of
first-order logic. The motivations for this approach [Maibaum + Veloso '81;
Maibaum + Veloso + Sadler '91; Maibaum + Veloso '94] come mainly from
two related sources. On the one hand, logical axioms employ language and
concepts akin to program verification [Manna '74]; on the other hand, the
logical formalism accommodates ‘liberal’ specifications, which provide
flexibility for specifying what one wishes without forcing over-
specification [Maibaum + Veloso '81; Turski + Maibaum '87]. In addition,
this logical approach has been instrumental in extending some of these
ideas to problem solving [Veloso + Veloso '81; Veloso '88, '91] and to
formal algorithm design [Smith + Lowry '90].

In the logical approach, a specification is a theory presentation, i. e. a pair
<L,T>, consisting of a language L, and a set £ of sentences of L (its axioms).
The content of a specification S=<L,Z> is the theory generated by it: the set
Cn(R):={ce Sent(L)/Z+c} of its theorems.

Basic logical concepts of importance for specification and program

development are (conservative) extensions and interpretations. An
extension adds symbols and theorems; it is conservative when it adds no

2

new consequences in the smaller language. An interpretation is a language
translation that preserves consequences, in that theorems are translated

to theorems.

We shall now briefly review the logical concepts of implementation and
parameterisation, as well as the role played by Interpretation Modularity
in this context.

2.2 IMPLEMENTATIONS OF LOGICAL SPECIFICATIONS

Let us start by considering implementations. One has a specification M
which one wishes to implement on a specification P. For this purpose, one
has to provide on top of P some support for the abstract concepts of M.
One account of what is involved, in terms of 'liberal’ specifications
presented by axioms, is as follows.

One extends the concrete specification P by adding symbols to correspond
to the abstract ones in M, perhaps together with some auxiliary symbols.
Since one does not wish to disturb the given concrete specification P, this
extension @ should not impose any new constraints on P. This can be
formulated by requiring the extension Q2P to be conservative.

One also wishes to correlate the abstract symbols in M to corresponding
ones in Q. But, the properties of M are important, for instance, in
guaranteeing the correctness of an abstract program supported by M.
Thus, in translating from M to Q, one wishes to preserve the properties of
M as given by its axioms. This can be formulated by requiring the
translation iM—Q to be an interpretation.

We thus arrive at the concept of an implementation of M on P as an
interpretation iof M into a conservative extension Q (usually called a
mediating specification) of P [Maibaum + Veloso '81; Maibaum + Veloso +
Sadler '91]. Such 'implementation triangle' is sometimes called a 'canonical
step' [Turski + Maibaum '87].

In stepwise development it is highly desirable to be able to compose
refinement steps in a natural way. Consider two consecutive
implemengation steps: a first implementation of M on P (with mediating
specification Q) and a second implementation of P on T (with mediating
specification R). One would wish to compose these two implementations, in
an easy and natural manner, so as to obtain a composite implementation
of M directly on T (see figure 1).

An immediate question that arises is: what would the mediating
specification be? This is where the property of Interpretation Modularity
comes into play. For, it will allow one to obtain such a mediating
specification S, extending R conservatively, together with an interpretation
k of Q into S. In other words, it will enable one to complete the rectangle,

3

thereby obtaining a composite implementation of M directly on T, as
illustrated in figure 1.

M

Figure 1: Composing implementation steps /

Here it is worthwhile noting that this composition mirrors what a
programmer would do by simply putting together the corresponding
modules. This is possible because we do not require that the given
mediating symbols be eliminated in constructing the composite one.

2.3 PARAMETERISED LOGICAL SPECIFICATIONS

The structuring of a specification into a context and parameter has been
found to be particularly useful. The idea is that the context can be plugged
into different situations by appropriate choices of values (instances) for
the parameters. Such structured specifications are called parameterised
specifications [Ehrich '82]. Thus a parameterised specification, such as
SEQ[DATA], provides means for obtaining other specifications, such as
SEQINAT], and so forth.

The simple tools of conservative extensions and interpretations provide a
quite straightforward account of parameterisation, which regards
parameterised specifications as 'normal’ specifications, rather than as
(partial) functions on models or on specifications, which is a usual
approach.

A specification @ is said to be parameterised by a sub-specification P
(called parameter) whenever Q is a conservative extension of P. Now, in
instantiating the parameter we wish its properties, as expressed by its
theorems, to be preserved. So, by a parameter instantiation we mean an
interpretation p:P-»R [Maibaum + Veloso + Sadler '91]. We thus have a
situation similar to the one encountered in composing implementations
(see figure 2).

Once again the)property of Interpretation Modularity comes into play. It
will enable us to complete the rectangle, thereby yielding the resulting
instantiated specification S, as illustrated in figure 2. Here it is worthwhile
noting that the construction of this instantiated specification mimics what

4

our intuition suggests. Moreover, the instantiated specification, S is still a
conservative extension of the actual argument R.

pl

Q9 — — —

—_—

P = R

Figure 2: Completing a rectangle with a specification

3. MODULARITY IN CLASSICAL FIRST-ORDER LOGIC

In broad terms, modularity concerns the preservation of some logical
properties of presentations under certain constructions. We shall now
introduce three variations of modularity, concerning interpretations,
extensions and joint consistency, and examine them in the context of
Classical First-Order Logic (CFOL, for short). This will clarify some
connections among them and illustrate the application of some
internalisation techniques as well. Interpretation modularity is motivated
by stepwise software development (as explained in section 2) and
extension modularity deals with unions of presentations, a special case of
which is joint consistency (as in the well-known Robinson’s Joint
Consistency Theorem).

We consider a language as characterised by its alphabet of extra-logical
(predicate and function) symbols together with syntactical declarations. A
specification is a theory presentation, 1. €. a pair S=<L,Z>, consisting of a
language L, and a set T of sentences of L (its axioms). |

We say that I is a sub-language of J (denoted by Ic]) when J can be
obtained from I by adding some symbols (and declarations). Now, consider
specifications P=<I,A> and Q=<J,I'>. We say that Q is an extension of P
(denoted by PcQ) iff IcJ and every consequence of A is a consequence of
I'. We call P and @ equivalent (denoted by P=Q) iff they are extensions of
each other. In case IcJ, we say that Q conserves P (denoted by P<Q) iff, for
every sentence o of L, Ao whenever I'Fo. A conservative extension P<Q is
an extension PcQ@ such that @ conserves P.

By a translation t from source language I to target language K we mean a
syntax-preserving language morphism mapping each symbol of I to a
corresponding symbol in K of the same kind; so each formula ¢ of I is
translated to a formula t(¢) of K. An interpretation from P=<I,A> to
R=<K,©> is a translation of the underlying languages that translates every

5

consequence of A to a consequence of ©. An interpretation t:P—R is called
faithful iff for every sentence o of I, Ak o iff ®F t(c) [Shoenfield '67,;
Enderton '72].

3.1 VARIATIONS OF MODULARITY

We shall now introduce three variations of modularity, concerning
interpretations, extensions and joint consistency. The first version is
motivated by software development, as explained in section 2, and the
third one comes from the well-known Robinson’s Joint Consistency
Theorem in CFOL concerning unions of presentations, extension modularity
being somewhat intermediate between these two.

Let us start by examining interpretation modularity. It goncerns a
(pushout) construction, which completes a rectangle of presentation
interpretations (see figure 3). As explained in section 2, this is an
important issue in implementation and instantiation of specifications.

Consider the following situation. We have presentations P=<L,A>, Q=<J,I'>
and R=<K,®>, such that Q is an extension of P, and an interpretation f:P—-R.
We wish to construct a presentation S=<L,Z> and a translation g:J—L, such
that S extends R and g interprets Q into S.

P R
—to— f ——
L —mo K, 6

m M
J, I — L,eugl)
[— g L

Q S

Figure 3: Pushout Construction for Presentation Interpretations

For this purpose, we first construct the pushout rectangle of underlying

languages and translations and then use it to define the axiomatisation X

for S, as follows:

1. Form language L by adding to K the symbols in A:=J-I (together with
their declarations).

2. Now, extend translation f:I—-K to a translation g from J to L by using
the identity on the symbols in A=J-L

3. Finally, set Z:=0ug(T"), to obtain S:=<L,Z>.

(Notice that it would suffice to translate the new axioms in I'-Cn(A). Thus,
if @ is finitely axiomatisable over P, then so is R over S.)

Interpretation modularity asserts that this pushout construction preserves
conservativeness.

Property IM: Interpretation Modularity

Given presentations P=<I[,A>, @=<J,I'> and R=<K,0>, such that Q is an
extension of P, and an interpretation f:P— R, the pushout of translations
gives a translation g:J—L; consider presentation S:=<L,X>, with Z:=0uUg(T).
If Q=<J,I'> is a conservative extension of P=<I,A>, then S=<L,Z> is a
conservative extension of R=<K,0>.

Clearly extensions are special interpretations. So, from the logical
viewpoint it is quite natural to consider the specialisation of the preceding

considerations to extensions. We then have the following .property,
asserting that union preserves conservativeness.

Property EM: Extension Modularity

Consider presentations Q=<J,I'> and R=<K,0>, both extending P=<I[,A>.
Assume that languages J and K share only the symbols in I, i. e. InK=I,
and consider the union presentation S:=<JUK,Tu@>.If Q=<J,I'> is a
conservative extension of P=<I,A>, then S=<L,Z> is a conservative
extension of R=<K,0>.

So, Modularity of Extensions asserts that conservativeness is preserved by
this union construction; it guarantees a relationship between the resulting
presentations provided that the given presentations have some
relationship.

A variation of this property is preservation of consistency, as in the well-
known Robinson’s Joint Consistency Theorem. It asserts that consistency is
preserved under union over a maximally consistent presentation; it
guarantees a property of the union presentation provided that the given
presentations have some property.

Property JC: Joint Consistency

Consider presentations @Q=<J,I'> and R=<K,0>, both extending P=<I,A>.
Assume that languages J and K share only the symbols in I, i. e. JnK=I,
and consider the union presentation S:=<JUK,Tu©>. If P=<LA> is complete
and consistent (maximally consistent) and both Q=<J,I'> and R=<K,0®> are
consistent, then the union S:=<JUK,[U®> is consistent.

If we compare the properties of Joint Consistency and Extension
Modularity, we see that the latter appears to be more flexible than the
former, in that it replaces consistent extensions of a complete presentation
by a conservative extension of a (not necessarily complete) presentation.
We thus appear to have a simple hierarchy of modularity properties: IM
= EM = JC. We shall examine it more closely in the sequel.

7

Now, Robinson’s Joint ‘Consistency Theorem is known to be related to
Craig’s Interpolation Theorem. In view of the above connection, it is
interesting to investigate in more detail the relationships between
interpolation and modularity properties.

3.2 JOINT CONSISTENCY AND EXTENSION MODULARITY

We start with some simple characterisations for conservativeness of
extensions and for conservative extensions of maximally consistent
presentations.

A motivation for conservativeness is preserving consistency. Indeed: if 'Q
conserves P and P is consistent, then so is Q.

The following result gives some simple characterisations for
conservativeness. Notice that characterisation in item (e), in terms of
elementary equivalence, is a simplified version of the one usually
formulated in terms of elementary extension [Shoenfield '67; p. 95,

exercise 9].

Lemma: Characterisations of Conservativeness

Given presentations P=<I[,A> and Q=<J,I'> with IcJ, the following are
equivalent.

a) Q conserves P (P<Q).

b) For any set © of sentences of I, AUO<I'UO.

c) For any set © of sentences of I, if AU® is consistent then so is 'U®.

d) For any maximally consistent presentation <I,T> with ToA, TUT is

consistent.
e) For any model ffle Mod(P) there exists Re Mod(Q) such that RF Th(#).
Proof.
(a=b) Consider an arbitrary sentence o of I such that Tv@®F . Then, by
compactness T'U{@}+ o, for some finite conjunction ¢ of sentences of @; so
I'+(¢—> o). Thus, by (a), A (9—0); whence AUBFo.
(b=>c) By the preceding remark.

(c=d) Consider a maximally consistent set T of sentences of I such that
ToA. Since AUT=T is consistent, we have by (c), TUT consistent.

(d=e) Consider a model ffie Mod(P). Then, we have a maximally
consistent set of sentences of I Th(#)oA. So, by (d), TUTh(#M) is
consistent, whence by completeness, we have some model RFETUTh(#M).

(e=>a) Consider a sentence ¢ of I such that A#c. Then, completeness gives
a model file Mod(P) such that #fi¥ o, whence —oe Th(#l). By (d), we have
some model Be Mod(Q) such that ®F Th(#l). So R¥ o, whence I'¥o.

OED

A simple consequence of these characterisations is that the conservative
extensions of a maximally consistent presentation are the consistent ones.

Corollary: Conservative Extensions and Maximal Consistency

Consider presentations P=<I[,A> and Q=<J,I'>, with Q extending P. If P is
maximally consistent and Q is consistent, then P<Q .

Proof.

Considering a maximally consistent presentation <I,T> with ToA, since P is
maximally consistent we have T=A, whence '=T'UT is consistent. Thus, by
the lemma item (d), P<Q.

OFD

We are now ready to examine Joint Consistency and Extension Modularity
in Classical First-Order Logic. That CFOL has the property JC is clear,
because of Robinson’s Joint Consistency Theorem [Chang + Keisler 73, p.
88: Shoenfield '67, p. 79], which motivates its formulation.

To show Extension Modularity, we use the above characterisation (e) in
conjunction with JC, as follows. Consider presentations P=<IL,A>, Q=<J, I
and R=<K,0>, such that PcQ, PcR with JnK=I; we wish to show that R<QUR
whenever P<Q. (Notice that if R is inconsistent then clearly RSQUR; so we
may assume R consistent.) Given a model Re Mod(R), its reduct $ to
language I is a model of P with Th(®)cTh(R); so, since P<@ the previous
lemma gives a model @ Mod(Q) such that Th(®)cTh(®). We then have a
maximally consistent presentation <JNK,Th(#)> with two consistent
extensions <J,Th(®)> and <K,Th(®)>. By JC, the union <JUK, Th(@)uTh(R)> is
consistent, and has a model &. Then, e Mod(Q) with §F Th(R). By our
lemma R<QUR.

Notice that the above argument shows that JC = EM in CFOL. To see that
EM = JC one can use the above corollary, as follows. Consider
presentations P=<L,A>, Q=<J,I'> and R=<K,®>, such that PcQ, PcR with
J~K=I, as above. We wish to show that QUR is consistent, if Q and R are so
and P is maximally consistent. By the corollary we have P<Q. So, by EM,
R<QuUR. Thus, by the remark, QUR is consistent.

3.3 INTERNALISATION VIA TRANSLATION DIAGRAM

We now wish to show that CFOL has the property of Interpretation
Modularity. We are going to reduce it to Extension Modularity by resorting
to presentations in larger languages that code the information in the
language translations. So, we first examine the internalisation technique of
translation diagram [Veloso '92; Veloso '93].

Consider a translation t from source language I to target language K. We
form the disjoint union language I+K, and construct the set
Alt]:={a¢>t(a)/ac I} of sentences of I+K asserting the equivalence between a
symbol of I and its translation under t. We thus have a presentation: the

diagram presentation D[t]:=<I+K,A[t]>.
More precisely, the translation diagram A[t] of a translation t:I—- K consists
of the following sentences of the disjoint-union language I+K:
for each pair of symbols aof I and bof K, such that t(a)=b, A[t] has

VX Xpla(Xpsee. X)) b(X 5.0, X)], if @ is an m-ary predicate symbol;

VYVX (.. X [y=a(X ,... . Xy)€>y=b(Xy,...,X,)], if a is an n-ary function symbol.
The next result gives some fundamental properties of translation

diagrams, which corroborate that they indeed code the information given
in the language translation.

Lemma: Properties of Translation Diagram
Consider a translation t:I—-K with diagram presentation D[t]=<I+K,A[t]>.
a) For every formula ¢ of I, A[t]lF [ep<>t(0)].
b) Given a presentation R=<K,®>, form the diagram extension
D[t]+R:=<I+K,A[t]JU®>. Then
(i) D[t]+R:=<I+K,A[t]u®> is a conservative extension of R=<K,0>;
(ii) given a presentation P=<I,A>, t interprets P into R iff PcD[t]+R.
Proof.
a) By induction on the structure of formula ¢.
b) Consider R=<K,0> and D[t]+R:=<I+K,A[t]U©>.
(i) Every symbol aof I is introduced into I+K by means of a (single)
defining axiom a¢>t(a) of A[t]. So we have an extension by definitions,
which is conservative.
(ii) Consider a theorem ¢ of P. By (a) and (i), we have A[tJUOF [cet(o)]
with R<D[t]+R. Hence, ©F t(o) iff A[t]JUBF©.
OFD

10

3.4 REDUCTION OF INTERPRETATION TO EXTENSION MODULARITY

We are now going to use diagram internalisation to reduce Interpretation
Modularity to Extension Modularity.

Let us first recall the pushout construction given in 3.1. We have
presentations P=<I,A>, @=<J,I'> and R=<K,©>, such that @ is an extension of
P, and an interpretation f:P— R. We wish to construct a presentation
S=<L,=> and translation g:J—L, such that S extends R and g:Q—S.

Notice that we may assume that the only symbols, if any, shared by
languages J, of Q, and K, of R, are those of L, 1. e. JnKcl.

We first complete the rectangle of language translations by a (pushout)
construction (see figure 4).

'Let A consist of the new symbols added to I to form J: A:= J-L
1. Form language L by adding to K the symbols in A (together with their
declarations).
2. Now, extend translation f from I to K to a translation g from J to L by
using the identity on the symbols in A.
1

A —> A
J{T——aE}L

f

Figure 4: Pushout Construction for Language Translations:
construction of language L and translation g.

An important property of this construction, which makes it a pullback as
well, is that the only symbol that g maps into K are those of Lg1(K)=I.

We now complete the rectangle of interpretations as in figure 3.
1. Complete the rectangle of language translations by the above (pushout)
construction, to obtain language L and translation g:J—L.

2. Use translation g to translate the set I' of axioms of Q to g[l'l in L.

3. Finally, set Z:=@ug(I'), to obtain S:=<L,>>.

We are now ready to reduce Interpretation Modularity to Extension
Modularity by means of diagram internalisation. Consider, as above,
presentations P=<LA>, @=<J,I'> and R=<K,0?, such that Q is an extension of
P, and an interpretation f:P— R. Construct the pushout presentation
S=<L,Z>, which clearly extends R, and translation g:J—L, which interprets
Q into S. Assuming P<Q, we wish to show that R<S. For this purpose, we
proceed as follows (see figure 5).

11

P ' R

p—t— ———
Iac d+KA[flue > K, o
A
J,DedJ+K Tualflues=J+K, Tualgluerad,0ug(l)
——
Q T S

Figure 5: Reduction of Interpretation to Extension Modularity
by means of diagram internalisation.

1. Form the diagram extension D[f]+R:=<I+K,A[flu©>.

2. By the lemma on Properties of Translation Diagram item b, we have
that R=<K,0><<I+K,A[flu@>2<LA>=P.

3. By the Pushout Construction for Language Translations, we have, since
JnKcl and A:= J-I, that In(I+K)=(InDu(InK)=Iu(JnK)=I and
Ju(I+K)=(TuA)U(IUK)=IU(K+A)=IUL2L.

4. In view of 2 and 3, EM yields <I+K,A[flu©><<J+K,TUA[f]lUO>.
5. From 2 and 4, we have R=<K,0><<J+K,TUA[f]u®>.

6. By the Pushout Construction for Language Translations, g extends f by
the identity. So, A[f]-A[g], whence <J+K,TUA[flu@>=<J+K,TUA[g]UO>.

7. By the lemma on Properties of Translation Diagram item b(ii), since
g:Q-S, g(M=Cn(I'uA(g)).

8. By construction Z:=0ug(T); so, in view of 7, T=0ug(l)cCn(I'uAlglu®).

9. We thus have a presentation T:=<J+K,[UA[g]u©>, such that
<K,0>=R<T (by 5 and 6) and <L,=>=ScT (by 3 and 8).

10. Therefore R<S, as claimed.
Indeed, given a sentence o of K, if =+ o, then TUA[g]lU®OF o, whence OFG.

Thus, since CFOL has Extension Modularity, it also has Interpretation
Modularity.

3.5 VARIATIONS OF INTERNALISATION: KERNEL AND.QUOTIENT

We have just seen how to reduce Interpretation Modularity to Extension

Modularity by means of diagram internalisation. This internalisation

technique relies on the following two familiar properties of the

biconditional connective <>:

Detachment: {p>y}u{o}Fy and {p>ylu{yiFo.

Substitutivity: {¢<> y}+6¢>0', whenever 6' is obtained from 6 by
replacing occurrences of ¢ by y.

12

The idea underlying internalisation of a translation is coding, into
sentences in an appropriate language, (part of) the information in the
translation [Veloso '92; Veloso '93; Veloso + Maibaum '95]. In the case of
diagram, we use the disjoint union language to code the information in the
translation. A simpler variation uses only the source language to code only
(part of) this information.

Consider a translation t from source language I to target language K. We
construct the set A[t]:={a¢> a/t(a)=t(a’)} of sentences of I asserting the
equivalence of symbols of I that have the same translation under t.
(Notice that each such sentence is mapped by t to a valid sentence of K.)

We thus have a presentation: the kernel presentation N[t]:=<LA[t]>.
More precisely, the internalised kernel A[t] of a translation t:I- K consists
of the following sentences of the source language I:
for each pair of symbols a and a' of I, such that t(a)=t(a"), A[t] has
VX{seo Xp[8(X seee X)) €22 (X 5000 5X)], if @ is an m-ary predicate symbol;
VyVXyyee. Xy [y=a(Xy,...,Xp) 6> y=a'(xy,...,xp)], if a is an n-ary function symbol.
The characteristic property of the internalised kernel is
Alt]- [t(@)>t(y)], whenever t(@)=t(y).
These two internalisation techniques are conservatively connected:
N[t]:=<LA[t]><<+K,A[t] >:=D[t].
This connection can be established by considering a function t’:t(I)—1 such
that the composite t’ followed by t gives the identity on the image t(I).

This argument relies on choice of representatives, which suggests another
approach and the idea of quotient presentations [Poubel + Veloso '93].

Consider a translation t from source language I to target language K. The
(external) kernel of ¢t is the equivalence relation =¢ on the alphabet of I
relating symbols a and a' such that t(a)=t(a’). We can use it to construct a
quotient language l/=¢, which factorises t:I>K into a natural (surjective)
projection translation t~:I-I/=¢ followed by (injective) translation
t":I/=— K. Now, given a presentation P=<I,A>, we can form the quotient
presentation P/=y=<I/=4t~(A)>, which is isomorphic to the image t(P) =
<t(D),t(A)>.
We then have the following connection between these techniques:
t(A)F t(o) iff t~(A)t~(o) iff AUA[t]Fo.
As corollary, we have faithful interpretations, where PUNT[t]:=<LLAUA[t]>:
t:PUN[t]—>t(P) and t~:PUN[t]>P/=¢

13

These ideas suggest yet another reduction of Interpretation Modularity to
Extension Modularity, namely by means of internalised kernel (or
quotient presentation). We proceed as follows (see figure 6).

P PUN] —f(P)c R

A A A a)
Q@ < QuN[f] = QuN[g]Tg(Q)gRug(Q)=S

Figure 6: Reducing Interpretation to Extension Modularity
by means of internalised kernel.
We start by replacing P and Q, respectively, by stronger presentations
PUN[f]:=<I,AUA[f]> and QUNI[f]:=<J,TUA[f]>. By the lemma characterising
conservativeness item (b) since A[f] consists of sentences of I, we have
PUNI[f]:<LAUA[f]><<J,TUA[f]>=QUNIf]. As before, since g extends f by the
identity, we have A[f]F A[g]l; whence <J,TUA[f]>=<J,TUA[g]>. Thus,
PUN[f]=<LAUA[f]><<J, TUA[g]>=QUN]g]. '

Now, consider the image presentations f(P):=<f(I),f(A)> and
g(Q):=<g(J),g(T)>; and notice that f interprets <[, AUA[f]> into f(P) and g
interprets <J,CUA[g]> into g(Q). Furthermore, by the preceding connection,
interpretation g:QUN([g]— g(Q) is faithful. Hence f(P)<g(Q). (Indeed, if
g(I)Ff(c) with ¢ a sentence of I, then TUA[g]+ o, whence AUA[f]F o, and so
f(AF1f(o).)

Finally, since S=Rug(Q) and Kng(J)=f(I), by Property EM, we obtain the
desired conclusion R<S.

4. INTERPOLATION IN CLASSICAL FIRST-ORDER LOGIC

We shall now examine some properties of first-order logic related to
interpolation and cut

An important property of CFOL is the so-called Craig’s Interpolation, which
appears in a few versions in the literature [Shoenfield '67; Chang + Keisler
73]. Such interpolation properties enable the decomposition of derivations
involving formulae in distinct languages by interpolating formulae with
the common extra-logical symbols.

A simple version of Craig’s Interpolation Lemma is as follows [Chang +
Keisler 73, p. 84]: given sentences ¢ of language J and © of language K if o1,
then there exists an interpolant sentence p of language K, such that otp
and pFt. Model-theoretically, if Mod(c)cMod(t) with ce Sent(J) and
te Sent(K), then Mod(c)cMod(p)cMod(t), for some pe Sent(JnK). A variant

14

of Craig’s Interpolation Lemma is the so-called Split Interpolation version
[Rodenburg + van Glabbeek '88]. This is close to the following usual
formulation of - Craig’s Interpolation Lemma [Shoenfield ‘67, p. 80}

Consider specifications Q=<J,I'> and R=<K,0> with union QUR. If
TuOk (¢—vy), for formulae ¢e Frml(J) and ye Frml(K), then there exists an
interpolant formula e Frml(JnK), such that I'+ (p—0) and OF (8 ->v).

In CFOL, these versions of interpolation are interderivable, and equivalent

to Robinson’s Joint Consistency Theorem, because of the Compactness and
Deduction Theorems.

4.1 SIMPLE INTERPOLATION

We first examine a property of simple interpolation sentence for
presentations. To derive it from the above simple version of Craig’s
Interpolation Lemma, we shall resort to the following property of CFOL.
Notice that this (connective-free) formulation of simple compactness can
be viewed as an interpolation property.

SK: Given I'cSent(L), if '+t then there exists a sentence © of L such that

I'+o and ot T.
The simple interpolation sentence property is as follows.

Lemma Simple Interpolation Sentence

Consider T'cSent(J). For every sentence T of language K such that te Cn(TI'),
there exists an interpolating sentence p of JNK, such that pe Cn(I') and

e Cn({p}).

Proof.

By Simple Compactness SK, there exists a sentence o€ Sent(J), such that I'Fo
and oFt. Thus, by the above simple version of Craig’s Interpolation Lemma,
there exists an interpolant sentence p of JNK, such that o+p and prt. So I'p,
because T'+c and ot p.

OFD

What is crucial for establishing Extension Modularity is the existence of

interpolant presentations, rather than interpolant sentences. To handle
interpolant presentations, it is convenient to use an extended notation for

consequence: for sets I' and © of sentences, we use 'O to mean that Ik
for every ¢e @, i. e. ©cCn(I).

We now extend the preceding property of simple interpolation sentence to
a global version for presentations.

15

Proposition Simple Interpolation Presentation

Given presentations Q=<J,I'> and R=<K,0>, if ©cCn(I'), then there exists an
interpolant presentation M=<JNK,¥> such that ¥<Cn(T') and ©cCn(¥).
Proof.

Consider a sentence te ©. Then te Sent(K) and by assumption I'-7. So, by the
above lemma on simple interpolation sentence, we have an interpolating

sentence p, of JNK, such that I'=p, and p.-t. We now set
¥:={p.e Sent(JnK)/te ©}. Then

(i) I+ ¥, since, for each p.e ¥, I'+p,; and

(ii) ©F ¥, since for each 1€ ©, p,e ¥ and p 1.

OFD

4.2 INTERPOLATION-LIKE PROPERTIES RELATED TO CUT

We shall also employ another property of the consequence relation that is
related to interpolation. By way of introduction, recall the so-called

Deduction Theorem (— -introduction) for first-order logic sentences: if
T'u{c}r 7 then ' (c->7). Notice that if o and t are sentences of language L,
then so is (c—1). Also, by Modus Ponens (—-elimination), {(c—>1),c}+1. This

suggests hiding the connective — into an interpolating sentence by
formulating a connective-free version of the Deduction Theorem: “if

Tu{oc}+t with o,7e Sent(L), then there exists a sentence x of L such that '~y
and {x,0}r1”. Now, the converse of this connective-free formulation is
simply: if T+y and {}}u{oc}+ 1 then T'U{c}+ 7. This converse is a special case of
the familiar Cut Rule: if TF& and {{}UZk 1 then TUZFT. We now wish to
extend both the Cut Rule and the connective-free Deduction Theorem to
sets of sentences.

The extension of the Cut Rule to sets of sentences does not present any
major difficulty.

Lemma Global Cut Property (GC)

Consider sets of sentences: ¥,0cSent(K), and T" and A of sub-language IcK.
If AcCn(T") and ©cCn(AUZX), then ©cCn(I'UZ).

Proof.

Consider a sentence ¢e ©. By assumption AUZF . So, by the Compactness
Theorem, there exists a finite conjunction 3, of sentences of A such that
{Sw}UZF 0. Since we assume I'A, we have T'+ 8(9. Thus, by the familiar Cut

Rule, T'UXF06.

OFD
16

We also wish to extend the connective-free Deduction Theorem to
presentations. We first establish a connective-free Global Deduction
Theorem. For this purpose, we shall resort to the following property of
CFOL. Notice that this (connective-free) formulation of distributed
compactness can be regarded as an interpolation property.

DK: Given I'cSent(J) and ©cSent(K), for every oe Sent(K) such that
ce Cn(Tu®), there exists ge Sent(K) such that e Cn(T") and e Cn(T'u{¢}).

Lemma Global Deduction Theorem

Consider presentations Q=<J,I'> and R=<K,0>. For every sentence © of

language K such that ce Cn(T'u®), there exists a sentence x of K such

xe Cn(T) and ce Cn({x }0O).

Proof.

By Distributed Compactness DK, there exists ¢e Sent(K), such that ©F ¢ and

ru{g}ro. Thus, by the above connective-free Deduction Theorem, there

exists a sentence y of K, such that T+ and {y}u{¢}+c. Hence, by the familiar

Cut Rule, we have {y}uw0Fro.

QOFD

We now wish to extend the Global Deduction Theorem to presentations.

We will have a kind of converse to the Cut Rule, with some simple
information on languages, which originates from our connective-free

formulation.

Proposition Converse-Cut Presentation

Consider presentations Q=<J,I'> and R=<K,©>. For every TcSent(K) such
that T=Cn(TC'u®), there exists a converse-cut presentation C=<K,Q> such
that QcCn(I") and £cCn(QuUO).

Proof.
Consider a sentence ce =. Then oe Sent(K) and by assumption ['U@F 6. So, by
the above Global Deduction Theorem, we have a sentence x & Sent(K), such

that T+ %, and {xs}wOFc. Now, set Q:={y,e Sent(K)/ce L}. Then
(i) T+ Q, since, for each x,€Q, T'+%; and

(i) QUOF Z, since for each ce X, 1, Q and {y,}OF0C.

QOFD |

This result is a kind of converse to the Cut Rule, with some simple
information on languages. It is this information on languages that

prevents one from taking C=<K,Q> trivially as Q=<J,I'>.

17

5. MODULARITY AND INTERPOLATION

In the preceding sections we have seen that Classical First-Order Logic has
the three variations of modularity, namely Joint Consistency, Extension
and Interpretation, as well as some interpolation-like properties. Also, it is
apparent that the crucial step in each case concerned establishing
conservativeness.

Since Robinson’s Joint Consistency Theorem and Craig’s Interpolation
Theorem for CFOL are known to be tightly connected, we now start taking
a closer look at relationships among interpolation and modularity
properties. This analysis will be carried out in a connective-independent
manner, in the spirit of Tarski’s classical work on the consequence relation
[Tarski '30]. We do not, however, keep the language fixed, since we focus
on conservativeness and interpolation. So we shall consider consequence
relations relativised to languages.

5.1 RELATIVISED CONSEQUENCE RELATION

Since we wish to keep track of the languages involved, we now relativise
the consequence relation to a language, regarded as a parameter. The idea
is as follows. In general the formulation of a logical calculus, by means of
axioms, natural deduction, sequents, etc., consists of logical axioms and
rules of inference, which refer to formulae. We may regard the language,
characterised by its extra-logical symbols, as a parameter of the
formulation; e. g., by extending the language, we have more formulae, and
so more logical axioms and rules of inference.

Given sets of sentences I' and {oc} of language L, by '+ o - also denoted
ce Cn (T') - we mean that ¢ is a consequence of I within L, in the sense that
there exists a (not necessarily finite) derivation of o from I' using logical
axioms and rules of inference involving only formulae of L. In addition,
for a set T of sentences of L, we use ' X to mean that I'+; © for every ce X,
i. e. ZcCny (I).
The previous concepts relative to extensions of presentations P=<LA> and
Q=<J,I'> are now expressed as follows.

Q=<J,I'> extends P=<I,A> (PcQ) iff IcK and I'+;c whenever AFG;

Q converses P (P<Q) iff IcK and A+ whenever I'+ ;o with oe Sent(I);

Q extends conservatively P (P<Q) iff Cny(A)=Cny(I")nSent(I).

Since we shall be concentrating on presentations, we shall not need
compactness. We shall, however, need some simple properties of our
relativised consequence relations, which amount to relativisations of the
Global Cut Property, which CFOL was seen to have in section 4.

18

5.2 VERSIONS OF MODULARITY

As mentioned, the crucial issue concerning modularity is preservation of
conservativeness. So, we formulate the appropriate version of Extension
Modularity as follows.

Property PM: Presentation Modularity (addition of new symbols)
Consider presentations P=<I,A> and @Q=<J,I'> such that Q converses P (P<Q).
Then, for any presentation R=<K,®> such that KnJc], QUR:=<JUK,TUB>
converses PUR:=<IUK,AU©>.

One can view an extension as being constructed by a two-step procedure:
first add new symbols, then add new axioms. Likewise, we can go from a
presentation P to a union presentation PUR in two steps Two simple
properties, which turn out to be special cases of Presentation Modularity,
refer to these two steps.

The first property concerns language modularity: it guarantees that the
addition of new symbols preserves conservativeness.

Property LM: Language Modularity (addition of new symbols)
Consider presentations P=<I,A> and Q=<J,I'> such that P<Q. Then, for any
language K, with KnJcl, <IUK,A><<JUK,T>.

Property LM should not be confused with the perhaps more familiar
property that the addition of new symbols produces a conservative
extension; what Property LM asserts is that such addition preserves
conservativeness.

It is not difficult to see that Property LM is a special case of Presentation
Modularity PM: consider the presentation R:=<K,J>.

The second property, axiom modularity, asserts that the addition of
sentences of the smaller language preserves conservativeness.

Property AM: Axiom Modularity (addition of axioms)

Consider presentations P=<I,A> and Q=<J,I'> such that P<Q. Then, for any
set © of sentences of language I, <K[LAU©><],TUO>.

It is easy to see that Property AM is a special case of Presentation
Modularity PM: it suffices to consider the presentation R:=<I[,0>.

Hence, both simple properties LM and AM are indeed necessary
conditions for Presentation Modularity. (As a corollary, since CFOL has
property PM, it has both properties LM and AM.)

Moreover, LM and AM are sufficient conditions for PM, which can be
seen as follows. Consider presentations P=<LA>, @Q=<J,I"> and R=<K,®>, such

19

that P<@Q and KnJcl. Then, by LM, we have <IUK,A><<JUK,I'>, whence, since
ecSent(IUK), AM yields <IUK,Au®><<JUK,['UO>, as required by PM.

Therefore, we have the connections: LM & AM < PM

5.3 VERSIONS OF INTERPOLATION

In section 4 we have examined some interpolation-like properties of CFOL.
We shall now examine some interconnections among them in the more

general connective-free context with relativised consequence F.

A property generalising the Deduction Theorem concerns the existence of
converse-cut presentations. We can formulate it as an interpolation-like
property of the relativised consequence relations as follows.

Property CC: Converse-Cut Presentation

Consider presentations @Q=<J,I'> and R=<K,®>, and let L:=JUK For every
rcSent(K) such that TUOF X, there exists a converse-cut presentation
C=<K,Q> such that I'+; Q and QUOF Z.

Similarly, we can formulate the simple interpolation property as follows.

Property SI: Simple Interpolating Presentation

Consider presentations Q=<J,I'> and R=< K,Z>, and let L:=JUK. If I'+ | X, then
there exists a simple interpolating presentation M=<KnNJ,¥> such that
I'- ¥ and Yk Z.

In a similar spirit, we can formulate a version of split interpolation.

Property DI: Distributed Interpolating Presentation

Consider presentations Q=<J,I'> and R=< K,®>, and let L:=JUK For every
rcSent(K) such that Tu®©Fr X, there exists a distributed interpolating
presentation T=<KnJ,E> such that I'~,Z and EUOF ¢ Z.

It is easy to see that, as expected, SI is a special case of DI: it suffices to
take presentation R:=<K,@>. Also, CC follows from DI, since LLKcK, by

resorting to a special case of the Global Cut property, which CFOL exhibits,
concerning a single language. Call it Language Extension:

Property LE: If T+ A and IcK, then T'+ ¢A.

For the converse we need another special case of the Global Cut property,
concerning a single language. Call it Theorem Cut:

Property TC: If T+ A and AUGF | Z , then TUAF 2.
To see that, in the presence of TC, DI follows from CC and SI we may
proceed as follows. Assume that TUOF X where L:=JUK I'cSent(J) and

20

suOcSent(K). Then, by CC we have QcSent(K) such that T+ Q and QUOF ¢ X.
Now, SI applied to the former gives ¥cSent(KnJ) such that T'+ ¥ and
Pr Q. Thus, by TC, YUOF ¢Z, as required by DIL.

Therefore, we have the connections:

—— SI TC
DI & y—— DI
LE CcC
—_—

5.4 CONNECTIONS BETWEEN MODULARITY AND INTERPOLATION

We can now relate our modularity and interpolating-like properties by
resorting to some simple properties of the relativised consequence .

We first show that our interpolation properties are sufficient conditions
for the versions of modularity, in the presence of properties of the
relativised consequence relations, which amount to relativisations of the
Global Cut Property. The latter property, which CFOL was seen to have in
section 4, can be restated as follows.

Property GC: If '+ A and AUZF g1 with IcK, then I'UZF 1.

To see that DI = PM in the presence of the Global Cut Property GC, we
consider presentations P=<LA>, Q=<J,I'> and R=<K,0>, such that P<Q and
KA~Jcl. Since we wish to show that PUR<QUR, we let L:=JUK and consider
e Sent(IUK) such that TU®F 1. Then TUBF | {1} with ®u{1}gSént(IuK); S0,
since Ju(IuK)=L and Jn(IuK)=I, DI gives ZcSent(I) such that T'+,E and
EUOF {t}. Since P<Q the former yields A-E, whence GC gives AUOF [T.
To derive LM from SI, we resort to a special case of GC (with Z=J), call it
Language Cut:

Property LC: If T+ A and AF ¢t with IcK, then I't 1.
Now, to see that ST = LM in the presence of Property LC, we consider
presentations P=<I,A>, @Q=<J,I'> and a language K, such that KnJcI. To
establish <IUK,A><JUK,I'>, we let L:=JUK and consider te Sent(IuK) such that
I'+; g7 Then I'+ {t} with {r}cSent(IUK); so, since JuU(IUK)=L and JIn(IuK)=I,
SI gives WcSent(I) such that I'+ ;¥ and Wk {t}. Since P<Q the former yields
AF ¥, whence LC gives Ak gT.

Now, to go from CC to AM, we resort to another special case of GC (when
the languages are the same), call it Theorem Cut:

Property TC: If T+ A and AUZF | 7, then TUZF | T.

21

To see that CC = AM in the presence of Property TC, we consider
presentations P=<L[,A>, @=<J,I'> and ©cSent(I). To show <I[LAU®><]J,TTUBO>, we
consider oe Sent(I) such that TUOF ;c. Then ruer,{c} with ©u{c}cSent();
so, since Jul=J, CC gives QcSent(I) such that '+ ;Q and QUOF {c}. Since P<Q
the former yields Ar;Q, whence TC gives AUOF [G.

We shall now show that, conversely, our interpolating-like properties are
necessary conditions for the versions of modularity, in the presence of a

simple property of F, which is present in CFOL and many others, namely:

Property Rf: If I'cA then AR T.

Reflexivity allows us to establish the usual property of the restriction
construction [Shoenfield '67, p. 95, exercise 9]. Given a presentation

S=<L,X>, by its restriction to sub-language IcL we mean the presentation
S:=<L,Cn; (X)>, where {Cny (Z):={xe Sent(I)/ZF 1 }. Clearly {Cn; (Z)cCny (Z);
and reflexivity entails the conservativeness [S<S. :

To show that LM => SI in the presence of Reflexivity, consider @=<J,I'> and
R=<K,x>, and let L:=JUK and I=KnJ. Assuming T'+ X, we seek a simple
interpolating presentation M=<I,¥>. Take M as the restriction ;Q to sub-
language IcL. By the above remark we have '+ ;¥ and <I,¥>=;Q<Q=<J,I">.
Now, since [UK=K LM applied to the latter yields <K,¥><<L,I'>. Hence ¥+ ¢ X.

Now, to see that AM = CC in the presence of Rf, consider Q=<J,I'> and
R=<K,0®>, and let L:=JUK Assuming 'u®©F X with “cSent(K), we seek a
converse-cut presentation C=<K,Q>. Consider presentation S=<L,I'> and
take C as the restriction ¢S to sub-language KcL. By the above remark we
have I'+; Q and <K,Q>=,S<S=<L,I'>. Now, an application of AM to the latter
gives <K,QuUO><<L,TUO>; whence QUOF (X

Similarly, to show that PM = DI in the presence of Reflexivity, consider
@=<J,I'> and R=<K,0>, and let L:=}K and I=K~J. Assuming "'w©F X with
scSent(K), we seek a distributed interpolating presentation T=<LE>. Take
T as the restriction ;@ to sub-language IcJ. By the above remark we have

I';= and <[,E>=;Q<Q=<J,I'>. Now, since [IuUK=K PM applied to the latter
gives <K,Zu0><<L,I'u©>. Hence EUOF .

Therefore, we have the following connections between interpolation and
corresponding modularity properties:

22

LC TC GC
SI LM CC AM DI PM
(—.—_—

— —
Rf Rf Rf
Thus, our interpolating-like properties can be regarded as equivalent - in

the presence of some simple properties of F; - to modularity properties,
which concern conservativeness preservation.

5.5 CONDITIONS FOR MODULARITY AND INTERPOLATION

We have seen that, given some simple properties of the relativised
consequence relation, our three versions of modularity, namely LM, AM
and PM, which guarantee preservation of conservativeness, are
equivalent to our three versions of interpolation, namely SI, CC and DI,
which guarantee decompositions of derivations in appropriate languages.

We shall now examine more closely the properties we require of our
relativised consequence relations, aiming at establishing some general
conditions for modularity and interpolation.

Let us first note a property of our notation: if I'; % and 't © then T'+; ZUO.

One usually assumes [Tarski '30] transitivity and reflexivity, which refer
to a single language:

Transitivity Tr: If T+ A and A7, then I'F 1.
Reflexivity Rf: If ye T, then 't v.
To cope with change of language, we also assume
Language Extension LE: If T+ 0 and IcJ, then ZF;o.
Notice that a consequence of transitivity and reflexivity is monotonicity

Mon: if I'+; 0 and I'cA then if AF; o.

We consider these three properties for the following two reasons:

- CFOL exhibits them;
- they are reasonable in view of our idea of language as parameter;
- the Global Cut Property GC follows from them.

Indeed, we have the following connections among them:

LC Rf = Mon
GC = <({TC = Tr = GC
LE

They also have some interesting interpretations in terms of presentations.
Transitivity means that <L,A>c<L,I'> whenever I'tA.
Monotonicity means that <L,A>c<L,I'> whenever AcI.

23

Language Extension means that <I,Z>c<J,Z> whenever IcJ.

We can now summarise our analysis of conditions for modularity and
interpolation in figure 7.

PM < (LM & AM)

g g

DI < (SI & CC)

Figure 7: Conditions for Modularity and Interpolation.

Theorem: Conditions for Modularity and Interpolation

Consider a relativised consequence relation +; with the properties
Transitivity Tr, Reflexivity Rf and Language Extension LE.

a) +; has Language Modularity LM iff it has Simple Interpolation SI.
b) has Axiom Modularity AM iff it has Converse Cut CC.

c¢) F has Presentation Modularity PM iff it has Distributed Interpolation
DI.

d) F has Presentation Modularity PM iff it has both Language Modularity
LM and Axiom Modularity AM.

e) -, has Distributed Interpolation DI iff it has both Simple Interpolation
SI and Converse Cut CC.

6. CONCLUSIONS

We have investigated some connections among modularity properties,
concerning preservation of conservativeness, and interpolation-like
properties of the consequence relation, aiming at clarifying their roles.

The motivations for this investigation stem from two main sources in logic
and in software development. From the logical side, we have known
connections between modularity-like results (such as Robinson’s Joint
Consistency) and Craig’s Interpolation theorem. From the standpoint of
formal approach to program and specification development, modularity of
interpretations is a crucial property in composing implementations and in
instantiating parameterised specifications. Also, the plurality of
formalisms prevalent in software development suggests the desirability of
a connective-independent analysis, somewhat akin to Tarski’s classical
work on the consequence relation [Tarski '30], without, however, keeping
the language fixed.

A crucial idea in connecting modularity of extensions to that of
interpretations is resorting internalisation techniques, which code (part of)
the information of language translations. We have examined two
internalisation constructions: kernel wusing sentences of the source

24

language, and (graphic) diagram employing sentences of the disjoint-union
language. Let us now comment on some possible extensions of these
techniques, including the many-sorted case, which is important for
software specification and development.

Sometimes one considers interpretations mapping symbols to formulae,
which define the translations in the target presentation. Our constructions
are not affected by this extension, because it can be reduced to an
extension by definitions.

Another version considers interpretations with relativisation predicates.
This can be handled as in the many-sorted case. In the many-sorted case,
one sometimes consider a translation t mapping a sort s of source
language I to a sequence sj,..,5;x of sorts, together with a relativisation
predicate r) of target language K [Turski + Maibaum '87]. In this case, the
construction of the translation diagram A[t] is adapted to sentences stating
that s is the subsort, defined by the relativisation predicate r, of the
product of sorts si,..,s; [Veloso '93]. This can be done by adding axioms
characterising the introduction of product sorts and subsorts in a
definition-like manner [Meré + Veloso '92, '94].

We have examined these properties and some connections among them,
aiming at a clarification of their role. This investigation has provided
general conditions and alternative formulations for modularity and these
Jogical properties of the consequence relation.

Interpolation properties can be formulated, perhaps more intuitively, as
preservation of conservativeness. Also, some principles, akin to the
Deduction Theorem, can be given global, connective-independent
formulations resembling interpolation, and thus equivalent to
conservativeness preservation. '

Our results hinge on some simple, albeit language-dependent, properties
of the consequence relation, extending those investigated by [Tarski '30]
to the cases of extensions and interpretations. We do not, however,
require any finiteness property like compactness. (Indeed, compactness
was relied upon only in arguing that our global formulations encompass
the familiar ones in Classical First-Order Logic.) We also suggested that
compactness, and related finiteness properties, can be regarded as
versions of interpolation. This may pave the way for examining more
closely connections between our global versions and finitary formulations
as. well as versions with interpolant sentences.

This investigation has favoured a connective-independent viewpoint, so it
is natural to conceive extending it to a framework in the spirit of abstract
model theory or of categorical logic. Our very notation I't© for ©cCn(I')
suggests considering categories whose objects are such sets of sentences,

25

morphisms being (sets of) derivations, or appropriate equivalence classes.
Preliminary efforts in the direction of institutions are underway.

REFERENCES

Enderton, H. B. - A Mathematical Introduction to Logic. Academic Press;
New York, 1972.

Ehrich, H.-D. - ‘On the theory of specification, implementation and
parameterization of abstract data types’. J. ACM, vol. 29 (no. 1), 1982; p.
206 - 227.

Goldblatt, R. - Topoi: the Categorial Analysis of Logic. North-Holland,
Amsterdam, 1979.

Maibaum, T. S. E. ; Veloso, P. A. S. - “A logical theory of data types
motivated by programming”. Imperial College of Science and Technology,
Dept. Computing, Tech. Rept. 81/28 , London, Nov. 1981.

Maibaum, T. S. E ; Veloso, P. A. S. ; Sadler, M. R. - “A logical approach to
specification and implementation of abstract data types”. Imperial College
of Science, Technology and Medicine, Dept. of Computing, Res. Rept. DoC
91/47, London, Dec. 1991.

Manna, Z. - The Mathematical Theory of Computation. McGraw-Hill; New
York, 1974.

Meré, M. C. ; Veloso, P. A. S. - “On extensions by sorts”. PUC - RJ, Dept.
Informatica, Res. Rept. MCC 38/92, Rio de Janeiro, Dec. 1992.

Meré, M. C. ; Veloso, P. A. S. - ‘Definition-like extensions by sorts’.
Workshop on Logic, Language, Information and Computation WoLLIC ‘94,
Recife, Jul. 994 {to appear in Bulletin of the IGPL}.

Poubel, H. W. ; Veloso, P. A. S. - ‘Sobre o Teorema da Modularizagio:
importincia e prova por quociente’. VII Simpésio Brasileiro de Engenharia
de Software, Rio de Janeiro, Oct. 1993; p. 17 - 29.

Rodenburg, P. H. ; van Glabbeek, R. J. - “An interpolation theorem in
equational logic”. Centre for Mathematics and Computer Science, Res. Rept.
CS - R8838, Amsterdam, 1988.

Smith, D. R. ; Lowry, M. R. - ‘Algorithm theories and design tactics’. Science
of Computer Programming., vol. 14, 1990; p. 305 - 321.

Shoenfield, J. R. - Mathematical Logic. Addison-Wesley, Reading, 1967.

Tarski, A. - ‘Fundamentale Begriffe der Methodologie der deduktiven
Wissenschaften’. Monatshefte fiir Mathematik und Physik, vol. 37, 1930;

26

p. 361 - 404 {English translation in Woodger, J. H. (ed.) Logic, Semantics
and Metamathematics; Oxford, 1956; p. 60 - 109}.

Turski, W. M ; Maibaum, T. S. E. - The Specification of Computer Programs.
Addison-Wesley, Wokingham, 1987.

Veloso, P. A. S. - Verificacdo e Estruturagdo de Programas com Tipos de
Dados. Edgard Bliicher, Sdo Paulo, 1987.

Veloso, P. A. S. - ‘Problem solving by interpretation of theories’. Carnielli,
W. A. : Alcantara, L. P. (eds.) Methods and Applications of Mathematical
Logic {Contemporary Mathematics, vol. 69}. American Mathematical
Society, Providence, 1988; p. 241 - 250.

Veloso, P. A. S. - ‘Program construction (with data abstractions) as
transformations on theories’. Alcoforado, P. (ed.) Légica, Computagdo e
Epistemomlogia : ensaios em homenagem ao Prof. Jorge Barbosa. Inst. de
Légica e Teoria da Ciéncia, Niteri, 1991; p. 133 - 154.

Veloso, P. A. S. - “On the Modularisation Theorem for logical specifications:
its role and proof’. PUC - RJ, Dept. Informdtica, Res. Rept. MCC 17/92, Rio
de Janeiro, Mar. 1992.

Veloso, P. A. S. - “On interpretations of logical specifications and the
Modularization Theorem”. Kestrel Research Institute, Res. Rept., Feb. 1993.

Veloso, P. A. S. ; Maibaum, T. S. E.- ‘On the Modularization Theorem for
Logical Specifications’. Information Processing Letters, to appear in 1995.

Veloso, P. A. S. ; Veloso S. R. M. - ‘Problem decomposition and reduction:
applicability, soundness, completeness’. Trappl, R.; Klir, J. ; Pichler, F. (eds.)
Progress in Cybernetics and Systems Research; Hemisphere, Washington,
DC, 1981; p. 199 - 203.

27

