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Abstract: In this paper we investigate a component-based approach to combin-
ing formal techniques and prototyping for user interface construction in which a
single specification is used for constructing both implementations (prototypes)
for experimentation and models for formal reasoning. Using a component-based
approach not only allows us to construct realistic prototypes, but also allows
us to generate a variety of formal models. Rapid prototyping allows the de-
signs to be tested with end users and modified based on their comments and
performance, while formal modeling permits the designer to verify mechanically
specific requirements imposed on the user interface such as those found in safety-
or security-critical applications.

Keywords: User Interfaces, Formal Methods, Prototyping, Uls Construction
and Verification.

Resumo: Neste artigo nés investigamos uma abordagem baseada em compo-
nentes que combina técnicas formais e prototipagéo para a construgdo de inter-
faces com o usudrio nas quais uma tnica especificacdo é usada para construir
tanto as implementagdes (protétipos) para experimentagio quanto os mode-
los sobre os quais raciocinar formalmente. O uso de uma abordagem baseada
em componentes nio somente nos permite construir protdtipos realistas, como
também nos permite gerar uma variedade de modelos formais. A prototipagéo
réapida permite que os “designs” sejam testados pelos usudrios finais e modifi-
cados com base nos seus comentdrios e desempenho, enquanto o modelamento
formal permite que o projetista verifigue mecanicamente requisitos especificos
impostos sobre a interface com o usuirio tais como aqueles encontrados em
aplicagdes em que a seguranga e a auséncia de riscos é um fator critico.

Palavras-chave: Interface com o Usudrio, Métodos Formais, Prototipagao,
Construgéo e Verificagao de IUs.
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1 Introduction

User interfaces can be difficult and costly to construct; one recent survey esti-
mates that half the development effort for an interactive application is spent on
constructing the user interface [26]. It is natural to attempt to apply software
engineering techniques to reduce this effort. Formal techniques are difficult to
apply directly since there is no mathematical characterization of human behav-
ior; even strong proponents of the formal approach to software development
have noted that “Formal techniques were not much help to us in designing the
user interface.” [19]. Rapid prototyping is usually the methodology of choice
for developing user interfaces. Indeed, empirical evidence suggests that “the
only reliable method for generating quality user interfaces is to test prototypes
with actual end users and modify the design based on the users’ comments and
performance” [24]. However, the prototyping approach to user interface devel-
opment is not without drawbacks. One criticism is that it does not provide the
same assurance as formal approaches that requirements are being met. This is
especially of concern in safety- and security-critical applications.

In part, this has spurred research into drawing together formal specification
and rapid prototyping for user interface development [3]. One common approach
is to use a directly executable formal notation to express user interface designs.
To take advantage of tools and methodologies, these notations usually are based
on an existing (concurrent) formal notation. Statecharts [22], CSP (2], Petri
nets {5], temporal logic [18], LOTOS [32] and DisCo [36] all have been used.
Prototypes are expressed directly as specifications in the formal notation; their
behavior is observed by animating the specifications. While there have been
various reports of success with this approach [11], there are number of issues
which are difficult to address:

1. User interface designers must be fluent in the particular formalism being
used. For many formalisms, achieving fluency can involve a significant
amount of effort, especially for those not familiar with formal methods.

2. Realistic prototypes (in terms of look-and-feel) are difficult to comstruct.
For example, none of the formal techniques surveyed in [3], [1] and [15]
provide more than rudimentary prototypes for experimentation. As the
success of the experimental effort often depends on how realistic the pro-
totype is [34], this can be a significant issue. With respect to safety- and
security-critical systems this is important since one of the goals of HCI
engineering is to reduce the incidence of “user error” [9].

3. Formal reasoning is limited to what can easily be expressed in the cho-
sen notation. For example, when using the previously mentioned formal
description techniques (FDTs), reasoning is usually limited to behavioral
properties.

4. The issue of producing implementations that meet the resulting formal
specifications can be difficult to address since, for economic reasons, vir-



tually all user interface software today is implemented using toolkits® [25].
These toolkits usually present the developer with a conceptual model that
is substantially different from that presented by most user-interface spec-
ification languages. For example, while most user-interface specification
languages are concurrent, most toolkits are not re-entrant.

5. A formal model must be maintained along with the implementation. This
can be hard to justify in situations where the most effective way to develop
the next release of an implementation includes rapid prototyping of new
functionality within the framework of the existing implementation [38].

In this paper we propose an alternative approach to combining formal tech-
niques and prototyping in user interface construction that addresses these issues.
The framework that we propose is component-oriented. It provides the user in-
terface designer with a set of primitive components? and a dataflow-based for-
malism for connecting them: user interfaces are described as directed graphs in
which nodes represent components and arcs represent the flow of data between
them. The units"of data that flow in the arcs are referred to as events. From
the user interface designer’s point of view, events are introduced or triggered as
a result of a user’s actions and then flow from one component to another, being
transformed as they go. Components come in two flavors: presentation (menus,
buttons, sliders and the like) and application interface (file and database acces-
sors, for example). Each component not only has associated implementation(s)
but corresponding model(s) as well.

Rather than basing our framework on a particular toolkit we instead use
an interconnection language, IL. As illustrated in Figure 1 (below the dashed
line), IL descriptions serve as templates for constructing both implementations
for experimentation and models for formal reasoning. Another possible use for
IL that we are investigating is user interface re-engineering: we can construct
an IL prototype of an existing user interface and then use this prototype as a
basis for reasoning. This possibility is indicated by the dotted part of Figure 1.

A growing number of commercial UIMSes (PARTS Workbench [10], Visual
Age [16] and Visual AppBuilder [33], for example) use a restricted dataflow for-
malism for specifying user interfaces: restricted in that the topology is (mostly)
static, the primitives are objects (widgets) and functions not processes, and the
(basic) connectors represent bindings of functions to call sites not FIFO com-
munication channels. We restrict our formalism similarly to ensure that we can
realize our prototypes using commonly available toolkits. In particular, it allows
us to use any notification-based toolkit®. These restrictions also make formal
reasoning more tractable.

1We use the term toolkit to refer to tools such as Visual Basic [23] as well as interface

libraries such as Motif [28].
2We do not assume the existence of a fixed set of primitive components; this is discussed

later.
3Most commercially available toolkits are notification-based.



prototype

Figure 1: General framework.

2 GGeneral framework

There are three different roles associated with the development of IL-based user
interfaces: the user interface designer, or just designer, the developer, and the
verifier®. The tasks of the designer and developer can be characterized as using
and constructing primitive components, respectively. The designer typically re-
quires greater problem domain understanding but less programming skill than
the developer. The designer constructs IL descriptions of user interfaces using
primitive components supplied by the developer. User interface construction
simply consists of selecting and connecting components®. If a required compo-
nent is not available the designer provides the developer with its specification;
the developer then uses traditional software development techniques to construct
the actual implementation. Designing the primitive components with reuse in
mind reduces the amortized cost of development.

The verifier works in concert with the designer and the developer and is
responsible for ensuring that prototypes meet formally expressed requirements.
Rather than reasoning about implementations directly the verifier generates
formal models from the IL descriptions and uses these as the basis for formal
reasoning. To have confidence in the results obtained the verifier must ensure
that models are accurate, and that reasoning is sound.

The task of ensuring that models accurately reflect implementations can be
reduced to ensuring that the primitive components are accurately modeled. If

4There may be many people in each role or one person may perform several roles.
BConstruction of an interface builder for IL descriptions (such as provided by PARTS
Workbench) should be straightforward.



the software development technique used to construct the primitives does not
provide the necessary assurance, testing can be used [35, 21]. To ensure that
reasoning is sound, some sort of tool assistance is required: practical experience
has shown that manual reasoning is less trustworthy than machine-assisted (or
machine-checked) reasoning {7, 12].

3 The IL formalism

IL, while based loosely on an existing modular interconnection language, Darwin
[17], is atypical in that its components are widgets® not processes: it is intended
for “programming-in-the-small” not “programming-in-the-large”.

IL components are either primitive or composite. Each IL component has
a number of ports available for binding. Each port has a polarity, requires or
provides”; only ports of opposite polarity may be bound together.

An IL description of a user interface consists of a set of component descrip-
tions. Each component description consists of a description of the component’s
interface (i.e. a description of the ports that it makes available for binding) and,
for composite components, a description of its implementation. By convention,
the user interface described is an instance of the component named Main.

We give a taste of IL by example. Figure 2 shows a simple user interface

Figure 2: A simple user interface.

consisting of a dial and a slider that track each other. The IL source for this
user interface is shown in Figure 3. The first three lines describe the interfaces
of the primitive components. Dials and Sliders have set and changed ports
that provide (>) and require (<) values®, respectively. Values sent to a set port
update the value of the component; values are issued from a changed port when
the component’s value changes (either as a result of the user’s actions, or as

¢and functions. We describe only a subset of IL in this paper.

TOur terminology is opposite to that used by Darwin (and modular interconnection lan-
guages in general): we use the terms provide and require to describe data flow; Darwin uses
them to describe services. A port that requires values provides a service.

8integers in this case.



Frame primitive
Dial changed>int set<int primitive
Slider changed>int set<int primitive

Main {
f£:Frame f£.d:Dial £.s:Slider

f.d.changed --> f.8.8et
f.s.changed --> f£.d.set

}

Figure 3: An IL description of the user interface in Figure 2.

a result of a value being sent to the set port.) Structured names are used to
indicate the visual hierarchy: the dial (f.d) and the slider (£.s) are visually
contained in the frame (£). Note that (very) simple primitive components have
been used to ease discussion.

Instances of our framework are characterized by the primitive components
supplied. We are currently investigating a set of primitives which are function-
ally equivalent to a subset of the primitives provided by PARTS Workbench;
while relatively simple, they are useful in practice: We (mechanically) gener-
ate Tk/Tel [29] code for implementations and HOL [14] terms for (mechanical)
reasoning.

3.1 Constructing Prototypes

To construct a working prototype from an IL description we require for each
component a routine to build instances of that component. The developer is
responsible for supplying these routines for the primitive components; these
routines are automatically generated for composite components. The exact
nature of these routines depends on the particular toolkit being used.

Currently we are using Tk/Tel for prototyping. Tel (tool command lan-
guage) is a simple scripting language for controlling and extending applications:
the Tcl interpreter is designed to be easily extended with application specific
commands. Tk extends Tcl with commands for building Motif-like user inter-
faces. ’

Figure 4 contains the code for building S1iders. The code for building Dials
is essentially the same except that, as Tk/Tcl does not provide a suitable dial
widget, we build one using other widgets. Figure 5 contains the code generated
for the IL description in Figure 3. (external.tk contains the code for the
primitives.) “ o

Note that as Tecl provides no mechanism for encapsulating data, we do so
by giving each component instance a unique name and using this as a prefix for
the names of all variables and procedures associated with that instance.



# Slider‘build name: Create a slider named “name'.
proc Slider‘build {name} {

# These should be attributes.

set VO 0 ;# Minimum value for slider.

set V1 80 ;# Maximum value for slider.

set tickInterval 20 ;# Spacing between tick marks.

set Length 160 ;# Length (in screen units) of slider.

# Construct the physical representation.

scale $name -orient horizontal —from $V0 -to $V1 \
~tickinterval $tickInterval -~length $Length -command $name‘set
pack $name

# Construct the model.
# Create variable that will hold value of the slider.

global $name‘value
set $name‘value ""

# If the value of the slider changes $name‘set will update the
# position of the pointer and then invoke $name‘changed.

proc $name‘set {value} "
global $name‘value
if \"!\[cequal \$\{$name‘value\} \$value\1\" \{
set $name‘value \$value
$name set \$value
$name ‘ changed \$value

\}

Figure 4: Slider in Tk/Tecl.



#!/xhbin/wishx -£
source external.tk

proc Main‘build {root} {
Frame ‘build $root.f
Dial‘build $root.f.d
Slider‘build $root.f.s
proc $root.f.d‘changed {value} "$root.f.s‘set \$value"
proc $root.f.s‘changed {value} "$root.f.d‘set \$value"

}

Main‘build "

Figure 5: Generated Tk/Tcl code for the example.

3.2 Constructing Behavioral Models

While the framework introduced in this paper allows for reasoning about vari-
ous aspects of a user interface, we are most interested in reasoning about their
behaviour. For example, we would like to prove that the dial and slider in Fig-
ure 2 track each other. To do this we model the behavior of a user interface as
a sequence of states with each consecutive pair of states in the sequence repre-
senting some action. We model user interfaces as predicates on state sequences:
if P is a predicate representing a user interface .A then Pe is true if and only
if e is a possible behavior of A. If P is a model of Figure 2 then to prove that
the slider and the dial track each other we have to prove a theorem of the form
F Ve.Pe D Qe, where @ is a predicate expressing the fact that for all states in
a given state sequence, the value of the slider is equal to the value of the dial.

If we are to generate models for IL-based user interfaces mechanically we
must be able to model components as predicates and be able to express pred-
icates representing user interfaces in terms of the predicates representing their
constituent components. Fortunately such a representation is possible.

We make the observation that the behaviour of a collection of components
can be described as a set of mutually recursive functions. For example, if we
model the state of the prototype in Figure 2 with the values of two of variables
d and s (representing the values of the dial and the slider, respectively), then
its behavior can be modeled with the following ML® expression:

?Caml Light [20], not Standard ML.



let rec

setd v = if (!d
and actd v = setd v
and sets v = if (!s = v) then () else s := v; setd v
and acts v = sets v
and act = function

(0,v) -> actd v

| (1,v) -> acts v

in

v) then () else d := v; sets v

while true do act getaction done;;

The function act models the possible ways in which the user can interact with
the user interface: the user can either set the dial or the slider to some value. The
while loop models the behavior of the notifier. What follows is a formalization
of this observation.

The formal system we use to express and reason about our models is a
version of type theory [6, 4] called higher-order logic [13]. Higher-order logic
extends first-order logic by allowing higher-order variables (i.e. variables whose
values are functions) and higher-order functions (i.e. functions whose arguments
and/or results are other functions.) One advantage of using higher-order logic is
the existence of reliable and robust proof-assistants such as HOL[14] and PVS
[30].

The existence of such proof assistants is important for two reasons: 1) expe-
rience has shown that machine-assisted proofs are more trustworthy than those
done by hand [7], and 2) for some proofs, significant portions can be automated.
The proof assistant that we use is HOL. HOL embeds a higher-order logic in
the functional programming language ML [8]. Axioms and primitive rules of
inference are encapsulated in an abstract data type thm; ML’s strong typing
ensures that theorems (objects of type thm) can only be obtained from these
axioms and inference rules. The embedding in ML allows an arbitrary degree
of mechanization while still guaranteeing soundness. ‘

We model states as mappings from a variable to values. Rather than express-
ing behaviors directly in terms of state sequences, we express them in terms of
guarded commands [27] and express commands, in turn, as predicates on state
sequences using the mechanization of Tredoux [37]. For example, the predicate
“ .= " representing assignment commands is defined as:

Faet Vzezp.z := exp = (Ae.3ss". (e = pair(s,s’)) A(s" = bnd (ezps) z s))

e is a state sequence representing the assignment of the expression ezp to the
variable z if and only if for some states s and &, e is the pair (s,s') and &'
agrees with s everywhere except possibly on z and &' z = exps. Note that we
model expressions as mappings from states to values. In addition, note that in
higher-order logic predicates are Boolean-valued functions.

Components are modeled as predicates on commands. For example we model
the Slider of Figure 4 as:

10



Fder Vname act set changed. Slider name act set changed =
(set = Av.
(As.v = sname) — skip
[(As.v # sname) — ((name := (As.v)); changed v))
Aact = Ae. Jv. setve)

The first conjunct gives the definition of set in terms of changed, the second
conjunct is an expression for the possible effects of a user’s interaction with
a slider (the user can set it to some arbitrary value v.) Dials are represented
similarly.

Given models for its constituent components, we can easily construct a model
for a composite component. For example, we model the procedure “Main” of
Figure 5 as:

Faer Vnameact. Main name act =
3a; a3 ag sety sets.
Frame (CONS 1 name) a4
ADial (CONS 2 name) a; sets sets
ASlider (CONS 3 name) as set; sets
Aact = a, []ag[laa

In general, existentially quantified variables are introduced for require ports;
their use defines the necessary bindings. Lists of numbers are used for names.

The behavior of the actual user interface is modeled with the following pred-
icate:

Ae. 3a. Main [] e A do_od (atomica) e

The atomic operator elides intermediate states.

4 Properties

Not only do we have to construct models but we have to formalize proper-
ties as well. While formalizing safety and security properties (as well as some
generic properties'?) is relatively straight-forward, formalizing exactly what con-
stitutes a good user interface is an open problem. Many different formalisms and
methodologies have been proposed to address this issue; indeed many of the ref-
erences cited in the introduction can be viewed as approaches to addressing this
problem. To take advantage of this body of work one of our goals is to be able to
verify that our models possess properties expressed in such formalisms. To this
end, we are currently investigating the verification of properties expressed in
one of these formalisms: finite state machines [31]. One problem that we imme-
diately confront is that most of these formalisms express behaviour as sequence
of actions, not states, and further these actions do not directly correspond to

10For example, most of the presentation components that we are working with can be
explicitly enabled or disabled. A simple generic property that can be checked is that at all
times some component is enabled.

1



our notion of an action!!. Our solution is to add an extira state variable to

our models to record the occurence of these “actions” and to annotate the IL
specifications with indications of when they occur.

5 Summaryv and future work

In this paper we have presented an alternative approach to combining formal
techniques and prototyping in user interface construction; ome that can take
advantage of existing approaches to user interface specification and implemen-
tation while addressing the issues raised in the introduction. This approach
has been presented in the context of a more general framework: introducing
the notion of processes (and FIFO communication channels ‘as connectors), for
example, would give rise to a much richer formalism.

We have constructed a prototype of the system described in this paper.
Currently this consists of IL to Tk/Tcl and IL to HOL translators, and a
number of HOL theories and tactics. All of the basic features of the proposed
framework have been implemented.

Work is underway on constructing a more complete prototype with a richer
set of primitives. Concurrently, we are investigating how to mechanize the
various proofs that arise.
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