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Abstract: In this paper we present a formal approach of a new object-oriented design concept to
support reuse-in-the-large called Abstract Data Views (ADVs). The ADV approach was created
to specify clearly and formally the separation of interfaces from the application components of a
software system. Such approach should lead to a high degree of reuse of designs for both interface
and application components.

Our specification framework is based on descriptive schemas for both ADVs and ADOs, that
should be used as the basic blocks for the system specification, design, and implementation within
the ADV approach. These schemas describe the structural, static, and dynamic features of each
system object, allowing also the specification of the concurrent aspects of the several system com-
ponents. Additionally, such schemas can be seen as an underlying structure to support the devel-
opment of a specification language that describes the interconnection capabilities between interface
and application components.

Keywords: Concurrent Programming, Object-Oriented Programming, Formal Specification, In-
terfaces.

Resumo: Neste artigo nés apresentamos uma abordagem formal para um novo conceito de de-
sign orientado a objetos que suporta reuso em ponto grande chamado Visbes Abstratas de Dados
(ADVs). A abordagem ADV foi criada para especificar clara e formalmente a separagdo entre os
componentes da interface e da aplicagio de um sistema de software. Tal abordagem permite um
alto grau de reuso de designs tanto para componentes da interface quanto da aplicagao.

Nossa abordagem de especificagio é baseada em esquemas descritivos para ADVs e ADOs, que
devem ser usados como os blocos bésicos para a especificagéo, o design e a implementagio segundo a
abordagem ADV. Estes esquemas descrevem as caracteristicas estruturais, estaticas e dindmicas de
cada objeto do sistema e permitem também a especificagdo de aspectos concorrentes dos varios com-
ponentes do sistema. Além disso, tais esquemas podem ser vistos como uma estrutura subjacente
para o suporte do desenvolvimento de uma linguagem de especificagdo que descreve a interconexao
entre componentes da interface e da aplicagao.

Palavras-chave: Programaééo Concorrente, Programacdo Orientada a Objetos, Especificagdo
Formal, Interfaces.
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1 Introduction

A significant barrier to the reuse of both designs and implementations of software objects and mod-
ules is the fact that they internalize knowledge about their surrounding environment. For example,
a typical module or object of an application often knows about its user interface, specifically details
of how its data structures will be displayed, how the user will interact with the application, or what
objects on the screen correspond to activations of components of the module. Similarly, a module
or object knows too much about the services required from other objects or modules. For example,
a module will know too much about naming conventions in a file system, or about the names of
modules or functions from which it acquires services. Such depth of specialized knowledge seems
counter not only to reuse but to good engineering practice in general.

There are many ways that a data structure can be displayed, and since this is not an intrinsic
property, it should not be attached to the data structure. Input has a similar property. There
are many ways that a user can interact with an application and so the application should not be
aware of the mode of interaction. Similarly a module should know it requires services and specify
that fact, but it should not specify how those services are supplied. What is required is an ability
to define an interface that separates the module or object from the user interactions or from the
services supplied by another module or object. The interface should be aware of the requirements of
the module or object, but the module or object should not be aware of the interface. This approach
to defining an interface implies a clear separation of concerns. Such a problem is often addressed
in mechanical systems where a linkage “interface” joins two components one of which supplies a
service.

The Abstract Data View [14] approach uses an object-oriented formal design model which sup-
ports separation of concerns and reuse of design specifications. The basic constructs of the ADV
approach are the Abstract Data View (ADV) and the Abstract Data Object (ADO), which rep-
resent, respectively, interface objects (views and interactions) and application objects which are
independent of the interface. These objects provide a disciplined approach to design which sup-
ports separation of concerns, and should lead to a wide and consistent reuse of design specifications
for both interface and application components.

Various architectural models and programming approaches (5, 30, 23, 24, 4, 10, 18, 28, 26, 31, 34,
27, 36] have been proposed that clearly separate the user interface and its corresponding application.
However, with the architectural models, little guidance is given on designing a program to have
a reasonable level of assurance that the architecture will be followed. Specific implementation
techniques such as MVC [31] and ALV [28] have also been reported in the literature. These
rely on contemporary programming models and have been illustrated by several examples. For
example, MVC was originally used in Smalltalk and ALV used constraint programming in a LISP
environment. Although these are excellent implementation models, it is often difficult to map these
strategies into other programming paradigms. The introduction of structures and operators to
support separation of interface and application in the design is one of the major contributions of
the ADV design model.

ADVs have been used to support user interfaces for games and a graph editor [11], to intercon-
nect modules in a user interface design system (UIDS) [32], to support concurrency in a cooperative
drawing tool, and to design and implement both a ray-tracer in a distributed environment [38] and a
scientific visualization system for the Riemann problem. The VX-REXX [42] system that was built



as a research prototype, was motivated by the idea of composing applications in the ADV/ADO
style.

ADVcharts, a graphical formalism for representing designs using ADVs, have been tested in the
production of several different software designs. ADVcharts have also been used to redesign and
reengineer an existing interactive software system [41]. In addition, we have shown in [12] and [16]
how ADVs can be used to compose complex applications from simpler ones in a style which is similar
to some approaches to component-oriented software development [37] and megaprogramming [43].

2 Concepts of the ADV model

In general, an ADV may be considered as an specialization of an object with characteristics to
support the development of general interfaces. As a consequence, the ADV model will contain
most of the characteristics that are inherent in the theory of objects [35].

Both ADVs and ADOs are objects and are composed of data signatures, attributes, and actions.
ADVs are modified ADOs that support the role of interfaces in a software system. Although we can
find many structural similarities in both concepts, it is important to observe that there is a clear
separation between capabilities of ADOs and ADVs. An ADO has no knowledge of its interfaces
(ADVs), thus ensuring independence of the application from its interface. On the other hand, an
ADV does know about its associated ADO and can query the state of it by means of a mapping
between both. Further details will show the importance that this asymmetry will have within the
model.

2.1 Actions

Before considering the concepts associated with ADVs and ADOs, we introduce here some basic
concepts about actions. We call actions the programming functions and input events that act on
an object to change or query its state. According to its origin, actions can be distinguished into
two categories: causal actions and effectual actions.

We yse the term causal actions to denote the input events occurring in an ADV. Causal actions
are triggered from outside the system and internal objects cannot generate this kind of action. For
example, a key stroke or a mouse click are typical input events that characterize a causal action.
Effectual actions are the actions generated directly or indirectly by a causal action. Figure 1 shows
the possible dependencies between the two types of actions, while Figure 2 shows a relationship
illustration of action occurrences.

Actioncgusal — ACtioneffcctual Actioncgusal 7 Actioncausal
Actioneffectual — Actionegfectual Action,f fectual #— Actioncausal

Figure 1: Action dependencies.

A causal action may originate zero, one, or several effectual actions. On the other hand, an
effectual action cannot generate a causal action. This means that if we visualize a tree of related



actions occurring over time, then a causal action must appear only at the root of a tree of actions.
This syntactic rule also characterizes the ADV-ADO interaction.

Considering that internal elements should not trigger any event external to the system, and in
addition, internal operations or events should be a result of external stimuli, the action dependencies
introduced in this section are quite intuitive. Moreover, these dependency definitions lead us to the
conclusion that only causal actions (input events) can change the state of the system. The notion
of actions is used in further sections with respect to interconnection between ADVs and ADOs.

2.2 Abstract Data Objects

An Abstract Data Object (ADOQ) is an object in that it has a state and a public interface that can
be used to query or change this state. Every action of the public interface of an ADO should be
an effectual action and can only be triggered as a consequence of an ADO or an ADV action. The
action of external events such as input events or user commands do not directly act on an ADO,
thus conserving the notion of an interface disconnected from an ADO.

In the ADV design model, we extend the concept of ADO to allow composition of ADOs through
specification constructors, where composition implies that ADQOs are composed of a number of
constituent ADOs and that one ADO encloses its constituents. In using composition we also
assume that the enclosing ADO knows the identity of its constituents, but the enclosed ADOs do
not know the identity of the enclosing ADO.

Specification constructors for inheritance, sets, and sequences are also part of the formalism.
They are described in {1, 2, 3] and all of these constructors are composition-based, which means
that they can be interpreted through a primitive composition specification construct.

2.3 Abstract Data Views

ADV is a design structure conceived to act as general user interface and to achieve a separation
of concerns by providing a clear separation at the design level between the application and its
interface. ADVs are extensions to ADOs to support the design of user and module interfaces.
Since they are ADO extensions, ADVs also support the specification constructors described in the
previous section. '

As shown in Figure 2, the interaction between an ADV and a user is by means of input events
and output messages. The action interface of an ADV is invoked by input events, that is, an ADV
action can be triggered by operations such as a mouse click, a keyboard event, or a timer. Thus,
the action interface of the ADV extends the ADO interface to include external or causal events.
ADVs also send output actions such as display commands, if their appearance is altered through
an input message or a change in the state of an associated ADO.

Since the ADO has no knowledge about its associated ADVs, every interaction between an ADV
and an ADO has an ADV as origin point. Such interactions have the purpose of either changing
or querying the state of the ADO. Changes in the ADO state are the result of an effectual action,
which is inside this ADO, triggered by another action. Queries about the ADO state are specified
by a direct mapping from the ADV to the ADO, which is shown in Figure 2.

The mapping is a linking mechanism established between the owner variable of the ADV and
the query functions inside the ADO public interface. Considering that this mapping is a design
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Figure 2: An ADV/ADO interaction model.

concept, the query functions inside the ADO public interface can also be modeled as actions, even
if they do not change the state of the ADO as “normal” actions do. This is possible because we
can have the result values of a query stored in the parameters of an action, as we will see later.

To illustrate the concepts introduced in this section, we describe the simplified behavior of a
chess game prototype as a response to an external stimuli. If the user commands are activated
by a mouse, a click on a chess piece would generate an input event for the piece ADV. The input
event (causal action) triggers effectual actions in order to change the state of the associated game
ADO. While the game ADO is changing its state as a response to the user move, the board ADV
monitors the ADO state through the mapping mechanism. When an internal operation in the game
ADO provokes a change in the state of this ADO, the board ADV detects this change through the
mapping and, if appropriate, sends an output message that updates the user view.

2.4 Interconnection

Communication between an ADV and an ADO instance is essentially a synchronous invocation
of actions that are mapped between the ADV and ADO instances, as described in the previous
section. The synchronous approach contrasts with other user interface models, where a component
must handle both synchronous and asynchronous invocations from other components. Handling
asynchronous invocations is considerably more complex than handling synchronous invocations,
since it requires error-prone mechanisms such as signals, interrupts, or callbacks. With an explicit
mapping we enforce a one-way communication and, as a consequence, have fewer interconnections,
thus ensuring that the role and scope of the interface are defined unambiguously.

Although communication between the ADV and ADO is a synchronous process, we can still
model asynchronous interconnections using the ADV approach. This is achieved by using a design
structure where a “body ADV” is placed between the ADVs (views) of an ADO and the ADO



itself. This body ADV defines relationships of actions and attributes in between the ADVs and
the ADO. Such relationships should illustrate the correspondence of elements in an ADV with its
associated ADO. Each relationship is defined for a pair of elements where one element has a cor-
respondence inside an' ADV and the other has a correspondence inside the ADO. In general, the
body ADV may be regarded as a design element that specifies how the ADVs interact with its as-
sociated ADOQ. Figure 3 illustrates the design structures that model synchronous and asynchronous
interconnections.

Synchronous Model Asynchronous Model
ADV ADO ADV ADO
Data Data Data Data
Signatures Signatures Signatures Signatures

> Actions
Attributes

> Actions Actions <«
Attributes Attributes

Actions =
Attributes

Correspondences Correspondences

(a) )

Figure 3: Interconnection models.

Figure 3(a) illustrates the modeling of a synchronous interconnection process, where a is a single
action inside the body ADV that has a correspondent action in both ADV and ADO. In Figure 3(b)
we have the asynchronous action invocation model, where al and a2 are two actions corresponding
to an ADV and an ADO action, respectively. Besides the al and a2 correspondences, the body
ADV should also represent a relationship that introduces asynchrony between the actions. For
example, a delay in invocation time.

Although we have been using in this section the structure of a body ADV to describe how to
interconnect many ADVs with an ADO, we can also use this same structure to describe interconnec-
tions between only ADVs or only ADOs. In 39, 15, 19, 13] there are some interesting applications
where such design structures might be very useful.

2.5 Consistency

The separation between interface and application makes it possible to create different visual repre-
sentations for a single collection of ADOs. For example, the user interface for a clock ADO could



be represented in a digital view, an analog view or both. Another possible application for the clock
ADQO, is to use its attribute values as input to another ADO. In such case, an ADV would be placed
as an interface between two ADOs, instead of working as the interface between the user and the
ADO.

As an implication of the flexibility introduced by the separation of concerns, consistency should
exist among the many visual representations (ADVs) of a single ADO and the ADO itself. The
consistency among the different ADVs is called horizontal consistency. The one between the visual
object (ADV) and its associated ADO is called vertical consistency. These consistency properties
must be guaranteed by the specification of ADVs, ADOs, and the environment that holds them.
Figure 2 illustrates the above concepts using a model of an ADO containing two distinct interfaces.

Using again the clock example, we might say that horizontal consistency will guarantee that
every different view associated with the clock ADO will be showing the same time. On the other
hand, vertical consistency will make sure that a view is illustrating the same time specified by the
clock ADO attributes. The time is provided to the ADVs through the mapping from the ADV to
the state of the ADO, since the state of the clock ADO is changed by a timer and not by the user
interface.

3 ADYV and ADO specifications

In this section we introduce some abstract schemas for the specification of ADVs and ADQs. These
abstract schemas are useful tools for both formal and informal program specifications [9, 20]. In
fact, our schemas were based on the ones described in [9, 22, 21]. In addition to the syntactic
descriptions of ADVs and ADOs, we also describe in the schemas how the objects are created,
change states, and destroyed through the use of actions. The definition of a schema for each ADV
and ADO in a software system is an important step in the software development process, since
they constitute the basic entities of the system. The structures used are be shown to be suitable
for refinement operations that should occur at each stage of development.

3.1 Descriptive schemas

ADVs and ADOs have distinct roles in a software system and, as a consequence, they are described
by different schemas. These schemas are not the actual objects inside a system, but rather de-
scriptions of their static and dynamic properties and declarations of entities that are used within
the scope of the object. Therefore, every ADV or ADO structure is subdivided into three sections:
declarations, static properties, and dynamic properties.

Despite having completely different roles in a software system, an ADV is an extension of an
ADO, thus conserving most of the properties and general structure that.characterizes an ADO.
Therefore, we initially introduce the abstract schema for ADVs, and then mention the distinctions
between ADV and ADO schemas.

Since every ADV is considered as an interface part of an application ADO, the schema seen
in Figure 4, introduces the link ADV_Name/ADO_Name through which the ADYV is related to the
associated ADQ. The exception to this rule is when the ADV does not have a corresponding ADO,
such as an ADV representing a button that changes the colors of the display screen. In this case,
the ADO_Name part is left blank.



ADV ADV Name for ADO ADO_Name

Declarations

Data Signatures - sorts and functions

Attributes - observable properties of objects

Causal Actions - list of possible input actions

Effectual Actions - list of possible effectual actions

Nested ADVs - allows composition, inheritance, sets, ...
Static Properties

Constraints - constraints in the attributes values

Derived Attributes - non-primitive attribute descriptions
Dynamic Properties

Initialization - initializes attributes
Interconnection - describes the communication process among objects
Valuation - the effect of events on attributes
Behavior - behavioral properties of the ADV
End ADV _Name

Figure 4: A descriptive schema for an ADV.

By means of the data signature declarations, the signatures of sorts and functions are stated
in the ADV. Among sort expressions we may have the basic abstractions, such as integer, string,
etc. and the application specific abstractions including object instances or user-defined sorts. Sort
constructors, such as set, union, etc., can also be applied to compose complex sort expressions, since
the semantics involved in a sort signature is an association of a set of values with a sort expression.
The functions, denoting operations over given values, are also part of the data signature section.

We use the pair <sorts, functions> in our object specifications for establishing the available
types and operations on the values that are stored in the attributes. We do this because we want
to support (abstract) specification of the space of values as well, and not just the behavior of
objects. However, if we assume that all ADVs and ADOs operate over a fixed collection of data
types (integers, arrays, etc.) then we do not need that component in a signature.

The attributes declaration denotes the state or the set of features of an object that can change
over time. Attributes are the state memory of an ADV or an ADO. This means that attributes are
the observable properties of an object and are used by other objects to report on the current state
of that object. Although the attribute values may change over time, the set of attributes remains
unaltered from creation until destruction of the object. However, regarding that sort expressions
contain the undefined element L, the attributes are optional by default.

According to the definitions introduced in Section 2.1, actions occur in both ADVs and ADOs.
It is also important to note that attribute values can only be affected by local actions, which are
the actions defined in the same schema of the attribute to be changed. In the ADV schema, actions
are divided into two groups: causal actions and effectual actions. The distinction between both
types was explained before and, in addition to that, we could subdivide each type of action into
two other subtypes: observer actions and changing actions. The observer actions are the actions



whose objective is to query the state of the associated ADO, while the changing actions do modify
the state of the system.

In [2] there is a formal description of some approaches to indicate how specification of compo-
nents can be made reusable. Composition, inheritance, sets and sequences are the nesting mecha-
nisms in the ADV model for combining and reusing specifications. The ADV containing the nested
ADVsis called a composite object or parent, while the nested ADVs are called component objects.
All objects are components of some composite object; objects which do not belong to a composite
object are a component of the operating environment or “system”. Composite objects are responsi-
ble for creating the instance of the components. Since the creation action can happen only once in
a life of any object, then a component object can never be nested in two distinct composite objects.
The same rules used here for ADVs will also apply to ADOs.

Constraints and derived attributes are considered static properties of an object, since their
existence does not affect the state of the object. A constraint expression is a mechanism to es-
tablish bounds on attribute values. As a consequence, possible object states can be restricted by
constraints.

Being another type of static property, a derived attribute is like an attribute in that it is a
property of the object itself, and computing it does not change the state of the object [40]. A
derived attribute may have its value determined by means of operations over base attribute values
only.

The first of the dynamic properties of ADVs to be discussed is the initialization process. The
initialization of an object is generally defined by the triggering of actions that initialize the attribute
values of this object. Before the creation of an object, every attribute is valued as undefined. In
addition, attributes that are not affected by actions remain unchanged after the occurrence of that
action. Since the attribute values may or may not be initialized by the time of object creation, an
attribute may hold the undefined value even after the initialization process.

In the interconnection section there should be a description of which attributes and actions in
one object have a synchronous correspondence with the attributes and actions in any other object.
The mapping of attributes of an ADV and its associated ADO is described as an interconnection
property, and is generally defined in a body ADV schema. The expressions in this section should
also describe all the effects of an action declared in this object. Such effects could be the triggering
of actions inside or outside this object. Another important consideration to be mentioned here is
that an ADO action cannot trigger an ADV action, since the ADO has no knowledge about the
existing ADVs.

All the actions previously declared in the effectual and causal action sections should also have
its valuation properties defined in the valuation section. The valuation properties of an object
describes the changes occurring in attribute values of this object as an immediate consequence
of a triggered action. The valuation rules are applied only if all the specified pre-conditions for
the occurrence of an action, if any, are satisfied. Both the expression that will determine the new
attribute values and the pre-conditions are to be evaluated in the state before the action occurrence.

Behavior description is in general a complex task. Most of the object-oriented models represent
system behavior by means of transition networks, which are augmented state machine diagrams
[17]. In this paper, we chose a textual representation to describe the object behavior. However,
there are a number of graphical representation languages that we could have chosen to describe the
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behavior of objects [6, 25, 8, 7].

ADO ADO_Name

Declarations
Data Signatures - sorts and functions
Attributes - observable properties of objects
Effectual Actions - list of possible effectual actions
Nested ADOs - allows composition, inheritance, sets, ...
Static Properties
Constraints - constraints in the attributes values

Derived Attributes - non-primitive attribute descriptions
Dynamic Properties

Initialization - initializes attributes
Interconnection - describes the communication process among objects
Valuation - the effect of events on attributes
Behavior - behavioral properties of the ADO .
End ADO_Name

Figure 5: A descriptive schema for an ADO.

In Figure 5 we see the schema of an ADO. Since its characteristics are very similar to the ones
in the ADV schema, we do not need to describe the details of every section. The first distinction
in the structure is found in the header of the schemas. Since an ADO has no knowledge about its
associated ADVs, the header of an ADO schema contains only the name of the ADO (ADO_Name).

Another structural difference between ADV and ADO schemas lies in sections related to the
description of actions. As mentioned before, an ADO has no definition of causal actions in its
structure, thus every ADO action is effectual.

3.2 The specification syntax

In this section we introduce a preliminary formal syntax for the specification schema informally
introduced in the previous section. Although we opted to use a VDM-like notation [29] to describe
the ADV approach in some other works, here we opted for a notation that could clearly specify all
the sections composing the specification schema. Therefore, the specification syntax is presented
essentially through a temporal logic formalism [33], and it may be regarded as an initial step towards
the specification of a formal semantics for the ADV design approach.

The data signature part of an object consists of a set S of sort names, and a set F of function
declarations which have the form f : s1,...,8, — 8o, with s; € § fori = 0,...,n, where s,...,s,
is called the domain of f, sg is called the codomain of f and n is called the arity of f.

The attributes are represented as a set of declarations of the form g : s4,...,8, — 80, with
s; € §fori=0,...,n, where g is an attribute name, s1,...,3, (n > 0) denote optional parameter
sorts of the attribute, and sp is a sort determining the range of the attribute.
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Actions are represented as a set of declarations of the form a : s;,...,38,, with s; € § for
i=0,...,n, where a is an action name, and s;,...,8, (n > 0) represent the optional parameter
sorts of the action. The parameters in the action description may have an important role inside
a system specification. They might be used to define the effect of an action occurrence on the
current state of an object, or they could be used to describe the transmission of data during the
interconnection process. In the first case the parameter values are used to update the attribute
values of the object. This process is described in the valuation section. In the second case, the
parameters may be considered as a mechanism to transmit data from one object to another. Such
mechanism is particularly useful to model the response of ADOs to query actions.

In the Nested ADV (ADO) section we should introduce the list of all the component objects
of a composite ADV or ADO with the specification constructors that support nesting. Therefore,
we specify the syntax of this section by the expression [constr]obj, where constr is a specification

" constructor that can be specified by the terms component, inherit, set of and sequence of, and
obj denotes the nested ADV or ADO name.

The static properties of an object are represented by closed formulas. While constraint formulas
refer to properties that must be true at all time instants, derived attribute formulas define the
derivation rules for the non-primitive attributes from the primitive (base) attributes. Constraints
are represented by the temporal logic expression O ¢, where ¢ is an invariance property, and O is
the temporal logic operator “always”. Derived attributes are also expressed by means of temporal
logic formulas.

In order to express the initialization of a system unit (ADV or ADO), we must introduce ini-
tialization actions that are to be executed when this object is created. Actually, the initialization
actions are effectual actions that are executed in the beginning of the object life time. This is
expressed by the formula — a1(81,...,8;)A...ANan(81,...,8;), where ay,...,ay are initial-
ization actions that must be declared as effectual actions and must have a corresponding valuation
entrance to describe how it changes the object attributes. '

The interconnection section is described by morphisms of actions and attributes. The morphisms
(or mappings) are used to define which attributes and which actions are to be identified between
objects. The intended interpretation is that the shared attributes must always have the same values
and the shared action must happen simultaneously. The representation of a morphism is specified
by expressions of the form obj_namel.element — obj_name2.element where obj _name.element
refers to attributes or actions which are defined inside the obj_name object and can be seen by the
current object. When the obj.name term is missing, the element should be one that is declared
inside the current object.

The valuation for an action a is described by means of temporal formulas of the form a —
pre_condition and a — atty = value; A ...att, = value,. The first form of temporal formula
defines a pre-condition on the occurrence of the action named a. In addition, since a single action
may have zero, one, or many pre-conditions, the number of formulas to describe the valuation of
an action is unlimited. The other form of temporal formula establishes post-conditions on the
occurrence of an action. Such formula shows the effects of an action over the attribute values of
the object.

The behavior will be expressed by temporal logic formulas that express the sequencing of the
actions and changes in the state of the object. A typical behavior expression is described by
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Figure 6: The manual clock interface.

pre_state A action_name — post_state, where pre_state and post_state are states of the object that
are declared in the data signature section as boolean functions, and action_name is an action of the
object.

3.3 The manual clock example

In this section we describe the specification of a simple application example using the schemas
previously introduced. The example consists on the operation of a clock that is updated by the
user. The user interface of this application consists of two buttons that modifies the clock time
specified by the attributes inside the clock ADO, and two views of the contents of this ADO: a
digital and an analogical clock view. Although simple, the manual clock illustrates most of the
concepts introduced in this paper. The clock interface is illustrated in Figure 6.

We will be using some symbols associated to the temporal logic notation. Besides the “always”
operator (0), we also use the operator “next” (X’), which allows the denotation of the variable
value after the execution of the command. Additionally, we use underlined words (e.g., nat) to
express a sort name which we assume to be pre-defined.

We start the specification of the example system by describing the application ADO, as Figure
7 shows. It is important to note that such ADO contains all the specification of the application
dynamics and it has no user interface detail embedded in its structure. Consequently, we may
consider this ADO specification as potentially reusable.

In figure 8 we define the ADV specification schemas composing the interface. The Button_Add_1
ADYV defines an interface button that recognizes when the user clicks a mouse button onto the region
where it is drawn. The Digital_Clock View ADV is an output dispositive that displays to the user
the values stored in the application. The Inter face_ Window is a composite ADV responsible for
nesting the many interface dispositives into a single interface unit. This nesting capability shows
itself in the screen, where the component ADVs are drawn inside its parent region.

For reasons of simplicity, the specification of the Button_Reset and Analogic_ Clock View ADVs
were omitted, since its specifications are very similar to the Button_Add_1 and Digital Clock.View
ADVs, respectively. Additionally, we are also assuming the existence of mappings of attributes and
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ADO Clock_Application
Declarations
Attributes
Hours, Minutes: nat;
Effectual Actions
Add_1; Reset; Show(time);
Static Properties
Constraints
0O(0 < Hours < 12);
0(0 < Minutes < 60);
Derived Attributes
Time.in Minutes = 60x Hours + Minutes;
Dynamic Properties
Instialization

— Reset;

Valuation
Reset — X Hours = 12 A X Minutes = 0;
Add_1 — (Minutes = 59 — X Minutes = 0 A A Hours = Hours +1) v
(- (Minutes = 59) — X Minutes = Minutes +1);
Show(time) — time = Time_in Minutes;
End Clock_Application

Figure 7: The ADO for the manual clock application.

actions between the composite ADV and its components.

The body_ADYV is a design mechanism in which we define how the user interface and the appli-
cation objects are interconnected, by describing which attributes and actions are shared between
these objects. It is important to note that the symbol — in the body ADV does not define the
order in which actions occur in time. It only identifies attributes and actions of different objects.

4 Conclusion

We have introduced a formal specification framework for the development of reusable objects in
the ADV object-oriented design approach. The paper describes the basic aspects of the approach,
its issues towards reuse and separation of concerns, and the concepts involving the system units
(ADVs and ADOs). The framework is supported by schemas that describe the structural, static,
and dynamic features of each system object, allowing also the specification of the concurrent aspects
of the several system components.

Although we have used a temporal logic formalism to represent the properties of the ADV and
ADO schemas, many other alternative languages might have been used to define the components
of the system. This choice was based on a uniform framework suitable for the description of every
element composing the schema structure.

This specification model can be used as a basic formal tool for the development of an ADV
object-oriented formal design method, since it is flexible enough to represent all the characteris-
tics related to the object, functional, and dynamic models composing a design methodology [40].
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ADV Button_Add.1
Declarations
Attributes
Pressed: boolean;
Causal Actions
Press_Button; Release_Button;
Effectual Actions
Initialize Pressed; Draw_Button(posxtmn, name);
Dynamic Properties
Initialization
BEG | — Initialize Pressed;
BEG | — Draw _Button(POSITION_1, ’ADD 1’);
Valuation
Initialize Pressed — X Pressed = false;
Press.Button — Pressed = false;
Press_Button — X Pressed = true;
Release Button — Pressed = true;
Release Button — X Pressed = false;
Behavior
Status.Down A Release Button — Status_Up;
Status.Up A Press Button — Status_Down;
End Button_Add_1

ADYV Digital_Clock_View
Declarations
Attributes
Hours_Display, Minutes_Display: nat;
Effectual Actions
Update_View; Draw Digital_View(position, hours_display, minutes_display);
Dynamic Properties
Initialization
— Update_View;
Behavior
Status_Updated A Update_View — Status_Updating;
Status_Updating A Draw_Digital View(POSITION.3, Hours_Display, Minutes_Display) — Status_Updated
End Digital_Clock_View

ADYV Interface_Window for_ADO Clock.Application
Declarations
Attributes
Status: nat;
Effectual Actions
Draw_View(position);
Nested ADVs
Component Button_Add_1, Button Reset, Digital Clock_View, Analogic_Clock_View;
Dynamic Properties
Initialization
— Draw_View(POSITION);
End Interface_Window

Figure 8: Some ADV scherilg.s composing the interface.



ADV Body ADV
Declarations

Attributes
Hours_Link, Minutes_Link: nat;

Effectual Actions
Add_1 _Link; Reset_Link;

Dynamic Properties

Interconnection
Hours_Link +— Clock_Application.Hours;
Minutes_Link — Clock_Application.Minutes;
Add_1_Link ——— Clock.Application.Add_1;
Reset_Link +— Clock_Application.Reset;
Add_1_Link — Button_Add_1.Press Button;
Reset_Link — Button_Reset.Press_Button;
Hours_Link —— Digital _Clock_View.Hours Display;
Minutes_Link —— Digital_Clock_View.Minutes Display;
Add_1_Link — Digital Clock_View.Update_View;
Reset_Link ~— Digital Clock_View.Update_View;
Hours_Link — Analogic_Clock_View.Hours Display;
Minutes_Link — Analogic.Clock_View.Minutes_Display;
Add_1 Link s Analogic_Clock_View.Update_View;
Reset Link — Analogic_Clock_View.Update_View;

End Body_ADV

Figure 9: The ADV Body_ADV schema.
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It can also be extended to handle cooperative aspects of distributed and/or concurrent highly-
interactive systems. Particularly, the support to asynchronous communication allows us to model
the interaction among cooperative (visual) agents throughout the design process.
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