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Abstract

We present in this paper a behavior study on a very important class of known paralleliza-
tion strategies for evaluating Datalog, namely, the bottom-up rule instantiations partitioning
paradigm. Its basic algorithm specialization is observed and many different variations are also
verified in order to obtain a comprehensive set of implementation results. We show that the
usually considered analytical models may not explain the actual behavior of the algorithms.
We make careful observations on the impact of some of the factors that influence the behav-
ior of the algorithms. Particularly, important issues related to inter-sites data transfers are
analyzed and the practical results obtained show that this is clearly a fundamental factor to
achieve acceptable performances. : ‘

Keywords: Deductive Databases, Datalog, Parallel Evaluation, Behavior Analysis.
Resumo

Neste trabalho é realizado um estudo pratico de comportamento para uma classe importante
de estratégias paralelas usadas na avaliagdo de consultas Datalog. A classe aqui considerada se
baseia no paradigma de instanciagdes de regras com avaliagio bottom-up. O algoritmo bdsico
implementando o paradigma é analisado e algumas variantes sio averiguadas com o objetivo de
se obter resultados praticos que permitam observacbes precisas sobre seu comportamento. E
mostrado que os modelos analiticos normalmente considerados podem ndo explicar adequada-
mente o real desempenho obtido na pratica. Além disto, sio comentados em detalhes outros
fatores que podem influenciar na performance dos algoritmos. Especificamente, sdo analisados
aspectos relacionados & comunicagio de dados entre os sites envolvidos no processamento. Os
resultados obtidos mostram claramente que este fator é fundamental para que os algoritmos
apresentem um bom desempenho.

Palavras-Chave: Bancos de Dados Dedutivos, Datalog, Avaliagio Paralela, Anélise de Com-
portamento.
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Abstract

We present in this paper a behavior study on a very important class of known par-
allelization strategies for evaluating Datalog, namely, the bottom-up rule instantiations
partitioning paradigm. Its basic algorithm specialization is observed and many different
variations are also verified in order to obtain a comprehensive set of implementation re-
sults. We show that the usually considered analytical models may not explain the actual
behavior of the algorithms. We make careful observations on the impact of some of the
factors that influence the behavior of the algorithms. Particularly, important issues related
to inter-sites data transfers are analyzed and the practical results obtained show that this
is clearly a fundamental factor to achieve acceptable performances.

1 Introduction

Deductive databases theoretical issues have been studied extensively in both databases and
logic programming research communities and its potential and actual applications have already
come to date, such as exploratory data analysis, enterprise modeling and scientific databases
[Tsu91, GRS95]. However, recursive Datalog programs evaluation is expensive and, to become
practical, many strategies have been proposed and compared [DR94]. Among the possible
solutions, parallelism has been considered the most promising one towards acceptable per-
formances. It has been recognized that parallel processing holds the key to answering the
performance requirements for the projected increases in data size and complexity of queries in
the next generation database applications [DG92]. Many algorithms have been proposed for
its processing in parallel, in particular for transitive closure, a special case of Datalog queries
[CCH93].

Although the applicability of paradigms have been studied in detail, almost nothing has
been done in order to developing an actual behavior study of the algorithms implementing the
proposed strategies. This information would be interesting for the construction of an optimizer
or to guide ad-hoc deductive systems implementations. Existing works on this subject mainly



discuss the expected good properties independently of other similar proposals. Except for a few
transitive closure parallel strategies and particular implementations on special multiprocessor
architectures (e.g. [HWF93]), estimations with respect to the potential speed-up that could
be obtained are still not available. Furthermore, very little is known about the impact of the
various parameters - such as number of sites, inter-processors communications strategy and
data fragmentation policy - with respect to the actual performance of the proposed algorithms.

We present here a study on the practical behavior of an important class of parallel strate-
gies for arbitrary Datalog programs, namely, the bottom-up rule instantiations partitioning
paradigm [GST90, W090]. To our knowledge, there is only one previous implementation
study of algorithms based on the referred paradigm [WZB+93]. However, this work is mainly
concerned with a particular query (the partially instantiated transitive closure query) and, once
more, the analysis is based on non realistic assumptions, such as an even workload partitioning
among processors. We look up further on implementations here. We start by implementing
the algorithm based on the original ideas of [GST90] and observe the behavior and perfor-
mance in many different aspects. The results obtained from the implementations give us a
more comprehensive understanding of the proposed algorithms.

We look carefully at some of the parameters involved, such as the input data, the number
of available parallel sites, the inter-processors communications model and their influence on
the practical behavior of the algorithms. Indeed, we discuss the communication model given
in [CLP94], where a coordinating node for distributing and filtering data transferred between
the parallel sites is proposed as an alternative to the standard completely distributed model.
We implement this strategy and compare its speedup and overall behavior with respect to
the previous implementations. Some other experiments are done aiming at a further study of
the algorithms behavior, e.g whether to transmit the derived facts local to each site at each
iteration or at each local fixpoint. As we shall see, performance is directly dependent on this
and many other factors, and some of them are difficult to quantify.

A challenging open problem is to define appropriate measurements for the performance of
parallel evaluation strategies. In this regard, very few results are known. The performance
analysis referenced in previous works (e.g. [VK88]) are mainly done using analytical simulation.
Many simplyfing assumptions are made, such as uniform production of tuples, data transfers
that do not saturate the network and existence of a fixed amount of time for sending a bucket
of tuples from one side to another. Clearly, these and other similar considerations do not
happen in practice and, consequently, the results of these studies will not reflect the actual
behavior of systems implementing these strategies. Particularly, we show that the speedup
analysis considering cost models that count joins or productive rule instantiations may not
explain correctly the actual performances.

All experiments were executed in a parallel shared-nothing machine, the IBM SP/1, using
PVM [GBD+94] and C code. This fact has permitted us to observe not only the processing
of the queries but also, and more importantly, the price paid by the actual behavior of the
evaluation with respect to inter-sites communications. It should be noted that our goal here is
not to determine the best parallel algorithm neither to obtain a complete performance analysis
for the bottom-up rule instantiations partitioning paradigm. Instead, we have done a large
number of experiments aiming at detecting which factors are really important to the behavior
of the parallel algorithms implementing the paradigm in order to become practical.



The remainder of the paper is organized as follows. In the next section, we present an
overview of existing parallel strategies for Datalog evaluation. In Section 3, we briefly describe
the hardware and software configurations used to implement the algorithms and the main
parameters considered. The rule instantiations partitioning paradigm and its specialization
into an algorithm are described in Section 4, together with a first set of implementation results
and corresponding analysis. The centralized communications approach is presented in Section 5
and comparative experimental results are also given. Within this section we discuss other
important factors that may influence the algorithms. Related work with respect to behavior
analysis of Datalog and transitive closure queries are mentioned in Section 6 and the final
observations and suggested extensions of this work appear in Section 7.

2 Parallel strategies for Datalog evaluation

In this section, the most important research works on the parallel evaluation of Datalog queries
are described. We assume familiarity of the reader with basic logic programming and deductive
databases concepts. Preliminary studies were concentrated on determining whether or not a
Datalog program could be evaluated in parallel without communication among sites, which is
referred to as pure parallelization. These results provide syntactic characterization of Datalog
programs for which pure parallelization works. Such programs are called sharable [Wol88] or, in
the case of disjoint results at each site, decomposable [WS88]. Sufficient syntactic conditions for
decomposability have been provided [CW89, WS88, SL91]. However, decomposability is only
applicable - in the sense of completeness - to a restricted class of programs and the property
of being decomposable was shown undecidable for arbitrary Datalog programs [WO090]. A
different pure parallelization approach for the evaluation of Datalog queries is discussed in
[LV95]. It is shown that the evaluation is complete (i.e., the result is entirely computed) for
almost all (which is given a precise probabilistic meaning) inputs, without any considerations
on the syntax of the program rules.

Thus, if one wants to guarantee completeness of the parallel evaluation for all Datalog
programs, inter-sites communication must be considered. From a theoretical point of view, it
has been studied whether a Datalog program belong to the NC complexity class, so that it
could be evaluated in polylogarithmic time given a polynomial number of sites in the size of
the database [Kan88, UvG88]. However, the number of available sites is limited in practice
and these algorithms have to be adapted to fewer sites. This can be done by assigning the
work of multiple processors to a single one, which can be harmful to the overall evaluation
performance.

Assuming a constant number of sites, some other methods have been proposed. In general,
these approaches follow two different paradigms. One is the so called rule instantiation parti-
tioning strategy [GST90, WO90, ZWC91], which is a pure bottom-up method that parallelizes
the evaluation by assigning subsets of the rule instantiations of the program among the sites,
such that each site evaluates the same original program with less data. This scheme results in
a non-redundant computation, in the sense that the same firing is never done by two distinct
sites.

Another possibility is the so called rule (or clause) decomposition, where the rules of a
program are evaluated in a top-down style, employing sideways information passing to focus



on relevant facts [vGel86, Hul89], sometimes considering a pipelined strategy [BSH91]. The
rules are decomposed into concurrent modules that are assigned to distinct sites. An important
drawback for rule decomposition is that the degree of parallelism is, in general, dependent upon
the structure of the program, which means that even if more sites are available, they will not
be used. Moreover, if each processor evaluates a different part of the rule (which corresponds
to one or a conjunction of many subgoals), an unbalanced workload may occur. A mized rule
instantiation partitioning and rule decomposition is proposed in [SBH91] in order to address
some of these problems. However, some synchronization among sites is still present and the
actual implementation is very complex. Finally, the underlying idea of a backward-chaining-
like evaluation is still not practical for arbitrary queries. If no constants are present, these
methods are clearly not efficient or even not applicable.

Therefore, our emphasis here will be on the parallel bottom-up evaluation of Datalog pro-
gram. In the presence of constants, optimization techniques like the magic sets rewriting
method can be used orthogonally to parallelization [Ull89] yielding better results. We will de-
scribe in Section 4 the basic algorithm considered throughout the paper. First we present both
the system configuration and software used for the experiments and also the main parameters
considered for the behavior analysis.

3 Implementation environment and parameters

We have done all implementations on the IBM 9076 SP/1 (Scalable Parallel) machine. It is
a shared-nothing parallel configuration supporting SPMD (Simple Program Multiple Data)
program applications, with its basic configuration of up to 16 nodes, each with its own RISC
6000 processor, 256Mb of memory and 2Gb disk, giving a total processing power of 2 Gigaflops.
The shared-nothing architecture seems to be well adapted to support very large databases,
specially with respect to interference and scalability issues [Sto86, Val93]. Unfortunately, we
could not use any of the RDBMS already running on this machine at the time we have done
our experiments and all relational operators needed were directly implemented in C code for
each node.

The chosen strategies were implemented using PVM (Parallel Virtual Machine) version
3.3, a public domain software developed at the OAK Ridge National Laboratory [GBD+94].
The main goal of this tool is to provide support for distributed and parallel application pro-
grams over a (maybe heterogeneous) network of. workstations and interconnection protocols.
In our case, we have considered TCP/IP for the inter-site communications. Its flexibility have
permitted us to easily implement all of the strategies making calls to PVM library functions
within the algorithm written in C code.

Among the parameters considered for the behavior analysis, the main ones are the Datalog
queries, the input data, the chosen number of parallel sites and the data transmission criterion.
Even if the parallel strategies are applicable to arbitrary Datalog queries, we have decided to
consider the full linear transitive closure one (no variables instantiated) P!

T(z,y):— T(z,z),A(2,y).
T(z,y):— A(z,y),



defined by a single linear recursive rule and also its nonlinear version p?

T(z,y): — T(z,2),T(z79).
T((B, y) ‘T A(xv y)7

which was shown not to be decomposable in [WS88], so to be able to make some comparisons
with the specific parallel algorithms for the transitive closure query. Thus, binary relations
were used as input data and the corresponding graphs were randomly generated, given a fixed
number of nodes (with values also randomly generated) and a fixed edge probability between
any two nodes.

We have constructed completely random graphs, DAGs, binary trees and lists, as suggested
in [CCH93]. In the binary tree case, we have chosen the tree height as a parameter and for lists,
the number of nodes. In both cases the existence of an edge is guaranteed (fixed topology) and
only the node labels are randomly generated. The chosen number of nodes ranged from 200 to
1,000, with edge probabilities taken between 0.5% and 10%. The size of the base relations that
were generated ranged from 400 to 10,000 tuples, with corresponding closure containing up to
300,000 tuples. Real data such as the french parisien subway graph (710 tuples and 85,000 in
its closure) were also used as input.

Theoretically, the algorithms may be executed in as many parallel sites as we want. In our
case we have run our experiments on all sites (up to 16) available. We could as well simulate
more than one logical site for each physical one but we have decided not to do it as we were
concerned with the speedup measured by the actual response time. It is worth saying that
all previous experimental works were done on no more than 6 parallel sites. Many different
situations were tested but we have mostly tried out 4, 7, 10 and 14 sites. Finally, concerning
the data transmission criterion, it depends on the underlying communication model, which will
be discussed together with the implemented algorithms in the next sections.

4 Basic parallel algorithm

In [GST90, WO90] paralle]l strategies based on the bottom-up rule instantiations paradigm
are proposed, applicable to arbitrary Datalog programs, with more than one (linear and non-
linear) recursive rule and more than one recursive predicate. They introduce the notion of
restricting (or discriminating) predicates, that are used to partition the instantiations of the
program rules among a set of sites. The basic idea is to append some evaluable predicate f;
to the body of each rule, where f is usually a hash-based function and ¢ is the identification
of some site, such that each instantiation of the rule is assigned to a unique site. In [ZWC91],
the program is first rectified and multiple partition functions are appended to each rule. This
defines also a fragmentation of the input data.

Thus, we construct distinct restricted versions P; of a Datalog program P and each site
will execute a distinct subset of the complet set of P rule instantiations. All derived facts in
a site s; are kept within its local database and are also sent to all other sites s; (j # 1), with
respect to a given data transmission criterion. The parallel evaluation finishes when all sites
reach their local fixpoint and no fact is being transmitted from a site to another. The main
steps of the algorithm executed at each site are shown in the next figure:



Execute Procedure Initialization ;

While global termination condition not reached:
Execute Procedure Fuvaluation;
Execute Procedure Transmission;
Execute Procedure Reception;

End While

Execute Procedure Final Pooling;

Figure 1: Rule instantiations partitioning parallel algorithm

The Initialization procedure corresponds to the initial distribution of the input database
and the firing of all exit rules. The main loop contains a procedure Evaluation, which executes
one complete instantiation of all recursive rules of the restricted version of the program. A
seminaive-like algorithm is usually considered, where at the end of each iteration the set of
new facts produced are available for inter-sites communications. These are done by procedures
Transmission and Reception, where the data transmission sets are sent to, and received from,
all other parallel sites. When a global termination condition is reached, each site sends their
local results to a given site that will contain the final result. The algorithm PSNE, presented
in [WO90], gives a more detailed presentation of this strategy.

4.1 Example of algorithm application

Suppose that n sites are available and that one site can exchange data with any other site
during the whole evaluation process. If one considers the strategy proposed in [GST90] and
apply it to the Datalog program P? described in the previous section, some evaluable subgoals
are appended to each rule and 7 restricted versions P?

ri: T(z,y):— T(z,2),T(z,y),zmodn = 1.
roi: T(z,y):— A(z,y),ymodn =i.

of P? are determined, where each P? is evaluated in a distinct site s; (0 < i <n—1).

Each site s; starts evaluating the restricted program P?, performing rule instantiations wrt
its local database. The new facts obtained by productive instantiations are added to the local
database and are also transmitted to each other site s;, j # 7, according to a given transmission
criterion. These data transmissions are done at each iteration, which means in this case, at
each firing of the recursive rule. The parallel evaluation terminates when no restricted program
in some site can compute a new fact and when there are no facts being transmitted among
sites. The data transmission criterion from site s; to site s; in this case is defined as follows:
a fact T'(a,b) belongs to the transmission set if  mod n = j or b mod n = j.

The design of the restricted versions of the same program P? as proposed in [ZWC91] is
based on an initial rectification of P? rules, followed by the definition of evaluable subgoals



local to each ordinary subgoal in the rules as given by

e T(z,y):— T(z,2),T(21,y),z= 21,2 mod ny = k,2; mod ng = l.
rom : T(z,y):— A(z,y),y mod nz =m.

If we have ny = 2 (k € {0,1}), 72 = 3 (1 € {0,1,2}) and n3 = 6 (m € {0,1,2,3,4,5}), there
are sik restricted versions of each rule. They are combined in all possible ways, pooling them
together so that only one restricted version of a rule is assigned to each distinct site. For
the data transmission criterion, we must check for each given fact on site s; if it satisfies a
local evaluable subgoal associated to an ordinary subgoal relative to this fact. Independently
of which pooling of restricted rules has been done, a fact T(a,b) is said to be potentially
useful for the instantiations of rule ryj if b mod 2 = k or a mod 3 = [. This means that it is
not guaranteed that the (entire) rule instantiation at the receiving site s; is applicable with
the new fact sent from s;. Although the test of utility of fact wrt a given rule is claimed to
be more efficient in [ZWC91], the design of the restricted versions of the program is clearly
more complicated than the one in [GST90]. For this reason, only the latter will be further
investigated in this work.

4.2 Experimental results

We discuss next some implementation results on the algorithm just described. A set of inter-
esting and meaningful information that may backup our conclusions and observations over the
actual behavior of the algorithm is presented. The input data groups that will be considered
for showing the results are given in Table 1. These were chosen with respect to their similar
practical behavior observed from the experiments.

Input Group | Nodes Range Base Tuples Derived Tuples
A 200 — 300 400 — 5,000 1,800 — 38,000
B 300 — 700 3,500 — 9,000 | 20,000 — 210,000
C 700 — 1,000 | 5,000 — 10,000 | 135,000 — 320,000

Table 1: Random Graphs and DAGs

An important observation is related to the chosen queries. As we have mentioned in sec-
tion 3, we have executed both linear and non-linear versions of the transitive closure, basically
over the same inputs and number of sites configuration. However, except for the number
of redundant derivations (which is bigger for the non-linear transitive closure case, as in the
monosite execution), all other behavior considerations are very close to the ones that will be
shown for both queries. Other input structures, such as binary trees and lists, will be studied
in further sections.

We show in table 2 interesting informations about the behavior of the algorithm for each
input data group. First of all, we give some results on the observed response time speedup
obtained. We have basically considered two situations, one for relativelly small number of sites
(4 to 8) and for bigger number of sites (9 to 15). For example, when we execute the algorithm
for a number of sites close to 4, we get in all cases an average (close to linear) speedup of 3
and when we get closer to 8 parallel sites, the speedup ranges from 5.3 to 6.5. For executions



Input Speedup Iterations Site Useless Useless

Group | 4 — 8 sites | 9 — 15 sites Range Activations | Transmissions | Derivations
A 2.9 —5.3 8.6 — 9.8 146 — 351 | 26 — 117 35% — 70% | 26% — 85%
B 3.3—6.5 50 — 9.2 | 741 — 2389 | 117 — 867 | 50% — 90% | 46% — 86%
C 2.6 — 5.3 53— 116 | 221 — 833 | 49 — 279 55% — 83% | 11% — 54%

Table 2: Basic parallel algorithm behavior

with 15 sites, we have obtained speedups around 10, with the best speedup reaching 11.6, not
to close to the expected linear behavior. These results on speedups may be better observed
with the graphical representation of figure 2.
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Figure 2: Response time, join and productive instantiation speedup

The results given in figure 2 are relative to chosen executions that represent the average
behavior for the input data groups A, B and C. We show not only the speedup obtained
by measuring the response time but also some computed results based on previous analytical
models, such as the join and the number of productive rule instantiations costs. These will
be discussed later in this section. As observed in figure 2 the response time speedups increase
when the number of sites increases but not always in the same rate. This happens, for example,
when running the algorithm for up to 8 sites. For more than 8 sites, we get results closer to a
linear speedup, except for input data group B. This might be explained by the time consumed
with useless transmissions and fact derivations, as shown in table 2.



Useless communications and productions

In fact, an important issue related to the communication cost is the rate of tuples transmitted
from a site to another that were discarded by the receiving site. These transmissions are
called useless, in the sense that they should be avoided as the local site evaluation loses time
eliminating them so to duplicate rule instantiations. Indeed, there may be from 50% up to
90% of useless transmissions during the complete evaluation process for input group B.

It is also known that the distinct firing of rules paradigm does not guarantee that distinct
facts cannot be derived in two (or more) different sites. Ideally, an optimal parallel execution
would equally divide the productive instantiations among sites. Our experiments have shown
that this desired situation is far to be achieved. Even if for some inputs, such as input groups
A and C, the facts derivations overhead is no more than 25% of the final output, there are
some cases where these useless derivations correspond to almost twice the number of all tuples
that should be produced, as the 86% rate for group B on a large number of parallel sites.

Another information given in table 2 concerns the number of iterations (rule firings, or
joins in our case) and the number of site activations (number of times the sites have reached
a local fixpoint during the complete parallel evaluation). We show some extreme examples for
each input data group that illustrate a clear uneven workload balancing among sites during
the evaluation process. As an example, for input group B there are some experiments where
one of the sites make 3 times less iterations than the other (varying from 741 to 2389) and
where the number of sites activations may be up to 6 times different (117 to 867). It shoud
be noted that for all the results shown in this section the input graphs tested were randomly
generated on uniform data distribution and that each site gets an approximately equal number
of tuples at the outset.

Effectiveness of analytical models

The analytical models mainly considered in previous works usually study the speedup of the
parallel processing strategy with respect to two factors: the amount of computation, e.g. the
number of joins and the size of relations involved, and the amount of communication among the
processors, which includes the processing of messages before transmission and after reception of
data sets. Each one of these factors depends on the parallel architecture, specially the number
of sites available, and both the size (nodes and tuples) and topology (cyclic, acyclic, trees...)
of the input graph.

When we look back at Figure 2, we see that by studying the speedup behavior of the
algorithm by computing the join cost we may get similar relative results compared with the
response time speedup. In some cases, even equivalent absolute values, as for input group
A. However, the computed speedup is, in general, bigger than the actual speedup measured
considering only the response time. As observed in figure 2 for an input of group B, all join
costs speedups curves show better results with respect to the response time speedup. Even
worse, for input groups A and C the join cost would give us more than linear speedup, as the
speedup over 30 for a chosen input in group C (1000 nodes and low edge probability of 0.5%)
and 14 parallel sites, when the actual speedup is close to 10. On the other hand, we have
obtained some results where comparing only the cost of processing the joins we get practically



no speedup or a speedup less than 1, as shown in figure 3 for an input group B and less than
10 sites.
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Figure 3: Join and duplicate elimination speedups

Actually, when seminaive-based algorithms are being used, the cost of duplicate elimina-
tions made by relational difference operators should also be taken into account for behavior
analysis. We have observed that the computed difference costs are very close to the computed
join cost in many cases. Anyhow, even if both costs are computed, we may still have a speedup
below 1. In an example obtained from our experiments for an input chosen in group C (a DAG
with 1000 nodes and 1% edge probability), shown also in figure 3, we get no speedup (less than
1) when running on no more than 10 parallel sites. Furthermore, even if some speedup is
obtained, as when running the precedent example with 14 sites, the speedup computed for
the joins and duplicate elimination cost is equivalent to 1.8 and the actual speedup is 11.9
(Figure 2, input group C'), about 6 times bigger.

Another computation cost referred in previous works is obtained by measuring the number
of productive rule instantiations (successful rule firings) during the whole execution. We have
computed this cost in our experiments and, once more, the conclusion is that also this cost
cannot be effectively used for comparison purposes. Indeed, as observed in figure 2, we get
the same speedup when the number of sites vary from 4 up to 14. For up to 7 sites, the
productive instantiations cost gives a speedup that is approximately the same as the one
computed measuring the response time. For the particular case of the low edge probability
input group C we get close results even for a larger number of sites. However, this situation
does not happen in general, and counting productive rule instantiations should be carefully
considered for the performance evaluation.

Finally, it should be noted that some other assumptions made when using the referred
analytical models for studying the performance of algorithms evaluating Datalog queries are
in general not verified in practice. Indeed, there is no uniform facts derivation rate during the
whole execution at each site. For some inputs (e.g, dense graphs), the intensional database
tuples are produced mainly during the first iterations, with very few derivations close to the
algorithm termination. Also, a balanced workload is rare. We have run experiments where,
even for graphs randomly generated over an uniform data distribution, the computation cost
at each site may vary considerably.
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5 Centralized communication approach

In [CLP94], an alternative scheme for the inter-sites data communications is proposed, moti-
vated by the observations made in the previous section about useless transmissions. If only
satisfaction of evaluable subgoals is considered as the main test for the data transmission cri-
terion, it is known that there will be certainly redundant and useless data transmitted among
sites. Although the local redundant computation can be avoided, nothing is done in order to
avoid the transmission of these useless facts. It may occur that facts of a given transmission
set are all eliminated at the receiving site. It is worth saying that in [AJ88] the authors were
already asking if better performances could be obtained if one reduces the computation cost
and adds extra evaluation process control.

Therefore, rather than a completely distributed inter-sites communication scheme, one of
the sites will assume the responsibility for the coordination of the data communications. In
general, this site does not participate directly on computations, acting basically as a filter for
data transmissions. The evaluation is parallelized with the same underlying idea discussed
in the previous section, i.e, the partitioning of the rule instantiations among a set of sites
that evaluate the same original program but with less data. A shared-nothing architecture is
assumed, where communications are only required (and allowed) between the coordinating site
and all others processing nodes in both directions. This is clearly a simpler configuration and
extensibility in this case is straightforward.

The main goal of this alternative approach is to allow the definition of a more efficient
data transmission criterion, which would reduce both the number of data receptions at each
processing site and the total amount of data involved in communications during the whole
execution. Also, redundant and useless data transmissions would be avoided and the test
of whether to transmit a data set from (to) the coordinating node to (from) the processing
nodes could be efficiently tested. Compared to the completely distributed scheme, the quality
and amount of information available at the central site is richer than the one in any of the
parallel sites. Therefore, the coordinating node may decide what and where send data using
the information of data received from all sites. The correctness of the proposed algorithm and
data transmission criteria are easily verified. The decision of not sending a given tuple from
the coordinating site to all other sites and vice-versa is based on communications issues, never
on possible program instantiations. The data transmission criterion defined guarantees that
all tuples that may be useful to one of the program rules restricted versions are transmitted
at least once. As redundant communications are avoided, these tuples are sent at most once
between the central site and all other sites.

Unfortunately, all the nice features obtained by considering the a central coordinating
node for the inter-sites communications may not always lead to an expected good performance.
There is a risk of a bottleneck at the central site, as the tasks that should be assigned to distinct
sites working in parallel are performed by only one of them. For example, a critical situation
might happen whenever too many processing sites are idle at the same time and the termination
condition has not yet been reached. In this case, an important number of processing sites keep
on asking data for the coordinating node so to continue their local evaluation and the central
site must determine many transmission sets to be transmitted to the processing sites. The
results from the implementations to be presented next will be useful to observe the actual
behavior of the algorithm in these and other practical situations.
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5.1 Implementation results

In the following, we will refer to the basic parallel algorithm as the distributed one and the
algorithm discussed in this section as the centralized one.

Speedup

In table 3 we show the results obtained for the same input groups as before but not the same
behavior observations. On one hand, it should be noted that the new results concerning the
useless derivations are equivalent to the ones shown in table 2 for the distributed algorithm.
Thus, they will be ommited. On the other hand, we can make some comparisons that we could
not do before, such as the rate of the total number of transmissions and its volume during
similar executions, which are related to the total communication cost. Finally, as a direct
consequence of the chosen model of a central coordinating node for inter-sites communications,
there are no useless transmissions here. '

Input Speedup Iterations Site Number of Messages

Group | 4 — 8 sites | 9 — 15 sites Range Activations | Transmissions | Volume
A 4.0— 5.6 5.9 — 6.8 17— 51 2 —16 15.7—30.2 | 1.4 —1.5
B 3.3 —838 2.0 —8.8 96—171 12—36 2.3— 215 1.2 — 2.6
C 3.8 —4.6 5.6— 7.6 46—404 8—96 15.3— 89.8 14— 1.7

Table 3: Centralized Algorithm

Comparing the speedups obtained in tables 3 and 2, we can observe that, for executions with
less than 8 sites, the centralized algorithm performs better than the distributed one in almost
all cases. However, for large and highly connected input graphs, the distributed algorithm may
have better speedups as the number of sites increases. Again, for a better comprehension of
the speed-up behavior of the centralized algorithm compared to the distributed one, we show
in figure 4 a graphical representation of the practical results obtained. It is worth saying that
the set of results for the input data groups considered were the same as before, so to be able
to make the comparisons.

In general, for input graphs with low connectivity the distributed algorithm performs better
than the centralized one even for a small number of sites. However, for an input data in
group C with low edge probabilities, as the one shown in figure 4, we see a better speedup
for the centralized algorithm running on up to 10 parallel sites. Beyond that, the effect of
a bottleneck at the communications coordinating central node explains why the distributed
algorithm perform better. As an exception, we see that both algorithms have equivalent
performances for the chosen set of inputs in group B. This clearly shows the impact of
the useless data communications and facts productions, a main drawback for the distributed
algorithm.

Another interesting point to be noted is that both number of iterations and site activations
are significantly smaller in the centralized algorithm compared to the distributed one but
these do not have positive impact on the speedup. We explain this fact with the following
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observation: the distributed algorithm makes a large number of joins involving relations of
different sizes, usually many times smaller than in the centralized case. This means that the
resulting relations are made available faster to other nodes, and consequently, the chances a

node may become idle is reduced.

We also give in table 3 the rates of number of data sets transmissions and their volume
comparing the results obtained with the distributed algorithm and the centralized one. As
expected, there are many more messages when considering the distributed algorithm than the
centralized one, running over the same input data and number of parallel sites. For input
group C, when both input and number of sites increase, there are 15 to almost 90 times less
messages when the data transfers are centralized. There are also more tuples transferred from
one site to another during the whole evaluation of the distributed communications algorithm.
However, the rates obtained are smaller (1.5 in the average), showing that the filtering of tuples
at the coordinating site do not reduce significantly the amount of tuples exchanged during the
parallel evaluation process. Thus, as there are less communications, the data sets transmitted
in the centralized algorithm are much bigger than in the distributed one.

5.2 Further results

We will describe next other experiments we have done over different inputs and also some slight
variations on the algorithms and their performance implications. The main goal here was not
to execute an extensive set of experiments as we have done before. Rather, we have forced a
few particular situations so to further observe the behavior of the algorithms with respect to

other parameters not studied yet.
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Local fixpoint transmissions strategy

In all previous experiments we have assumed that all processing sites, whether in the distributed
or centralized algorithm, execute their transmissions at each iteration, making their local
derived facts available to other sites as soon as possible. As suggested in [W090], one could
consider to do these transmissions only at each local fixpoint reached. Surprisingly, for some
of our executions this decision have effectively changed the speedup. Indeed, this is the case
for an input corresponding to the parisien subway graph, with its results shown in figure 5. It
is a graph within group A in our table of inputs but producing more than 85,000 tuples in the
output. There are exactly 292 nodes but it is a highly connected graph.

Distributed Aigorithm Centraiized Aigorithm
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Figure 5: Parisien Subway Graph

As we can observe, the speedups are improved in both centralized and distributed algo-
rithms, with the latter having a better performance in all cases. For 10 sites, the speedup with
local fixpoint transmissions almost double in both algorithms. However, this good result is
not always achieved. For DAGs with 10,000 tuples and low connectivity, transmissions at each
fixpoint may reduce the speedup. Indeed, for 14 sites, rather than 11.9 we have obtained a 8.9
speedup. Anyway, we claim that this is an important aspect that must be further considered
when implementing the algorithms.

Non-uniform data distribution, binary trees and lists

All previous results were given for input data randomly generated on an uniform data distri-
bution. In [CLP94] it is mentioned that the centralization of the inter-sites communications
could balance the workload - and consequently improve the expected performances - for data
with a non-uniform distribution. In order to verify this, we have done some experiments on
randomly generated graphs for edge existence probabilities with a large variation, specifically
ranging from 0.1% to 10%. Once more, we have tried many different situations, for small
and large number of nodes, 4 up to 15 parallel sites, random graphs and DAGs. As we shall
see, there is a clear improvement in the centralized algorithm and this even for small input
relations.

Taking one of this non-uniform inputs, a DAG with 2,500 tuples in group A and executing
both algorithms with 10 parallel sites, we have obtained a speedup 8.2 for the centralized
algorithm and only 4.6 for the distributed one, as shown in figure 6. Rather surprising, for
a number of sites below 10 the centralized algorithm is, in the average, less than 10% faster
~and for a number of sites over 10, both algorithms perform equivalently, which is a very rare
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situation, as already mentioned in this work. However, it should be noted that the speedup
obtained for 14 sites is only around 9.2, which clearly shows that the central site bottleneck is
still present when the number of sites increases.
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Figure 6: Non-uniform data distribution and lists

Besides completely random graphs and DAGs, we have also executed the parallel algo-
rithms for inputs with a special structure such as complete binary trees and single lists. For
lists varying from 200 to 1,000 nodes, the centralized algorithm performs slightly better, or as
good as, the distributed one for any number of sites. The observed difference in the speedup
is no more than 2 and for a few situations, the speedups are about the same. An important
observation is that when the input is a list we get the best speedups for the centralized algo-
rithm, e.g 7.8 for 10 sites and 9.6 for 14 sites, both for lists with 500 nodes, as shown in figure
6. Concerning complete binary trees, we have similar observations as the ones made for lists
and for the lack of space the specific results will be omitted. However, it should be noted that
the speedups obtained are better than when the algorithms are executed with random graphs
or DAGs, close to linear speedup specially for the distributed algorithm.

Limiting size of transmission sets

The main problem of the centralized algorithm is clearly the bottleneck at the central node.
From the previous experimental results we have observed that when the transmission set size
is relativelly small, not only the coordinating node works more efficiently but also there is a
better balance on distribution of the work among both parallel sites and the communications
network. Thus, we have decided to simulate what would happen if there is a fixed size for the
transmission set that can be sent from the central node to the processing sites.

We have done a few experiments limiting the size of the transmissions sets sent from the co-
ordinating node and a reduction on the response time of the centralized algorithm was achieved
in some situations. For example, for inputs on group C, such as DAG with 10,000 tuples and
low edge probability, the speedup obtained before ranged from 4.4 to 5.7 when increasing the
number of sites. When we fixed the transmission set size to 500 tuples (an arbitrary fixed
number among several tested), this range changed to 4.7 to 6.5. The corresponding speedup
for the distributed algorithm ranged in this case between 2.6 and 11.9, thus, still better than
the centralized results for a large number of sites. However, when we fixed the transmission set
size on 1,000 tuples, no gain was obtained and for more than 8 sites the speedup obtained 5.5,
slightly worse than before. These examples and many others show us that this issue deserves
more experiments, so to become an effective way to further tune the centralized algorithm. It
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seems that a small size for the transmission set might give better results for the centralized
algorithm, but determining the exact size (or range) it should be is out of the scope of this

paper.

6 Related Work

One of the first performance analysis of recursive queries evaluation was done in [BR88}. For
a given set of rules and queries, such as complete and partial transitive closure and same-
generation, the performance analysis of some evaluation methods in the single processor context
was simulated for specific input data. However, some restricting assumptions are made: no
cyclic relations are considered and also there are no distinct paths between any two nodes
with different lengths. Thus, redundant derivation of facts are avoided. The cost metrics
taken into account is the number of successful productive rule instantiations. Joins have
their cost associated to the size of the resulting relation. In [AJ88], some practical analysis
of multiprocessor transitive closure algorithms are done, in both shared-memory and shared-
nothing architectures. Only relatively small input relations are tested.

In [HWF93], the authors implement a particular algorithm for evaluating the transitive
closure in a parallel main-memory DBMS called PRISMA//DB, namely the disconnection set
approach [HAC90]. It is a very specific performance study wrt to the algorithm and hardware
considered. In [CCH93], a performance analysis is simulated focusing on both communication
cost, which is measured as the total number of tuples transmitted between sites and join cost,
taken as proportional to the size of the resulting relation. The amount of data transmitted
is mentioned as one of the main factors that may influence the performance. No practical
implementations were done. In {[DR94], a very complete study of the performance evaluation
of sequential transitive closure algorithms is done. Important query and system parameters,
like the number of nodes and average out-degree of input data, are considered. They also
measure the I/O cost. Only DAGs are taken into account.

A first implementation study of algorithms based on the referred paradigm is done in
[WZB+93]. However, this work is mainly concerned with a particular query (the partially
instantiated transitive closure query) and the analysis is based on non realistic assumptions
such as an even workload partitioning among the parallel sites. Very few implementation results
are given and only speedup is analysed, with no details on the overall behavior. A dynamic
workload balancing strategy is proposed, where one site assumes part of the work of another
one that stays idle for a long time. It is not clear, though, how to effectively choose a working
site, split its hash function and consequently its work.. Moreover, the new scheme may not
be better than the previous one and trying many changes like this during the evaluation may
affect the performance. In [ZZ094], performance analysis is done as in [VK88], where many
simplified assumptions are considered, such as an equally distributed workload among sites
and production of the same number of tuples at each phase. These are clearly not applicable
in the general situation, as we have shown in this work. A new parallel strategy applied to
transitive closure computation is proposed with the focus on the physical data fragmentation
design and its relationship with the reduction of the communication cost. Their strategy aims
at avoiding the possible redundant work caused by multiple paths.
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7 Conclusions and future work

In this paper we have investigated the practical behavior of the bottom-up parallel evalua-
tion of Datalog queries. To our knowledge, we have done a first complete implementation of
the bottom-up rule instantiations partitioning paradigm. A parallel environment such as the
shared-nothing IBM SP/1 computer running PVM was used for the experiments. This has
enabled us to have a closer taste of actual performance of the algorithms such as their speedup.
An important result was discussed, where it is shown that the analytical models that have been
considered in previous works may not predict the correct behavior of the parallel algorithms
in practice. We have run the algorithms on randomly generated data with both uniform and
non uniform edge probabilities and we have also observed what happened on a real test data
such as the Parisien subway corresponding graph.

We are also concerned with a careful study of the behavior of these parallel algorithms with a
close look at the influence of a set of parameters, mainly the ones related to the communication
cost. Indeed, we have shown that the communication model chosen may affect considerably
the performance. A centralized communication approach is discussed and we have shown that
" it is worth to be be further examined as an alternative to the completely distributed model
usually adopted. Other low level factors such as the exact moment a given site should transmit
its data sets are investigated and should be considered when implementing the above Datalog
parallel evaluation paradigm.

The implementation results obtained by centralizing the inter-site communications during
the evaluation process are very promising and we plan to continue analyzing its possible opti-
mizations. Among the ideas to be explored, the more than one central sites alternative [FRI0]
and a careful communication policy that captures the optimal transmission moment and data
set content should be further investigated. Concurrently, we have already started is to evaluate
the I/O cost involved, which is still the main bottleneck to very large database systems per-
formances. This will be possible with the recent availability of parallel DBMS (e.g. DB2 and
ORACLE) running on multiprocessors architectures such as the IBM SP/1. An immediate
consequence of our work is that there is a need of good cost estimation formulas in order to
be able to compare different algorithms or even to work out on some of the alternatives due
to the set of parameters involved.

A side result obtained from this work is that the performance of all algorithms is greatly
influenced by redundancy on the production of derived facts. This issue deserves better analysis
but we are already working out on parallel strategies that take into consideration the system’s
knowledge about which fact has been already produced so to avoid useless rule instantiations
and duplicate facts derivations. Finally, we have started studying how the pure parallelization
approach proposed in [LV95] can be effectively used in practical applications. In this case, it
seems that an ad-hoc data partitioning scheme must be considered but one could also think
about a more general, maybe sequential, pre-processing step followed by the parallel evaluation
itself.
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