ISSN 0103-9741

Monografias em Ciéncia da Computagdo
n° 15/95

Towards a Logical Analysis of Design:
Formal Software Engineering
and Data Base Concepts

Paulo A. S. Veloso
Antonio L. Furtado

Departamento de Informdtica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22453-900
RIO DE JANEIRO - BRASIL

PUC RIO - DEPARTAMENTO DE INFORMATICA ISSN 0103-9741

Monografias em Ciéncia da Computacdo, N° 15/95
Editor: Carlos J. P. Lucena June, 1995

Towards a Logical Analysis of Design:
Formal Software Engineering and Data Base Concepts *

Paulo A. S. Veloso
Antonio L. Furtado

* This work has been sponsored by the Ministério de Ciéncia e Tecnologia
da Presidéncia da Republica Federativa do Brasil.

In charge of publications:

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentacdo e Informagdo

PUC Rio — Departamento de Informatica

Rua Marqués de Sao Vicente, 225 — Gavea

22453-900 — Rio de Janeiro, RJ

Brasil

Tel. +55-21-529 9386 Telex +55-21-31048 Fax +55-21-511 5645
E-mail: rosane@inf.puc-rio.br

TOWARDS A LOGICAL ANALYSIS OF DESIGN:
Formal Software Engineering and Data Base Concepts

Paulo A. S. VELOSO and Antonio L. FURTADO
e-mail {veloso, furtado}@®inf.puc-rio.br

PUCRioInf MCC 15/95

Abstract. We analyze the various objects and arrows involved in conceptual
design of data base applications, aiming at clarifying the roles played by the
diverse language dichotomies: application vs. data model, static vs. dynamic, etc.
This analysis is suggested by the similarity with encapsulation and
implementation of data types in Software Engineering, which in turn leads to -
interpretation of specifications based on translation of their languages. The
central ideas come from the logical approach to formal specifications. We
emphasize the process of representing an application concept on a data model.

Key words: Data base architecture, conceptual design, data models, application concepts,
external schemas, internal schemas, software engineering, abstract data types,
formal specifications, interpretation, representation, translation.

Resumo. Analisam-se os vérios objetos e setas involvidos no projeto conceitual
de aplicagdes da bancos de dados, a fim de esclarecer os papéis desempenhados
pelas diversas dicotomias de linguagens: aplicagdo vs. modelo de dados, estatico
vs. dindmico, etc. Esta andlise é sugerida pela similaridade com encapsulamento
e implementagdo de tipos dados em Engenharia de Software, o que por sua vez
conduz a interpretagbes de especificagdes com base em tradugbes de suas
linguagens. As idéias centrais tém sua origem no enfoque légico para
especifica¢des formais. Da-se énfase ao processo de representagdo de um conceito
de aplicagdo em um modelo de dados.

Palavras chave: Arquitetura de bancos de dados, projeto conceitual, conceitos de aplicag@o,
esquemas externos, esquemas internos, engenharia de software, tipos
abstratos de dados, especificages formais, interpretagao, representagao,
tradugdo.

CONTENTS

1. INTRODUCTION
2. DATA BASE AND SOFTWARE ENGINEERING
3. INFORMAL PRESENTATION AND OVERVIEW
3.1 Example: Informal Presentation
3.2 Overview
4. SYNTAX AND BEHAVIOR
4.1 Application Languages
4.2 Data Model Languages
4.3 Application Behavior
4.4 Data Model Specification
5. TRANSLATING APPLICATION ON DATA MODEL
5.1 Classification of Vocabularies
5.2 Instantiation of Data Model for Application
5.3 Translation of Application into instantiated Data Model
5.4 Application Realizations from Translation on Data Model
6. APPLICATION REPRESENTATION AND EXTERNAL SCHEMAS
6.1 Interpretation of Application on Data Model
6.2 Extending Application and Representation
6.3 Application Representation and Users' Interfaces

7. CONCLUSION

REFERENCES

—r

o N O W W w NN

10
12
15
16
17
17
19
20

21

1. INTRODUCTION

Data base design involves several objects, such as external schemas and
data models, as well as arrows between them, such as representation of
application concept on data model. In this paper we use some formal
ideas from Software Engineering to put them in perspective: properly
regarded all such objects have the same nature, and likewise for the
intervening arrows. We aim at clarifying the roles played by the
diverse language dichotomies: application vs. data model, static vs.
dynamic, etc.

More specifically, we consider the ANSI-X3-SPARC architecture and
regard external schemas, application concepts, data models, and internal
schemas as abstract data types. Then, mappings between them, such as
user interfaces and representations on data models, are naturally seen
as interpretations between the associated specifications.

The situation is akin to the one in Software Engineering, where an
implementation of an abstract data type on a more concrete one
amounts to a translation of the abstract concepts into a cluster-like
module over the concrete data type [Guttag '77; Liskov & Zilles "77].

The central ideas come from the logical approach to specifications
[Turski & Maibaum '87; Veloso '87], which in turn relies on the simple
logical concepts of extensions and interpretations of axiomatic theories
[Enderton '72].

2. DATA BASE AND SOFTWARE ENGINEERING

The ANSI-X3-SPARC architecture suggests regarding analysis and
design of data base applications on three levels: external, conceptual
and physical. Important guidelines in this proposal are the notions of
independence, protection and integrity. To achieve them the idea of
data models appears naturally as an intermediate step between
application concepts and physical files.

A data ‘model supports -concepts purportedly of widespread
applicability. Lists and trees are data structures that are applicable in
various situations; so their properties have been carefully analyzed and
efficient implementations for them are available. Data models may be
seen as candidates to a similar role. An application deals with specific
objects and properties, whereas a data model is supposed to handle less
specific ones. In this manner a general data model may support a
variety of applications.

Independence, protection and integrity are important goals in Software
Engineering as well. Some conceptual tools towards these aims, such as
information hiding and encapsulation, have been put forward [Gehani
& McGettrick '86; Liskov & Zilles '77]. These ideas lead naturally to
abstract data types and formal specifications. An abstract data type has
an encapsulating signature providing access paths to its objects, whose

internal representation is hidden. To connect diverse data types some
translation between their signatures is required [Turski & Maibaum '87;
Veloso '87; Veloso & Maibaum '95].

For definiteness, we shall focus on representation of an application on a
data model. The analysis, however, will naturally carry over to user
interfaces for external schemas on an application concept, as well as to
implementation of a data model by physical files, if properly regarded.
We shall also comment on some methodological issues.

3. INFORMAL PRESENTATION AND OVERVIEW

For the sake of concreteness, we shall center our presentation around
an, admittedly simple, example of representation of an application on a
data model. The theoretical considerations, however, will be seen to be
general. Also, some methodological aspects can be adapted to other
levels.

3.1 Example: Informal Presentation

We shall consider as a running example a representation of a simple
academic data base on a version of the entity-relationship-attribute
data model.

Application: academic data base

As a simple-minded example consider an academic data base with
information about students and courses during an academic term. This
information concerns regular students, i. e. registered, courses listed as
offered, and courses taken by students by enrolling. Also, students may
drop courses and courses may be canceled as long as regulations are not
violated.

These university regulations are: students can take only courses that
are currently listed and an active student must remain active (during
the term), where active refers to students taking at least one course.
These regulations impose some constraints on the possible evolution of
the states. We see that the former constraint refers to a state of the
data base, thus being called static, whereas the latter involves its
present and future states, thus being dynamic.

Each student is identified by a unique registration number; and a course
has as attributes a title and a course code, the latter identifying it.

One wishes a data base for this application, i.e. one storing this
information and whose evolution complies with the above constraints.

Data Model: ERA data model

For the sake of simplicity, we shall consider a version of the ERA (short
for entity-relationship-attribute) data model [Chen '76], supporting
attributes only for entities but not for relationships [Furtado et al. '83].

One can, within an entity-set, create an entity, which then exists until it
is deleted. One can also link entities, provided they exist, via a

relationship, whereupon they become related under the relationship,
remaining so until they are unlinked. Attributes of entities have values,
which can be modified.

Of course, some variations are possible; we choose this version for
definiteness.

Representation of Academic Application on ERA Data Model

One usually regards modeling by the ERA model as displaying the
application in terms of boxes (for entities), diamonds (for relationships)
and ovals (for attribute values).

A representation of an application on a data model explains, by an
interpretation, the concepts pertaining to the former in terms of those
provided by the latter.

In our case one might, for instance, interpret:

"course c is listed" as "within entity-set 'Istd', c¢ exists",

"offer course c" as "create, within entity-set 'lstd’, entity c";
"student s takes course c" as "s is related via relationship 'tks' to c";
"enroll student s in course c" as "link, via relationship 'tks', s to c",
"the code of course ¢ is Math_1305" as "attribute 'cd' at ¢ has value
Math_1305".

3.2 Overview '

Since the data model is assumed to have available implementations, we
expect such a representation of an application on a data model to
provide an implementation for the application. Usually the parameter
sorts will be given an implementation by means of standard basic sorts
once and for all. We will consider an implementation of the data model
using this given implementation for the parameter sorts of the
application. We then use the representation of the application on the
data model to "extract" an adequate realization for the application.

When one takes a closer look at the situation, one notices that distinct
languages - oriented to application and to data model - are involved. To
clarify this situation we shall examine in more detail the languages and
specifications involved.

4. SYNTAX AND BEHAVIOR

Applications and data models can be given more structured descriptions
by relying on (many-sorted) signatures involving sorts (denoting
domains), predicates (for relations) and operations (for functions)
[Enderton '72; Ehrig & Mahr '85].

4.1 Application Languages

One can view an application data base at the information level, focusing
on its content and queries, or at the manipulation level, which
emphasizes how the content is altered [Casanova et al. '84; Veloso &
Furtado '86]. Both levels share a common set Srt of sorts.

Application Sorts

In our example we recognize four sorts, namely
Std and Crs, as well as Rg_nbr, Cr_cd and Cr_nm.

We may regard the sorts Rg_nbr, Cr_cd and Cr_nm as parameter sorts
of the application.

Query Languages

To express application queries we use predicates and operations,
involving the above sorts, forming the application query signature Qry.

As queries we have predicates as follows:

unary predicates rglr, over sort Std, and Istd, over sort Crs,
binary predicates: tks, over sorts Std and Crs, as well as
ttl, over sorts Crs and Cr_nm, and cd, over Crs and Cr_cd;
and as operation query we have id, from Std to Rg_nbr.

Notice that some, not crucial, decisions have been taken concerning
which informal connections are operations or predicates. Also, by
categorizing these symbols by way of boxes, diamonds or ovals we
would be paving the way for an ERA representation.

By adding variables for the sorts we obtain a static query language QOry.
We may then express some (static) properties of the application queries
by means of sentences of this language. For instance, the above static
constraint concerning students and courses may be expressed by
(Vx,:Crs)(Vx;:Std) [tks(xq,X5)—Istd(X5)].

This language caters to a static view focusing on snapshots of the
application. The evolution of the data base involves several states; by
extending the language with modalities, such as [] for always (in every
future state), we may express some dynamic properties. For instance,
the above dynamic constraint might be expressed as
(Vx4:Std) [actv(x;)—[Jactv(xy)], where actv(x;) is an abbreviation for

(3x,:Crs) tks(x(,X3).
Manipulation Language

Updates may be thought of as transformations on states. Our application
languages still do not include symbols for the updates. Our application
has a set Stp of updates, generating single-step transitions, such as
unary update rgstr {with rgstr(s) registering student s:Std},

unary update offr {with offr(c) offering course c:Crs};

binary update enrll {with enrll(s,c) enrolling student s:Std in course
c:.Crs}.

It also has an initialization

constant strt {for initializing the data base}.

By adding such symbols we obtain a language Mnpl for the application
at the manipulation level. In this manipulation language we may
express some properties of the updates; in particular their effects on

predicates, for instance [rgstr(s)>rgir(s) and [offr(c)>Istd(c), in a notation
reminiscent of that of dynamic logic [Harel '79]. Notice that in these
languages the state is hidden, and implicitly referred to through
modalities, such as [] and [rgstr(s)>. (In other words, updates may be
thought of as having a hidden global state parameter.)

4.2 Data Model Languages

We shall consider static, repertoire and encapsulation views of our ERA
data model, with corresponding signatures and languages.

ERA Sorts

In our ERA data model we have the following sorts:

A (for attributes) and V (for attribute values);

E (for entities), and T (for entity-sets), as well as

Ry (for m-ary relationships), for each positive natural k

These sorts will be shared by the diverse data model signatures and
languages. We may regard the non-entity sorts as parameter sorts of
the ERA data model.

Static Syntax

We need (predicate) symbols for expressing existence of entities, their
entity-sets, as well as their relatedness under relationships. They form
the ERA static signature Stat.

The ERA predicates are:

a unary predicate exs, over sort E,

a binary predicate e_st, over sorts T and E,

an k-ary predicate rltdy, over sorts Ry,E,...,E, for each positive natural
k.

We also have a ternary predicate hs_vl, over sorts A, E and V. (We
could alternatively consider a binary operation val, from A and E to V.)

By adding variables for the sorts we obtain a language. We may then
express some (static) properties of the data model by sentences of this
static language. For instance, the property that each existing entity is
within some entity-set might be expressed by
(Vx:E) [exs(x)— (3y:T)e_st(x,y)], and the property that only existing
entities can be related by sentences, involving quantification over

relationship variables, like
(Vx1,X5:E) { [Az:Ry)rltdy(z,x1,X2)] - [exs(x)Aaexs(Xp)] }-
Repertoire syntax

The above language takes a static view regarding the data model
instantaneously through snapshots. Its evolution involves several states
that we wish to place under control of a repertoire Rprt of operations
(symbolizing update and initializations).

To handle evolution, we now wish to refer explicitly to states and
transformations on them. So, we add to the preceding sorts an explicit
state sort *, where these operations take values.

The ERA repertoire consists of:

a ternary operation crt:(T,E,x)— = {creating, with entity-set t:T, entitity
eE},

a (k+1)-ary operation Inky:(Ry,E,...,E,*)—# {linking, via r:Ry, entities
€r,...,ex:E}, for each positive natural k,

a constant (nullary operation) init:—* {initializing the state};

a quaternary operation mdf:(A,E,V,x)—* {modifying the value of
attribute a:A on entitity e:E to value v:V},

a binary operation dit:(E,x)—*, {deleting entitity e:E},

a (k+1)-ary operation unlky:(Ry,E,...,E,x)—=* {removing relationship r:Ry
among entities ey,...,ex:E}, for each positive natural k.

By adding variables for the sorts we obtain a language, where some
properties of the repertoire may be expressed. A simple example is
crt(x,y,crt(x',y',n))=crt(x',y',crt(x,y,n)), where n:*.

A structure R for the repertoire Rprt provides realizations for its
symbols: nonempty domains for its sorts and functions for its
operations. Thus, we have an initial state R[init]e A[*]; also for each
update and values in the non-state domains we have an update
invocation, say R[crt(t,e)]:R[*]— R[x]. Sequences of such update
invocations starting with the initial state are called traces [Veloso &
Furtado '84] and describe a state. We call such a structure R state-
named when its state set R[] is finitely generated [Ehrig & Mahr '85] by
its traces: each state oe R[*] is the value R[t] of some trace t. Notice that

such a state-named structure realizes the idea of encapsulation: its state
is manipulated only by the operations provided.

Encapsulation syntax

The static and repertoire signatures, sharing the common sorts, may be
combined into an encapsulation signature Encpsl. We can then express
properties of updates. For instance, we can write some effects of the
update crt in the form: exs*(e,crt(t,e,0)) to mean that entity e exists in
the state attained from state o by creating, with entity-set t, entitity e.

The reason why we have used exs*, instead of the simpler exs, is that
the latter is a unary predicate over sort E whereas the former is a
binary predicate over sorts E and . We shall later see that this is

change is ineffectual, amounting almost to syntactic sugar.

The static signature Stat consists of sorts, such as E and T, and static
predicates, such as exs and rltd;. We now wish to regard these
predicates as dynamic, in that they now depend also on an explicit state
argument. We thus have, for instance, the predicates:

binary predicate exs*, over sorts E and *;

a binary predicate e_st*, over sorts T, E and *;

(k+2)-ary predicate rltd*y, over sorts Ry,E,... ,E and *, for each positive
natural k.

In general, each static m-ary predicate p, over sorts sj,...,Sp, in Stat has
a dynamic version with explicit state sort: (m+1)-ary predicate p*, over
SOrts Sq,...,Sp.* in Stat*; so each static formula ¢(vy,...,vy) has a dynamic
counterpart @*(Vy,...,Vp.n). For instance, the above static sentence <t
concerning entities and entity-sets has as its dynamic counterpart T*(n)
the formula (Vx:E) [exs*(x,n)— (Qy:T)e_st*(x,y,n)], with (Vn:*) t*(n)
expressing that it always holds.

In this language we can describe some properties of updates, such as
their effects on the static predicates and operations. For instance, with
implicit universal quantification,

[exs*(xy,m)Aexs*(Xy,n)]—rltd*(z,X ,X2,Ink5(2,X,X2,n)) and
{rltd*y(z,x},X2,M)— [dIt(xy,n)=nAdlt(x2,n)=n]}.

4.3 Application Behavior

A structure for the application will amount to a possible evolution of
the data base; as such, it consists of instantaneous states obtained by
invocations of its traces. By a realization for the application we mean
such a structure that exhibits the specified behavior.

Static Behavior of the Application

The static behavior of the application concerns each instantaneous state:
a structure for the query signature. It is required to satisfy the declared
static constraint

Stt: (Vx4:Crs) [(3x:Std)tks(xq,X5)—1std(x5)].

The static constraint is to hold at every state; so it should be understood
as [Stt. The states satisfying the static constraint are called (statically)
valid, forming a set Val of structures for the query signature.

Dynamic Behavior of the Application

We also have restrictions involving more than one state. For instance,
the dynamic constraint concerning active students

Act: (Vx,:Std) [actv(x;)—[Jactv(xy)]; where actv(x,;) abbreviates
(3x,:Crs) tks(xy,X53).

Also, since the parameter sorts will usually be given an implementation
in terms of primitive sorts, one would normally wish, say, the
registration number of a student to remain stationary during the
evolution of the data base. Query operations, such as id, and predicates,
such as cd, with this property will be called stationary.

These requirements impose some constraints on the behavior of the
application updates. For instance, a student should not be allowed to
enroll in a course that is not listed.

State-explicit Version of Static Behavior

The languages used so far for describing application behavior rely on
hiding the state, implicitly referred to via modalities. Another, more
expressive, alternative introduces an explicit state sort, thereby
obtaining versions of the application languages with explicit state.

We first extend the sorts of the application by adding an explicit state
sort *: Srt*:=Srtu{*}. We now wish to replace symbols with implicit state
by their explicit-state versions.

We obtain Qry* from Qry by replacing each static query by its explicit-
state version, as follows:

we replace each non-stationary query,

such as rglr over sort Std, by rgir*, over sorts Std and *;

we keep the stationary queries, such as id and cd, as they are.

We thus obtain the explicit-state version of the query language of the
application. Notice that the stationary behavior of id and cd is already
built onto this syntax. But, in this language we can express stationary
behavior; for instance, if one later wishes course titles to become
sationary, by Sttnr[tt]*]: '

(Vx:Crs)(Vu:Cr_nm)(VE,{:#) [tt1*(x,u,E) e tt1*(x,u,0)].

State-explicit Manipulation Behavior of the Application

In a similar spirit we introduce explicit state argument for the updates
and initialization, thereby obtaining their explicit-state versions. We
shall have, for instance, update operations, such as rgstr*:(Std,*)—* and

enrll*:(Std,Crs,*)— *, as well as a constant initialization strt* of sort *.

We thus obtain an explicit-state version Mnpl* of the manipulation
signature of the application. In its language we can express properties
of updates and queries. For instance,

Istd*(c,n)— (Ix:Std)tks*(x,c,enrll*(s,c,n)) for

Istd(c)— [enrll(s,c)>(Ix:Std)tks(x,c)].

4.4 Data Model Specification

A data model specification describes its possible behaviors by means of
sentences of its languages. A structure for the signature satisfying these
sentences is a data model realization.

Manipulation Specification of the Data Model

The manipulation specification Dt_Mdl of the data model consists of
sentences of the manipulation language, with explicit state sort,
describing properties of its symbols. For instance, inertia, effect and
frame axioms like (with implicit universal quantification):
—[exs*(x,n)aexs*(Xg,)] 1nka(z,X4,X2,n)=n;
[exs*(x1,n)Aexs*(Xq,n)]—>rltd*2(z,X1,X5,10k9(2,X,X5,1));
[lnk2(z,x1,x2,§)=§/\—-.(x'lleAx'zzxz)]a[rltd*2(z,x'1,x'z,i)(—)rltd*z(z,x'l,x'z,C)],
Ink,(z,X4,X5,E)=C—[exs*(x,E)rexs*(x,0)].

From this manipulation specification one can derive some properties
involving sentences of its sub-languages: constraints supported or
imposed by the ERA data model.

Dynamic Constraints supported by ERA

Some consequences of the manipulation specification can be regarded as
constraints on the operations of its repertoire: dynamic constraints
supported by the data model. For instance

(VN:%)(VZ:Rp)(VX(,X5:E) {rltd*(z,X1,X5,n)—[dlt(x),m)=nAdlt(x,,n)=n]}.

Static Constraints supported by ERA

Sentences of the static language that follow from the manipulation
specification can be viewed as static constraints supported by the data
model. Among these we have, for instance

[exs*(x,n)—>3y:T)e_st*(x,y,n)] as [exs(x)—>(Iy:T)e_st(x,y)], and
{rltd*»(z,X1,X7,n)— [exs*(x;,n)Aexs*(X,n)]} as
{rltd»(z,x¢,X5)—>[exs(x;)Aexs(x2)]}.

Sort Constraints imposed by ERA

As expected, the above specification places no requirement on the
nature of the ERA parameter sorts. For instance, given arbitrary
nonempty sets W and S, there exist realizations D for its static signature
Stat with these sets realizing value and entity-set sorts: D[V]=W and

D[T]=S.
5. TRANSLATING APPLICATION ON DATA MODEL

Now that we have languages for application and data model, we may
describe in more detail the representation informally hinted at above.
Our suggestion already uses the semantics of the data model to enforce
part of the behavior intended for the application.

This suggestion represents attributes in terms of hs_vl. As examples, for
c:Crs: ttl(c,n), with n:Cr_nm, is represented by hs_vi('ttl',c,n), and
cd(c)=d, with d:Cr_cd, by hs_vl('cd',c,d).

The other predicates are represented in terms of existence and
relationships. For instance, with c:Crs, Istd(c) is represented by
st_ex('Istd',c), where st_ex(y,x) abbreviates exs(x)ae_st(y,x); whereas
tks(s,c) is represented by rltd,('tks',s,c), and rglr(s) by rltd ('rglr',s),
where s:Std.

The updates of the application are represented in terms of those of the
data model. For instance, offr(c) is represented by crt('Crs',c,6), enrll(s,c)
by Ink,('tks',s,c,c), and rgstr(s) by Ink;('rglt',s,c).

This representation was naturally described in parts: query and update
representations. It can also be regarded as consisting of three steps:
first classify application with respect to the data model, then instantiate
the latter for the former, as a preparation for the third step, namely

translation (and interpretation). We now turn to a closer look at these
stages.

5.1 Classification of Vocabularies

We represent the application updates by means of the repertoire of
operations of the data model. It remains to represent the query
signature of the application in terms of the static syntax of the data
model. For this purpose, we first categorize the symbols of the
application query signature Qry by means of boxes, diamonds and ovals.
This involves classifying application sorts and queries (predicates or
operations) in terms of the ERA categories. Our classification will mirror
the preceding informal suggestions.

Sort Classification

We classify application sorts in Srt as value or entity sorts:

sorts Rg_nbr, Cr_cd and Cr_nm as value sorts, and

sorts Std and Crs as entity sorts.

Query Classification

We classify the query predicates and operations of Qry as valued, entity
or relationship: |

queries ttl as well as id and cd as valued attributes,

query lIstd as entity predicate,

queries rglr and tks as relationship predicates.

Notice that this classification mirrors the preceding informal
suggestions.

5.2 Instantiation of Data Model for Application

Instantiation is a preparatory step for translation. The application
concerns specific relationships, whereas the data model deals with
arbitrary ones. Thus, we extend the data model signature by adding
constants and predicates, to code, and be able to recover, information
expressed in the application language. For this purpose, we add to the
signature of the data model appropriate symbols so as to capture the
syntax of the application.

Static Query Instantiation

We extend the data model signature with symbols according to this
classification. We add relativization predicates corresponding to the
value sorts and then constants corresponding to the other application

symbols. ,

We first instantiate the data model for application sorts, according to
the sort classification, by adding relativization predicates and constants.
Corresponding to the value sorts we add unary relativization predicates
over sort V:

value relativization predicates "Rg_nbr", "Cr_cd" and "Cr_nm" over sort
v;

10

and corresponding to the entity sorts we add constants to sort T:
entity-set constants 'Std' and 'Crs' to sort T.

We now extend the sort instantiation for application queries, according
to the query classification, by adding constants into appropriate ERA
sorts.

Corresponding to the valued attributes we add constants to sort A:
attribute constants 'ttl', 'id' and 'cd' to sort A;

corresponding to the entity predicates we add constants to sort E:

entity constant 'Istd:E for entity query Istd;

and corresponding to the relationship predicates we add constants into
proper sorts Ry's:

relationship constant 'rglr':R; for unary relationship predicate rgir;
relationship constant 'tks':R, for binary relationship predicate tks.

This instantiation process also carries other application symbols, if any,
in a natural way; for instance, it would carry application constants
John_Doe, of entity sort Std, and Math_1305, of value sort Cr_cd, to
instantiation constants John_Doe, of sort E, and Math_1305, of sort V. So,
instantiation adds symbols (mainly constants and unary relativization
predicates) to the data model signature, whereby an instantiated
signature StatQry arises.

Since relativization predicates are intended to represent application
sorts, one wishes them to be nonempty. A structure [/ for the
instantiated signature will be called proper when the realization of each
relativization predicate is nonempty, e. g. /["Cr_cd"]#@. This requirement
can be expressed by a set of sentences, like (Ju:V) "Cr_cd"(u), of the
instantiated language.

A simple property of this instantiation process is:

any structure D for the signature Stat of the data model can be
expanded to a structure DA for the instantiated signature StatQry
which is proper.

Dynamic Query Instantiation

We now obtain a dynamic version of the instantiated signature StatQry
by replacing each static predicate or operation p by its dynamic version
p*, as above. But, since we wish the added relativization predicates to be
stationary, we keep them as they are, adding state sort only to the
remaining predicates. For instance, we have a predicate exs*, over sorts
E and *, but keep relativization predicate "Cr_nm" over sort V.

In other words, we may regard the dynamic instantiation as extending
the dynamic version Stat* of the static signature of the data model with
respect to the state-explicit query signature Qry* of the application. We
then have a dynamic instantiated signature StatQry* with symbols for
the state-explicit query signature of the application. A structure M* for
the dynamic instantiated signature StatQry* has a reduct M to its static

11

sub-signature StatQry with the same realization for each relativization
predicate.

5.3 Translation of Application into instantiated Data Model

Having prepared the data model by instantiation, we can now translate
the application concepts in terms of those of the instantiated data
model. We can proceed by levels: first information (translating queries),
then manipulation (translating updates and initialization).

Static Query translation

We translate from Qry to StatQry, by relying on the categorization of
application symbols.

We translate valued attributes in terms of hs_vl, e. g.

valued predicate query ttl(x,u), with x:Crs and u:Cr_nm, to
hs_vi('ttl',x,u),

valued operation query id(x)=u, with x:Std and u:Rg_nbr, to
hs_vi('id',x,u).

We translate entity predicates in terms of st_ex(y,x), i. e.
exs(x)Aae_st(y,x):

entity predicate query Istd(x), with x:Crs, to st_ex('lstd',x).

We translate relationship predicates in terms of appropriate rltdy:
unary relationship predicate rgir(x), with x:Std, to rltdy('rglr',x);
binary relationship predicate tks(x;,X;), with x,:Std and x,:Crs, to
ritd,('tks',x1,X5).

This translation process relies on a translation of sorts s:Srt— StatQry
with relativization:

we translate value sorts to V with the given relativization predicate, e.
g.

(u:Cr_nm) to (u:V) with relativization "Cr_nm"(u).

we translate entity sorts to E with the relativizations defined via
e_st(y,x),:

(x:Std) to (x:E) with relativization e_st('Std',x),

(x:Crs) to (x:E) with relativization e_st('Crs',x).

Our query translation q:Qry— StatQry maps the symbols in the
application signature Qry to corresponding ones in the instantiated
signature StatQry of data model. By translating variables in the natural
manner and relativizing quantifiers, we obtain a translation q mapping
a formula ¢(vy,...,vp) of the application language to formula
ql@(vy,...,vy)] of the instantiated data model language. For instance,
application formula (Vx:Crs)(Ju:Cr_nm)ttl(x,u) is translated to formula
(Vx:E) {e_st('Crs',x)—>(3u:V)["Cr_nm"(u)ahs_vi('ttl',x,u)]}.

One would also desire (backward) induction of structures: a proper
structure /for the instantiated signature inducing a structure /; by using
translation q.

12

For a value sort, say Cr_nm, Iq[Cr_cd]:=I["Cr_cd"], a subset of /[V],
whereas for an entity sort, say Std, we have Iq[Std]:=I[e_st('Std',x)], a
subset of /[E]. For a valued predicate, such as ttl, we have a subset
IfThs_vi('ttl',x,u)] of ITE]1 X I[V], and we take
Iq[ttI]:=I[hs_vl('ttl',x,u)]n(Iq[Std]xlq[Cr_cd]); for an entity predicate, say
Istd, we have a subset /[exs]n /[e_st('Istd',x)] of [[E] and set
Iq[lstd]:=(l[exs]nI[e_st('lstd',x)])nIq[Crs]; finally for a relationship
predicate, such as tks, we have a subset /[rltd;('tks',x;,X5)] of [E]XI[E], so
we put Iq[tks]::l[rltdz('tks',xl,xz)]n(lq[Std]XIq[Crs]).

We wish this backward induction to produce a structure for the
application signature Qry. For this, /;[Crs]:=/[e_st('Crs',x)] should be a
nonempty set. Also, for valued operation id this process produces a
relation Iq[id]gIq[Std]xq[Rg_nbr], which should be a total function from
Iq[Std] into Iq[Rg_nbr]. The situation is similar to the case of
interpretation with relativization predicates [Enderton '72]: these
requirements for syntax preservation can be expressed by a set ClsQry
of closure sentences of the instantiated language. For instance,
(3 x:E) e_st("Crs',x) and
(Vx:E) {e_st('Std",x)—>(F':V) ["Rg_nbr"(u)ahs_vl('id',x,u)]}. A proper
structure for signature StatQry satisfying these closure requirements
will be called properly closed.

We then have backward induction, as desired:

every structure /for the instantiated signature StatQry that is properly
closed induces a structure /; for the application signature Qry.

Notice that, by construction, the induced structure exhibits the expected
behavior, e. g.1g4 satisfies
(VX1,X5:E) {rltdo('tks',x;,x,)—[e_st('Std',x{)ae_st('Crs',x5)]}.

A consequence of these processes is a translation lemma (much as in
[Enderton 72, p. 161]):

given an assignment a,,...,ay in the domains of properly closed /

lq B @(vy,...,Vp) [ag,....ay] iff 1D qlo(Vise.o V)] [ag,...a015

where we use /D> ¢@(v) [a] for satisfaction.

The above mapping q from the application signature to the instantiated
signature is injective. So, we also have forward induction of structures:

every structure A for the application signature Qry induces a structure
A4 for the instantiated signature StatQry, which is properly closed;
moreover forward and backward inductions are inverses to each
other: (Aq)q=A. ‘

This situation is similar to the familiar reduction of many-sorted logic to
unsorted logic with relativization predicates [Enderton '72]. As such, we
have a faithful translation preserving definability. This means that we
can replace the application language by that of the instantiated data
model without any loss of deductive or expressive powers.

13

For instance, the application uses formula (3x,:Crs) tks(xy,x;) to talk
about the application concept active students; we can use instead its
translation (3x,:E) [e_st('Crs',x)arltd,('tks',x;,X3)], because they define
t h e s a m e s et s
A[(3x,:Crs) tks(x1,X;)]=/[(3%,:E) [e_st('Crs',xy)arltds('tks',x1,X5)]1]

whenever A and / correspond to each other.

Another property of this instantiation process is:

given an arbitrary nonempty set W, there exists a data model
realization D with D[V]=W whose expansion DA to the instantiated
signature StatQry is properly closed.

Dynamic Counterpart of Static Query Translation

The application deals with the state implicitly via modalities, whereas
the ERA data model has an explicit state sort. So, we wish to adapt our
query translation q:Qry— StatQry to a version with explicit state sort *.

Recall that a dynamic counterpart is obtained by replacing each static
predicate or operation p by its version p* with explicit state. But, we
now have two such versions: explicit-state version Qry* on the
application side, and dynamic version StatQry* for the instantiated data

model.

The query translation q induces a natural dynamic translation g*: given
application query a, with query translation ad=i, translate its explicit-
state version a*(n) to i*(n). By construction, applying translation q* to
the application explicit-state version is the same as applying the static
translation q and then obtaining its dynamic counterpart in the
instantiated data model. For instance, consider an application formula 6,
say (3x,:Crs)tks(x,X,), its query translation q[8] is formula
(3x,:E)[e_st('Crs',x)Arltd('tks',x,X5)]. Now, the explicit-state version 6*
is (3x,:Crs)tks*(X;,X,,n), wWhich q* maps to the dynamic version (q[6])* of
q[61, namely (3x,:E)[e_st('Crs',xy,n)Arltd*;("tks',x1,X5,n)]. Similarly, since
qlid(x)=ul=[hs_v1('id',x,u)]- q* maps it to hs_v1*('id',x,u,n), and thus
q*[id(x)=u— (Ix,:Crs)tks*(x;,%x2,mn)] becomes
hs_vI*('id",x,u,n)— (3x,:E)[e_st('Crs',xp,n)arltd*,("tks', x|, X2,n)].

The dynamic translation q* maps the explicit-state version Qry* of the
application query signature into the dynamic version StatQry* of the
instantiated data model signature. Thus, the previous induction of
structures carries over to the dynamic case:

we have bijections between structures M for the dynamic instantiated
signature StatQry*, whose static reducts M, are properly closed, and A
for the explicit-state version Qry* of “the application query signature,
which are inverses to each other.

Also, if M and A correspond to each other then:

1. M[«]=A[«] and their static reducts M, and A, correspond to each other

as well;

14

2. M > o*(v,n) [a,0] iff A D y*(¥,n) [a,06] whenever qlo(v)]=y(¥).
Manipulation translation

We can now complete the translation of the application to the
instantiated data model by explicating updates of the former in terms
of those of the latter. In accordance with our informal suggestion, we
extend the dynamic counterpart s* of our sort translation s:Srt— StatQry,

We translate application state-manipulating operations as follows:

initialization strt to init;

update offr(x), i. e. offr*(x,n), to crt('lstd’.x,n);

update rgstr(x), i. e. rgstr*(x,n), to Ink;('rglr',x,n),

update enrll(x;,X,), i. e. enrll*(xy,X,,m), to Inky('tks',xq,X2,Mm).

We thus have a translation u:Mnpl— EncpsIMnpl* or equivalently

u*:Mnpl*— EncpsIMnpl*, mapping query and update symbols of the

application manipulation signature to corresponding ones in the full

instantiated signature EncpsIMnpPl* of data model. By translating

variables as before, we achieve translation of formulas: an application

formula, such as Istd*(x,,n)— (3x:Std)tks*(x,Xx,,enrll*(x;,X;,n)), is

translated to - a formula like

st_ex*('lstd',xz,n)—)(Elx:E)[st_ex*('Std',x)/\rltd*z('tks',x,xz,lnkz('tks',xl,xz,n))]
As for the peceding translations, we have backward induction of

structures:

every structure M for the full instantiated signature EncpslMnpl*, with

properly closed static reduct, induces a structure M, for the state-

explicit application signature Mnpl*.

Notice that M, [*]=M[x] and, e. g. Mu[Crs]=Mq[Crs]. Thus, we have

initialization M y[strt*]:=M[init]le M[+], and updates, such as

Mu[offr*]:Mq[Crs]xM[*]->M[*], defined by M,[offr*](c,0):=M[crt](M['lstd'],c,0)

and M‘u[rgstr*]:Mq[Std]xM[*]——> M [=] by

My [rgstr*1(s,0):=M[Ink;](M['rgstr'],s,0).

Since our extension u of q* remains injective, we still have forward
induction of structures:

every structure A for the state-explicit signature Mnpl* of the
application induces a structure Av for the full instantiated signature
EncpsIMnpl* with properly closed static reduct; moreover forward and
backward inductions are inverses to each other: (A%),=A; also, if M and
A correspond to each other and u[e(v,n)]=y(¥.n):

M > o(v,n) [a,c] iff A D> y(yn) [a0].

5.4 Application Realizations from Translation on Data Model

Let us now examine how one can extract a realization for the
application from one for the instantiated data model by combining the
preceding constructions.

15

Consider nonempty sets Rgn, Crd and Cnm, as possible realizations for
the application parameter sorts Rg_nbr, Cr_cd and Cr_nm of the
application.

As mentioned, we have a data model realization D with
D[V]=RgnuCrduCnm and properly closed expansion DA to the
instantiated signature StatQry. Notice that, e. g. DA["Cr_cd"]=Crd.

Now, structure DA for the full instantiated signature EncpsiMnpl*

induces a structure (DA), for the state-explicit application signature
Mnpl*.

Notice that for an application parameter sort, say Rg_nbr, we have
(DA)u[Cr__cd]=(DA)q[Cr_cd]=DA["Cr_cd"]:Crd.

Thus, given possible realizations A[v] for the application parameter
sorts, we have a realization (DA), for the state-explicit application
signature with (DA),[v]=A[v].

Moreover, since forward and backward inductions are inverses to each
other, for any application formula ¢(y,n), with translation
u[e(¥x,n)]=y(¥.,n), we have (DA), > o(x,n) [a,0] iff DA > y(xn) [a.c].
Thus, any specifiable behavior for the application can be described on
the instatiated data model. For instance, for a course ce (DA),[Crs],
application be havior
(DA), D> (VE,:#)(Vu:Cr_nm) [ttI*(x,u,§) tt1*(x,u,8)] [c] is equivalent to
DA > (VE,:#)(Vu:V) {"Cr_nm"(u)— [hs_vI*('ttl',x,u,§)>hs_vI*('ttl',x,u,0)]}
[c].

Hence, (DA), is a realization for the state-explicit application signature
Mnpl*, obtained from possible realizations for the application parameter
sorts, where we can faithfully reason about the application properties,
as expressed by application formulas ¢(y,n), via their translations

ufe(x,n)].
6. APPLICATION REPRESENTATION AND EXTERNAL SCHEMAS

In the preceding section we have examined the process of translating
an application on a data model in terms of their languages. It involves
instantiating the signature of the data model with respect to that of the
application and then translating the application signature into the
instantiated signature. We have noticed that each such process has two
dimensions: static, for queries, and dynamic, for updates. The combined
effect of is a process, whereby each properly closed realization for the
data model signature induces one for the application signature.

In representing an application on a data model we wish the induction
process to provide a realization for the application, i. e. the induced
realization should exhibit the required behavior.

16

6.1 Interpretation of Application on Data Model

A data model realization D gives rise to structure (DA), for the state-
explicit application signature Mnpl*, which has a state-named
substructure DT. We wish the latter structure D' to be a realization for
the application. One way to guarantee this goal is by checking
preservation of properties. This involves examining their specifications:
the instantiated data model should be specified so that the translation
becomes an interpretation of specifications [Shoenfield '67; Turski &
Maibaum '87].

More specifically, what is required is that for each application
constraint, static or dynamic, its translation will be satisfied in the
realization DT induced by the chosen data model realization.

For instance, consider the application static constraint Stt. Its translation
q[Stt] is (equivalent to) the conjunction of the following two sentences
of the instantiated language

e: (VX{,X5:E) {[e_st('Std',x;)ae_st('Crs',xp)Arltd,("tks',x,X)]>exs(x3) }

A:

(Vx1,X5:E) {[e_st('Std',x;)ae_st('Crs',xp)Arltd('tks',x;,x5)]—>e_st('lstd’,x5) }.
Now, our data model already supports some constraints, a static one
being (Vz:R,)(VX,X;5:E) [rltds(z,X1,X5)—> exs(X)Aexs(X,)]. From its
particularization (Vx;,x,:E) [rltd,('tks',x,X5)—>exs(X1)Aexs(X;y)] we see
that € is a consequence of the the static constraints supported by the
data model. To guarantee A, one may, for instance, refine the translation
of tks(x;,%x;) to rltdy('tks',x;,X;)]ae_st('lstd’,x,) (or, equivalently, refine
the translation of update enrll). Then, the application structure induced
by a properly closed data model realization will satisfy the application
static constraint.

On the other hand, consider the expected behavior that id remains
stationary, expressed in translation say by
[e_st('Std’,x)A"Rg_nbr"(u)]-[hs_v1*('id',x,u,E)e>hs_v1*('id',x,u,{)]. Since the
latter formula is not a constraint supported by the data model, we have
to add its universal closure as one of the axioms to obtain the
specification of the instantiated data model.

We shall leave the dynamic constraint for later.
6.2 Extending Application and Representation

So far we have not paid much attention to the application updates cncl,
to cancel a course, and drp, for a student to drop a course. Thus, we may
say that we have represented only part of the application. We now wish
to complete the representation by including them. Alternatively, we
could view this stage as extending an application and a representation.

The previously examined instantiation of data model for application
extends the signature of the former by adding constants and
relativization predicates corresponding to the symbols of the latter.

17

Application Extension

Imagine that we extend our restricted application by adding two new
updates: cncl, to cancel a course, and drp, for a student to drop a course.

Since we still wish the static constraint to hold, we would impose
requirements on the new updates, such as:
(VX,:Crs) [(3x,:Std)tks*(x{,X,,n)—>cncl*(x,,n)=n] and
[—=(3x:Std)tks*(xq,X.8)Acncl(X,,6)=C]—

—{=lstd*(X5,8)A(VX:Crs) [—x=X,—(Istd*(x,E) > Istd*(x,0)] }.
Extension of Representation
An extension of our translation so as to cover the extended application
can be obtained by translating the new updates as follows:
cncl*(x,n) to dit(x,n),
drp*(x,X5,n) to unlky('tks',xy,X5,8).
To guarantee that this extended translation still preserves properties,
one should check the translations of the new axioms added as
requirements.
For instance, consider the first axiom 7 about cncl. Its translation q[y] is
(equivalent to) the following sentence of the instantiated language
(Vx,:E) {[e_st('Crs',x)A(3x:E)(e_st('Std',x)arltd*,("tks',x,X5,8))] =>dlt(x;,
&=L}
A dynamic constraint supported by our data model, as seen in 4.4, is
(VZ:Rp)(VX,X5:E) {rltd*s(z,x1,X5,8) - [d1t(x,§)=EAdlt(x5,6)~E] }, which entails
(Vx5:E) {[(3x:E) ritd*,('tks',xy,X5,§)] > dlt(x,,§)=E}. So, we see that the
translation q[x] of x is a consequence of the dymamic constraints
supported by the data model, hence, the application structure induced
by a properly closed data model realization will satisfy axiom ¥x.

Let us now examine the dynamic constraint Act, which we have
postponed.

A data model realization D gives rise to state-named structure DT. Now,
Act will hold in such encapsulated structure DT provided it holds for
each single-update transition, e. g.

(VX,X1:Std)(Vx,:Crs)(VE,L:#) {[actv*(x,E)aenrll(x,X,,E)=C]—actv*(x,{)} and
(VX,%:Std)(VX5:Crs)(VE,§:) {[actv*(X,E)Adrp(Xy,X,,E)=C]—>actv*(x,0) }.

Consider the latter case and call it 5. We know that Dt > & iff
(DYY* > u[§]. Since we cannot guarantee the latter, we are led to
refining the translation of drp to:

if (3x:E) [e_st('Std',x)arltd*,('tks',x,X,E)] then € else
unlk,('tks',xq,X5,8).

By refining the translations and adding appropriate axioms, we obtain a
specification Dt_MdIAPP! for the instantiated data model extending
specification Dt_Mdl for the data model. Then our translation
u*:Mnpl*— EncpsIMnpl* will become an interpretation of specifications

18

and, as a result, every data model realization will give rise to a
realization for the application.

6.3 Application Representation and Users' Interfaces

We may wish to extend our application even further to cover both
teaching and research activities. For this purpose, we extend our
application signatures by adding a new sort Fclt (for faculty members);
query predicates tchs (with tchs(f,c) intended to mean that faculty
member f:Fclt teaches course c:Crs) and advs (with advs(f,s) intended to
mean that faculty member f:Fclt advises research of student s:Std); as
well as updates assgn (with assgn(f,c) assigning faculty member f:Fclt to
teach course c:Crs), sprvs (by sprvs(f,s) faculty member f:Fclt begins to
advise research of student s:Std), and rlss (rlss(f,s) mirroring that
faculty member f:Fclt ceases to advise research of student s:Std). Let us
call Univ this extended application. Notice that, if one wishes the course
assignment to remain stationary, this can be expressed, as before, by
(Vxy:Fclt)(Vx,:Crs)(VE,L:+) [tchs*(xq,X5,8)>tchs*(Xy,X5,0)].

A natural extension of our representation to cover Univ is by
translating: .

(x:Fclt) to (x:E) with relativization e_st('Fclt',x), for sort Fclt;

tchs(x;,X;), with x;:Fclt and x,:Crs, to rltdy('tchs’,x;,x;) for query
predicate tchs,

advs(X{,X,), with x;:Fclt and x,:Std, to rltdy('advs',x;,x;) for query
predicate advs;

assgn*(Xy,X,,n), with x;:Fclt and x,:Std, to Inkj('tchs',xy,X,,n), for update
assgn,

SPrvs*(xy,X,,m), with x;:Fclt and x,:Std, to Ink,(‘advs',xy,x;,n), for update
SPrvs,

rlss*(x1,X,,n), with x;:Fclt and x,:Std, to unlk,(‘advs',xy,X,,n), for update
rlss.

We would thus represent our extended application Univ on the ERA
data model, much as before by guaranteeing the required behavior.

Now, let us consider external schemas, say the external schema of
student John Doe. Imagine that it consists of two views - Study and
Research - both providing restricted access to the application Univ. In
the former John Doe can inspect the courses he is taking and alter his
course situation, whereas in the latter he can see who advises whom
and approach or abandon faculty members for research purposes. Their
signatures are as follows.

John Doe's Stdy view has

sort Crs;

queries lstd and my_crss, both over sort Crs;

updates try and quit, both with argument from sort Crs.

and his Rsrch view has

sorts Fclt and Std;

19

queries who?, over sorts Fclt and Std;

updates apprch and abndn, both with argument from sort Fclt.

John Doe's interface with the application Univ can be described by
translations of his view signatures into the language of Univ, as follows.
John Doe's Stdy view could be translated into Univ by mapping the new
symbols:

my_crss(x), with x:Crs, to tks(John_Doe,x) for query my_crss;

try(x), with x:Crs, to enrll(John_Doe,x), for update try,

quit(x), with x:Crs, to drp(John_Doe,x), for update quit.

Likewise, his Rsrch view could be translated into Univ by mapping the
new symbols:

who?(x;,x,), with x;:Fclt and x,:Std, to advs(x;,x,) for query who?;
apprch(x), with x:Fclt, to assgn(x,John_Doe), for update apprch,
abndn(x), with x:Fclt, to rlss(x,John_Doe), for update abndn.

So, much as in the case of representing an application on a data model, a
user's interface with application Univ involves translations of his views
into Univ, and these translations are required to be interpretations of
the corresponding specifications for adequate behavior.

7. CONCLUSION

We have analyzed the process of representing an application concept on
a data model, aiming at clarifying the roles played by the diverse
language dichotomies: application vs. data model, static vs. dynamic, etc.

This analysis is suggested by the similarity with encapsulation and
implementation of data types in Software Engineering, which in turn
leads to interpretation of specifications based on translation of their
languages.

The process of representing an application concept on a data model is
explicable as an interpretation of the application specification into an
appropriate extension of the data model specification. Both extension
and interpretation involve information and manipulation levels, which
can be dealt with subsequently. The information level involves
instantiating the query language of the latter with symbols (mainly
constants and unary relativization predicates) corresponding to those of
the former, much as the familiar reduction of many-sorted reasoning to
unsorted one in classical first-order logic. The manipulation level then
extends the query interpretation by association of updates.

Let us now comment on some methodological aspects of this process.
We have illustrated how an existing representation can be extended so
as to cope with extensions of the application. We have also indicated,
albeit briefly, how the process of trying to verify correctness can
suggest refinements of a preliminary representation.

We have kept our example deliberately simple so as to concentrate on
the main ideas. To see their generality notice, for instance, that they
would carry over to the case of applications with declared keys. The

20

data model could also be extended to add, for example, the notion of
objects [Atkinson et al. '89]; if an entity is created in more than one
entity-set, this entity should be regarded as the same object instance in
all sets. Also, the logical formalizations for our simple version can be
extended to cover other features of the usual ERA data models. This
would be analogous to Reiter's logical reconstruction of the relational
model [Reiter '84]. But we have also logically reconstructed other
aspects, such as representation in terms of interpretation. This effort
might suggest other data models as well [Kuper & Vardi '93].

By emphasizing their specifications the formal distinction between
application concepts and data models practically vanish. It is then not
difficult to visualize how these ideas carry over to the other levels of
the ANSI-X3-SPARC architecture. Namely, by considering specifications
for external schemas, application concepts, data models, and underlying
machine-supported system, we regard them as formal objects of the
same nature: abstract data types. In the same vein, see that user
interfaces, data model representation, and physical implementation can
be regarded as instances of the same general process: data type
implementation (interpretation into a conservative extension) [Veloso &
Maibaum '95].

REFERENCES

M. Atkinson et al. - The object-oriented database system manifesto.
Proc. Intern. Conf. on Deductive and Object-Oriented Databases (40-
57), 1989.

Casanova, M. A.; Veloso, P. A. S.; Furtado, A. L. - Database specification
formalisms: an eclectic perspective. Proc. 3rd ACM Symposium on
Principles of Database Systems (110-118). Waterloo, Canadd, 1984.

Chen, P. - The entity-relationship model: toward a unified view of data.
ACM Trans. on Database Systems 1(1), 1976.

Dosch, W. ; Mascari, G. ; Wirsing, M. - On the algebraic specification of
databases. Proc. 8th International Conf. on Very Large Data Bases
(370-385), 1982.

Enderton, H. B. - A Mathematical Introduction to Logic. Academic Press;
New York, 1972.

Ehrig, H.; Mahr, B. - Fundamentals of Algebraic Specifications 1:
Equations and Initial Semantics. Springer-Verlag, Berlin, 1985.
Furtado, A. L. ; Casanova, M. A. ; Veloso, P. A. S. - Application-oriented
approaches. In Furtado, A. L. ; Neuhold, E. J. (eds.) Formal Techniques
for Data Base Design (5- 44). Springer-Verlag, Berlin, 1986.

Furtado, A. L. ; Maibaum, T. S. E. ; Veloso, P. A. S. - Especificag¢des
abstratas (de bancos de dados) via niveis de trago. Rev. Bras. de
Computagdo 1(3) 179-193, 1981.

21

Furtado, A. L. ; Veloso, P. A. S. ; Castilho, J. M. V. de - Verification and
testing of S-ER representations. In Chen, P. P. (ed.) Entity-Relationship
Approach to Information Modeling and Analysis (123-147). North-
Holland, Amsterdam, 1983.

Gehani, N. and McGettrick, A. D. - Software Specifications Techniques.
Addison-Wesley, Reading, 1986.

Guttag, J. V. - Abstract data types and the development of data
structures. Comm. Assoc. Comput. Mach. 20(6) 396-404, 1977.

Harel, D. - First-order Dynamic Logic. Springer-Verlag, Berlin, 1979.

Kowalski, R. - Logic for data description. In Mylopulos, J.; Brodie, M. L.
(eds.) Artificial Inteligence and Databases (259-271). Morgan
Kaufmann, 1989,

Kuper, G. M.; Vardi, M. Y. - The logical database model. ACM Trans.
Database Systems 18(3) 379-413, 1993.

Liskov, B.; Zilles, S. - An introduction to formal specifications of data
abstractions. In Yeh, R. T. (ed.). Curent Trends in Programming
Methodology, vol. I (1-32). Prentice-Hall, 1977.

Reiter, R. - Towards a logical reconstruction of relational database
theory. Brodie, M. L.; Mylopulos, J.; Schmidt, J. W. (eds.) On Conceptual
Modeling (191-238). Springer-Verlag, 1984.

Rescher, N.; Urquhart, A. - Temporal Logic. Springer-Verlag, Berlin,
1971.

Shoenfield, J. R. - Mathematical Logic. Addison-Wesley, Reading, 1967

Turski, W. M.; Maibaum, T. S. E. - The Specification of Computer
Programs. Addison-Wesley, Wokingham, 1987.

Veloso, P. A. S. - Verificagdo e Estruturagdo de Programas com Tipos de
Dados. Edgard Bliicher, Sdo Paulo, SP;1987.

Veloso, P. A. S.; Casanova, M. A.; Furtado, A. L.- Formal data base
specification: an eclectic perspective. PUC - RJ, Dept. Informatica, MCC
1/84, 1984.

Veloso, P. A. S.; Furtado, A. L. -Stepwise construction of algebraic
specifications. In Gallaire, H.; Minker, J.; Nicholas, J. M. (eds.). Advances
in Data Base Theory, vol. 2 (321-352). Plenum, New York, 1984.
Veloso, P. A. S. ; Furtado, A. L. - Towards simpler and yet complete
formal specifications. In Langefors, B.; Verrijn-Stuart, A. A.; Bracchi, G.
(eds.) Trends in Information Systems (257-271). North-Holland,
Amsterdam, 1986.

Veloso, P. A. S. ; Maibaum, T. S. E. - On the modularization theorem for
logical specifications. Inform. Proc. Letters 53 (287-293), 1995

22

