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FROM EXTENSIONS TO INTERPRETATIONS:
Pushout Consistency, Modularity and Interpolation

Paulo A. S. VELOSO
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Abstract. We generalise three known results concerning (conservative)
extensions to (faithful) interpretations. These results are Extension Modularity
(a special case of the Modularisation Theorem for logical specifications) and two
familiar logical theorems, namely Robinson’s Joint Consistency and Craig-
Robinson Interpolation. Their generalisations involve a pushout construction,
in lieu of union, and their proofs rely on internalisation techniques, including a
novel one, which reduce - to a large extent - interpretations to extensions.

Key words: Formal specifications, interpretations, translations, extensions, consistency,
modularity, interpolation, conservative extension, faithful interpretation,
internalisation, abstract data types, pushout, coequaliser, software engineering.

Resumo. Trés resultados conhecidos sobre extensdes (conservativas) sdo
generalizados a interpretagdes (fiéis). Estes resultados sdo Modularidade de
Extensdes (um caso particular do Teorema da Modularizagdo para especificagoes
l6gicas) e dois teoremas légicos, a saber Consisténcia Conjunta de Robinson e
Interpolagdo de Craig-Robinson. Suas generalizagbes envolvem uma construgao
de soma amalgamada (pushout), ao invés de unido, e suas demonstragdes se
baseiam em técnicas de internalizacdo, incluindo uma nova, as quais reduzem -
em boa parte - interpretagdes a extensdes.

Palavras chave: Especificagdes formais, interpretagdes, tradugdes, extensdes, consisténcia,
modularidade, interpolago, extensdo conservativa, interpretacdo fiel, tipos
abstratos de dados, soma amalgamada (pushout), coequalizador, engenharia
de software. .
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1. INTRODUCTION

We generalise three known results concerning extensions to
interpretations. These results are two familiar logical theorems, namely
Robinson’s Joint Consistency and Craig-Robinson Interpolation, and
Extension Modularity (a special case of the Modularisation Theorem for
logical specifications). Their generalisations involve a pushout
construction, in lieu of union, and their proofs rely on internalisation
techniques, including a novel one.

Now, Craig Interpolation Lemma and Robinson’s Joint Consistency
Theorem are known to be tightly connected; both concern extensions
and unions .of theories. The Modularisation Theorem is a fundamental
result for the logical approach to formal specifications and it involves
both extensions and interpretations. It is quite natural to consider the
generalisation of these results obtained by replacing (conservative)
extensions by (faithful) interpretations. We shall examine these
generalised versions and their proofs.

1.1 Motivation

The Modularisation Theorem is a fundamental result for the logical
approach to formal specifications [Maibaum & Veloso '81; Maibaum et
al. '84; Veloso et al. '85]. It provides the basis for composition of
implementation steps and for instantiation of parameterised
specifications [Maibaum et al. '91; Maibaum & Veloso '95]. Its proofs
involve (some version of) Craig Interpolation Lemma as well as
internalisation techniques [Veloso '92, '93; Maibaum & Veloso '95].

Now, Craig Interpolation Lemma is known to have tight connections
with Robinson’s Joint Consistency Theorem [Barwise '77; Chang &
Keisler, '73; Shoenfield '67]. The latter is a tool for guaranteeing
consistency: it asserts that consistency is preserved under union over a
maximally consistent theory; it guarantees a property - consistency - of
the union theory provided that the given extensions have the property
of being consistent. On the other hand, the Modularisation Theorem is a
tool for conservativeness preservation. A special case of it, Modularity
of Extensions, is similar to Robinson’s Joint Consistency Theorem: it
asserts that conservativeness is preserved by over a theory; it
guarantees a relationship - conservativeness - between the resulting
extensions provided that the given extensions have the relationship of
being conservative [Veloso '95].

But, whereas both Craig Interpolation Lemma and Robinson’s Joint
Consistency Theorem concern extensions, the Modularisation Theorem
involves both extensions and interpretations. The latter deals with a
pushout rectangle of extensions and interpretations. A natural
generalisation of the Modularisation Theorem arises by replacing
(conservative) extensions by (faithful) interpretations. The union



construction underlying Robinson’s Joint Consistency and Craig-
Robinson Interpolation is a special pushout: when the interpretations
turn out to be extensions [Arbib & Mannes “75: Goldblatt '79]. It is thus
natural to consider similar generalisations for them: by replacing
extensions by interpretations.

We thus arrive at generalisations based on a pushout rectangle of
underlying language translations. We shall establish these three
generalisations by relying on some simple properties of faithful
interpretations as well as. on some internalisation techniques. These
internalisation techniques will enable coding the construction of the
pushout into sentences of appropriate languages.

These generalised versions concern theories over languages in a
pushout rectangle of language translations. They are roughly as follows.
Pushout Consistency asserts that the pushout of consistent
interpretations over a maximally consistent theory is consistent.
Pushout Modularity guarantees that the pushout construction preserves
faithfulness. Pushout Interpolation provides interpolating sentences
decomposing derivations of certain sentences in the pushout theory into
derivations in the given theories.

We shall generally use standard logical terminology and notation. We
will briefly review some concepts and notation before stating the
generalised versions of the results.

1.2 Preliminaries

We employ the usual terminology and notation for logical concepts
[Enderton, '72; van Dalen '89; Shoenfield '67; Chang & Keisler, '73]. We
use the notations 'Ec, or e Cn(I'), to state that sentence © is a (logical)
consequence of the set I' of sentences, i. e. Mod(I')cMod(o).

We consider a language as characterised by its alphabet of extra-logical
(predicate and function) symbols together with syntactical declarations.
A presentation is a pair S=<L,I'> consisting of a language L and a set I' of

sentences of L (its axioms), generating its theory Cn(S):={ce Snt(L)/TFc}.

We say that I is a sub-language of J (denoted by IcJ) when J can be
obtained from I by adding some symbols (and declarations). Now,
consider presentations P=<II'> and Q=< J,Z>. We say that Q is an
extension of P (denoted by PcQ) iff Ic] and every comsequence of F'is a
consequence of X (we also say that P is a sub-presentation of Q). A
conservative extension P<Q is an extension PcQ such that, for every
sentence o of I, Tko iff SFc. We call P and Q equivalent (denoted by
P=Q) iff they are extensions of each other.

By a translation t from source language I to target language K we mean
a syntax-preserving language morphism (denoted by t:I-»K) mapping
each symbol of I to a corresponding symbol in K of the same kind. This



mapping induces translation of formulae: each formula ¢e Frmi(I) is
translated to a formula t(¢) of K.

Now, an interpretation from P=<LT" to R=<K,©> is a translation of the
underlying languages that translates every consequence of I to a
consequence of ©; we also say that translation t:I—»K interprets P into R
(denoted by t:P—R). The analogue of conservativeness for translations is
faithfulness: an interpretation t:P—R is called faithful iff for every
sentence o of I, I'eo iff OFt(0).

Extensions are special interpretations for sub-languages. Given P=<LTI>
and R=<K,®>, if IcJ then we have an insertion j:I-K. Thus, PcR iff the
insertion j:I—K interprets P into R, and extension PcR is conservative iff
j:I-=K is faithful.

We recall the Interpretation Theorem [Shoenfield '67, p. 62; Turski &
Maibaum '87, p. 85]. It asserts that translation t:I-» K interprets P=<LI">
into R=< K,©®> iff t translates every axiom yeI' to a theorem t(y)e Cn(®©).
Also recall that extensions by definitions of (predicate and function)
symbols are always conservative [Enderton, '72; van Dalen '89;
Shoenfield '67; Veloso & Maibaum '94].

1.3 Overview

Let us now state the basic results which we wish to generalise, namely
Craig Interpolation, Robinson’s Joint Consistency and the Modularisation
Theorem.

Craig Interpolation appears in a few versions in the literature
[Shoenfield '67; Chang and Keisler '73], which turn out to be
interderivable in Classical First-Order Logic. One of these versions is
sometimes called split interpolation [Rodenburg and van Glabbeek '88].
This is similar to the following usual formulation of the Craig-Robinson
Interpolation Theorem [Shoenfield '67, p. 80]: "Given presentations
Q=<J,=> and R=<K,0>, for each sentence 61, with o in language J and ©

in K, such that SU@kEc—1, there exists an interpolant sentence p of the
intersection language JnK such that ZFo—p and OFp—o1t".

Robinson’s Joint Consistency Theorem (RJC) concerns unions of
consistent presentations over a maximally consistent presentation. It
asserts [Chang and Keisler '73, p. 88; Shoenfield '67, p. 79]: "Given

consistent presentations Q=< J,2> and R=<K,©>, both extending a
maximally consistent P=<L[>, with language I being the intersection of J
and K, then the union presentation <J uK,Zu®> is consistent as well".

The Modularisation Construction deals with the situation where one has
presentations P=<L,I">, Q=<J,Z> and R=<K,©>, with Q extending P and an
interpretation f:P—R. It completes a rectangle of interpretations by
amalgamated sum, thereby producing an interpretation g of Q into the
(pushout) presentation S=< L,g(X)u®>. The Modularisation Theorem

3



guarantees that this Modularisation Construction preserves
conservativeness: "if Q is a conservative extension of P, then S is a
conservative extension of R" [Veloso '92, '93; Maibaum & Veloso '95].

A natural generalisation of the Modularisation Theorem arises by
replacing (conservative) extensions by (faithful) interpretations. One
can similarly generalise the related results Robinson’s Joint Consistency
and Craig-Robinson Interpolation. By considering a pushout rectangle of
language translations e:I—J and f:I— K, yielding g:JJ>L and h'K—L
(Ehrich '82; Ehrig & Mahr '85], we arrive at the following formulations.

PoC (Pushout Consistency):

If maximally consistent presentation P=<II'> is interpreted by e into
consistent Q=<J,Z> and interpreted by f into consistent R=<K,©>, then
the (pushout) presentation <L,g(X)uh(®)> is consistent as well.

PoM (Pushout Modularity):

If presentation P=<LT’> is interpreted by f into presentation R=<K,©>
and faithfully interpreted by e into presentation Q=< J,£>, then the
interpretation h of presentation R=< K,®> into the (pushout)
presentation <L,g(Z)Uh(©)> is faithful as well.

Pol (Pushout Interpolation):

For presentations Q=<J,Z> and R=<K,®>, given sentences & of language J

and t of language K such that sentence g(c)—h(7) of L is consequence
of g(Z)uh(®), there exists a po-interpolant sentence p of language I,
such that TFc—e(p) and OFf(p)—~.

We shall establish these three generalisations. The plan is as follows: by
relying on some simple properties of faithful interpretations,

1. PoC will follow from the usual RJC, by internalisation techniques;

2. From PoC we derive POM, by means of pre-image;

3. From PoM we derive POI, by pre-image and compactness.

(It would not be difficult to derive PoM from Pol and PoC from PoM.)

This plan involves some auxiliary constructions and properties. The
internalisation techniques will enable coding information about the
translations into sentences of appropriate languages.

The structure of this paper is as follows. In the next section we present
some internalisation constructions and simple properties of (faithful)
interpretations, leaving the details for section 4. In section 3 we
establish our main results: Pushout Consistency, Modularity and
Interpolation. In section 4 we examine more closely the auxiliary
constructions and properties providing proofs; we consider pre-image
and faithfulness in 4.1 and in 4.2 we turn to our internalisation
techniques: diagram, kernel and coequaliser internalisations.



2. AUXILIARY CONSTRUCTIONS AND PROPERTIES

We shall use some auxiliary constructions and properties concerning
internalisation and (faithful) interpretations. We will now briefly
outline them, leaving the details for later (see section 4).

2.1 Internalisations and their Properties

We wish to reduce translations to extensions by coding (part of) the
translation information into sentences of an appropriate language. Two
kinds of such internalisations of translation are diagram and kernel
internalisation [Veloso '92, '93; Maibaum & Veloso '95], and a third one
will internalise pairs of translations with a common source. Kernel
internalisation relies on the source language, whereas the other two
construct an appropriate coproduct language.

Given a translation t:I— K, we form language L[t] as the coproduct I+K.
We can then ‘internalise’ the translation by coding its information into
matching sentences (ie> t(i)) of L[t] expressing that each source symbol 1
is equivalent to its translation t(i). By the diagram axiomatisation of
translation t:I— K we mean the set A[t] of such matching sentences
(iet(i)) of language L[t]=I+K [Veloso '93, '95].

Some basic properties of diagram internalisation are given in the next
result, showing that the diagram axiomatisation of a translation indeed
codes the information in it.

Proposition Diagram Internalisation (Di)
Consider a translation t:I—K with diagram axiomatisation Aft], and a
presentation R=<K,©> with diagram extension A[tJUR:=< L[t],Altjlue>.
a) The diagram extension is a conservative extension: R<A[tJUR.
b) Consider a presentation P=<LI'>. Then:
(i) t interprets P into R iff A[tJUR extends P, i. e. PcA[t]JUR;
(ii) t interprets P faithfully into R iff A[tJUR extends P
conservatively, i. e. PSA[tJUR.

A translation t:I— K maps source to target symbols; as such it defines an
equivalence relation ker(t):={<i,ip>:t(i1)=t(iz)} on the source alphabet.
This information can be ‘internalised’ within the source language by
means of the set A[t]l:={(i;<>1p):<ij,iz>€ ker(t)} of identifying sentences of
I, expressing the equivalence of source symbols with the same
translation. We call this set A[t] the (internalised) kernel of translation
t:I=>K [Veloso '92; Maibaum & Veloso '95].

The kernel internalisation of a translation provides part of the
information given by the mapping, namely which symbols have the
same translation, without providing the translations themselves. But

this information is already sufficient to characterise faithfulness into
the image, as the next result shows.



Proposition (Internalised) Kernel (iK)

Consider a translation t:I-=> K with (internalised) kernel A[t]. Given a
presentation P=<LT>, interpretation t of P=<L,I'> into the image
presentation t(P):=< K,t(T')> is faithful iff the (internalised) kernel A[t]
consists of consequences of T, i.e. AltleCn(I).

Pushouts can be constructed by means of coproducts and coequalisers
[Arbib & Mannes '75; Goldblatt 79]. A combination of the preceding
ideas suggests how to internalise the coequaliser: by the equivalence
between the two translations of each common source symbol. Given
translations e:I—7J and f:I— K with common source language I, we form
language Ll[e,f] as the coproduct J+K. We can then code the coequaliser
by means of sentences (e()e1(1)) of L[e.f] expressing the equivalence of
the translations of a source symbol. By the (internalised) coequaliser of
translations e:I—J and f:I— K we mean the set Q[e,f] of such sentences
(e(i)«>f(i)) of the coproduct language L[e,fl=J+K.

Some basic properties of (internalised) coequaliser are given in the
following results, showing that this construction achieves its aim of
coding the pushout construction.

The next lemma connects diagram internalisation with (internalised)
coequaliser, showing that the information for the latter is provided by
the diagram axiomatisations of its mappings.

Lemma (Internalised) Coequaliser and Diagram Axiomatisations (CD)
Consider translations e:I—J and f:I— K, with respective diagram
axiomatisations A[e] and A[f], and (internalised) coequaliser Q[e,f].
Then the (internalised) coequaliser Qle,f] consists of consequences of
Ale]UAIf]: Qle.flcCn(A[e]UA[f]).

The next result connects (internalised) coequaliser with the pushout
language and indicates that the former codes the information for
constructing the latter. In its formulation we employ the usual concept
of coproduct mediator [Arbib & Mannes '75; Goldblatt '"791.

Proposition (Internalised) Coequaliser and Pushout Mediator (CM)

Given a pushout rectangle of language translations e:I—17J and f:I—=K,

yielding g:J—L and h:K—L, consider the (internalised) coequaliser

Qle,f] of e:I-=J and f:I—-K and the mediator (glh):J+K— L of their

pushouts g:J—L and h:K—L.

a) The (internalised) kernel Al(gih)] consists of consequences of the
(internalised) coequaliser Q[e.f]: Al(glh)]=Cn(Q[e.f]).

b) The mediator (gih) interprets <J+K,Q[e.f]> faithfully into <L,2>.

2.2 Pre-images and faithful interpretations

We shall also employ some simple properties of pre-images and of
faithful interpretations.



Given a translation t:I—>K and a presentation R=<K,©>, by the pre-image

of R under t we mean the presentation R:=<[,©>, where ©:=t"1[Cn(0)]
consists of those sentences o of language I such that t(o)e Cn(0@).

The pre-image is similar to the restriction construction [Shoenfield '67,

p. 95, exercise 9]. The next lemma gives the basic property of pre-
image: faithful interpretation into the originating presentation.

Lemma Pre-image and faithfulness (Rf)
A translation t:I—>K interprets the pre-image R=<L,©> of presentation
R=<K,®> under t faithfully into R.

The following result gives some characterisations of faithfulness in
terms of their behaviour with respect to the consistent addition of new
axioms. They amount to simple generalisations of corresponding
characterisations for conservativeness [Veloso & Maibaum '94].

Lemma Characterisation of faithfulness (cF)

Consider a translation t:I—>K as well as presentations P=<LI> and

R=<K,®>, such that t interprets P into R. Then, the following are

equivalent.

a) Interpretation t:P—R is faithful.

b) For every AcSnt(l), t interprets <LTUA> faithfully into <K,0Ut(A)>.

c) Presentation <K,0Ut(A)> is consistent whenever <I,['UA> is so.

d) For any maximally consistent presentation <L,=> extending P=<1,I">,
<K,©t(E)> is consistent.

We can now state some simple properties of faithful interpretations
concerning consistency and completeness of the presentations involved.

Corollary Properties of faithful interpretations (pF)

Consider a translation t:I—>K as well as presentations P=<LI'> and
R=<K,®>, such that t interprets P faithfully into R.

a) Presentation P=<L,I'> is consistent iff R=<K,©> is so.

b) If R=<K,©> is complete then so is P=<LI".

Conservative extensions are special cases of faithful interpretations.
Thus, these results have simple analogues for conservative extensions.

This completes our presentation of the auxiliary constructions and
properties we will need. Most of these basic ideas and results are
simple. We shall provide some more details about them in section 4.

3. THE MAIN RESULTS: CONSISTENCY, MODULARITY AND INTERPOLATION

We now establish the three generalisations mentioned in the
introduction. We first generalise Robinson’s Joint Consistency Theorem



(RJIC) to Pushout Consistency (PoC), then derive from it Pushout
Modularity (PoM), which finally will yield Pushout Interpolation (Pol).

To establish the generalisation of Robinson’s Joint Consistency to
pushouts, we use the following facts: the alphabet of pushout language
L is the quotient of the coproduct of the alphabets of J and K modulo the
equivalence relation r* generated by r:={<j,k>/ for some i in I e(i)=j &
k=f(i)}; and the coproduct mediator (glh) is the natural projection from
J+K onto L, whose kernel is r* [Arbib & Mannes '75; Goldblatt '79; Ehrich
'82; Ehrig & Mahr '85]. The internalisation techniques will enable us to
code such information into sentences of appropriate languages. ’

Theorem Pushout Consistency (PoC)

Consider a pushout rectangle of language translations e:I-J and f:I>K,
yielding g:J—L and h:K—L. Assume consistent presentations P=<LI'>,
Q=<J,Z> and R=<K,©>, such that e interprets P=<L,I"> into Q=<J,Z> and f

interprets P=<L,I"> into R=<K,©>. If presentation P=<L,["> is complete,

then the (pushout) presentation <L,g(Z)Uh(©)> is consistent.

Proof
The argument consists of two major phases, both using properties of
faithful interpretations. We first use diagram internalisation and the
usual Robinson's Joint Consistency Theorem to construct a consistent
presentation T (steps 1 and 2). We then use coequaliser internalisation
to argue that a sub-presentation of T is faithfully interpreted onto the
pushout presentation (steps 3 to 3J).

1. Since e interprets P=<LI'> into Q=<J,Z>, by proposition (Di) on diagram
internalisation we have <I,I'>=PcA[e]uQ=>Q=<],Z>, where A[e]UQ is the
diagram extension <L[e],A[e]UZ>. Thus, since Q=<J,Z> is consistent, so is
its conservative extension A[e]uQ, by item (a) of the corollary (pF) on
properties of faithful interpretations.

Similarly, since f interprets P=<LI"> into consistent R=<K,©>, we have a
consistent diagram extension A[fJUR=<L[f],A[flu©> extending P=<LI>.

2. Now, since we may assume J and K to share no symbols, except for
those of I, the familiar Robinson's Joint Consistency Theorem yields
the consistency of the union presentation <L[e]JUL[f],ZuA[e]UA[flu©>.

3. Notice that L[e,f]l=J+KclIu (J+K)=L[e]ULI[f]. So, lemma (CD) on
(internalised) coequaliser and diagram axiomatisations yields
<Lfe.f1.2 Qe flue>c<Lie]UL[f],ZUAle]UA[fluO>, whence
<L[e,f],ZuQ[e,fluO> is consistent as well.

4. Now, by proposition (CM) on (internalised) coequaliser and pushout
mediator, (gih) interprets <L[e,f],Q[e,f]> faithfully into <L,&>. Thus, by
the lemma (cF) characterising faithfulness, (glh) interprets consistent
<L[e.f],2Q[e,fluO©> faithfully into <L,(gh)(Z©)>.



5 Therefore, by item (a) of the corollary (pF) on properties of faithful
interpretations, <L,g(X)uh(®©)>=<L,(glh)(Zu®)> is consistent.

OFD

We now establish the generalisation of the Modularisation Theorem to
interpretations: pushouts preserve faithfulness. We will derive it from
Pushout Consistency PoC by relying on our simple properties of pre-
image and of faithful interpretations.

Theorem Pushout Modularity (PoM)

Consider a pushout rectangle of language translations e:I-—J and f:I—K,

yielding g:J>L and h:K—L. Assume presentations P=<LI'>, Q=<J,Z> and

R=<K,©>, such that e interprets P=<LI,I'> into Q=<J,Z> and f interprets

P=<I,I'> into R=<K,0>. If interpretation e of P into Q is faithful, then so

is interpretation h of R=<K,©> into <L,g(Z) h(©)>.

Proof

By the lemma (cF) characterising faithfulness, it suffices to show that
<L,g(Z)uh(®)Uh(E)> is consistent whenever <K,Z> is a maximally
consistent extension of R=<K,®>. So, consider a maximally consistent
extension R of R, and form its pre-image [R=<I,;Z> under f:I—K.

1. By the lemma (Rf) on pre-image and faithfulness, we have a faithful
interpretation f:R—R. Thus, by the corollary (pF) on properties of

faithful interpretations, R=<I,Z> is maximally consistent.

2. Since R extends R and f:P—R, R=<L,Z> extends P=<LI'>. Thus,
R=<LE>isa maximally consistent extension of P=<L,I'>.

3. Clearly e interprets R=<I,Z> into <J,Zue(;E)>. Since e interprets
P=<LI" faithfully into Q=<J,Z>, the lemma (cF) characterising
faithfulness shows that <J,Zue(:E)> is consistent.

4. Therefore, Pushout Consistency PoC yields the consistency of
<L,g[Eue_(PE.)]uh(E)>, and hence that of the sub-presentation

<L.g@ (@) h(E) <L gD () (E)>.
OED

We now establish the generalisation of Craig-Robinson Interpolation to
pushouts. Pushout Modularity PoC together with simple properties of
pre-image will yield a po-interpolant presentation, from which
compactness extracts a po-interpolant sentence.

Theorem Pushout Interpolation (Pol)

Consider a pushout rectangle of language translations e:I—1J and f:I—>K,
yielding g:J—L and h:K—L, as well as presentations Q=<J,Z> and
R=<K,®>. Given sentences ¢ of language J and t of language K such that



sentence g(o)—h(t) of L is consequence of g(X)uh(®), there exists a po-

interpolant sentence p of language I, such that ZFoc—e(p) and OFf(p)—r.

Proof
The argument consists of two parts. We first construct an auxiliary
presentation P by pre-image and use properties of faithful
interpretations to show that it behaves as a po-interpolant

presentation (steps 1 to 4). Then, compactness and the Deduction

Theorem extract from P a po-interpolant sentence (step S5).

1. Let P=<LI,¥> be the pre-image of Qu{c}=<J,Zu{c}> under e:I—J. By the
lemma (Rf) on pre-image and faithfulness, e interprets P faithfully
into Qu{c}. Hence e(¥)cCn(Zu{o}).

2. Clearly, f interprets P=<L¥> into <K,0Uf(¥)>.

Thus, by Pushout Modularity PoM, h interprets <K,0Uf(¥)> faithfully
into <L,g(Zu{c})Jh[@U(¥)]>=<L,g(Zu{c}) h(@)Uh[f(F)]>.

3. But, since ¥ consists of sentences of I, h{f(¥)]=g[e(¥)].

Thus, by 1, h[f(¥)]cg[Cn(Zu{c})], and we have the equivalence
<L.g(Eu o) (@) hf(P)=<L.gE)Ag(o)} h(®)>.
Hence, h interprets <K,@Uf('¥)> faithfully into <L,g(Z)u{g(c) }Uh(©)>.

4. Now, assume that g(Z)uh(©)Fg(c)—h(1).

Then, g(Z)u{g(c)}uh(©)Fh(t), whence, by 4, OUI(¥)Fr.

5. Then, by compactness, there exist sentences pj,...,px€ ¥, such that
eu{f(py),....f(px) }Ft. Letting p be the conjunction of py,...,px, we have
¥Ep and ©U {f(p)}F1. The Deduction Theorem applied to the latter
yields ©Ff(p)—t. On the other hand, in view of 1, the former y1elds
u{oc}Ee(p), whence ZFc—e(p).

OFD
4. THE AUXILIARY PROPERTIES AND CONSTRUCTIONS

We shall now examine more closely the auxiliary properties and
constructions employed in establishing our generalisations. We first
deal with the simple properties of pre-images and faithful
interpretations and then give more details concerning the
internalisation constructions.

4.1 Interpretations: pre-images and faithfulness

We now prove the simple properties of pre-images and of faithful
interpretations.

First, recall the concept of pre-image. By the pre-image of presentation
R=<K,®> under translation t:I—K we mean the presentation R:=<1,©>,
~where ©:=t"![Cn(@)] is the set {oe Snt(I)/6Fc}.

10



Lemma Pre-image and faithfulness (Rf)
A translation t:I->K interprets the pre-image R=<IL,©> of R=<K,0>
under t faithfully into R.

Proof
By definition, for any sentence ce Snt(I), we have o€ @ iff t(c)e Cn(O®).
Therefore, ©Ft(c) iff ce O, whence t interprets R faithfully into R.

QED

We now consider the properties of faithful interpretations. In the next
lemma characterising faithfulness we add a model-theoretical
characterisation, which is akin to the one for conmservative extensions in
terms of elementary substructures [Shoenfield, 1967; p. 95, exercise 9].

Lemma Characterisation of faithfulness (cF)

Consider a translation t:I—K as well as presentations P=<[,I'> and

R=< K,®>, such that t interprets P into R. Then, the following are

equivalent.

a) Interpretation t:P—R is faithful.

b) For every AcSnt(I), t interprets <I,TUA> faithfully into <K,0Ut(A)>.

c) Presentation <K,@Ut(A)> is consistent whenever <LTUA> is so.

d) For any maximally consistent presentation <L,E> extending P=<LI'>,
<K,@Ut(E)> is consistent.

e) For every model Ae Mod[P], there exists Be Mod[R] such that
B=t(Th[.A4]).

Proof

(a=b) Consider a sentence o of I such that t(t)e Cn[©ut(A)]. Then, by
compactness, there exist sentences &;,....,3x€ A, such that
OuU{t(8y),...,t(8y) }Et(c). Letting 3 be the conjunction of 8;,...,0, we have
AES and ©u {t(8)}Et(c). The Deduction Theorem applied to the latter
yields ©Fk[t(8)—> t(c)]. Thus, (8—>0) is a sentence of I such that
t(3—0)=[t(8)—>t(c)]e Cn(®). So, by (a), (3—0c)e Cn(I"); whence o€ Cn(T"'uA).

(b=c) Assume < K,OuUt(A)> inconsistent and consider a sentence G of 1.
Then t(cA—0)=t(c)A=t(c)e Cn[OUL(A)]. Thus, by (b), IUAE(GA—G).

(c=>d) Consider a maximally consistent extension <LE> of <LZ>. Then
<IL,SUE> =< L,E> is consistent, and (c) yields the consistency of
KeuE)>

(d=e) Given Ae Mod[P], <I,Th[A]> is a maximally consistent extension of

Q. Thus, by (d), <K,0Ut(Th[A])> is consistent , whence by completeness
it has some model B. Then Be Mod[R] and B=t(Th[A]).

(e=>a) Given a sentence o of I such that T¥o, we will show ©FKt(o).
Indeed, we have a model 4e Mod[P] such that A¥oc, whence —ce Th[A].

11



By (e), we have some model Be Mod[R] such that B=t(Th[A]). Thus, BF©
satisfies —t(c)=t(—~o)e t(Th[A4]), hence OFt(c).

oD

Corollary Properties of faithful interpretations (pF)

Consider a translation t:I—> K as well as presentations P=<I,I'> and
R=<K,©>, such that t interprets P faithfully into R.
a) Presentation P=<I,I"> is consistent iff R=<K,©> is so.
b) If R=<K,0> is complete then so is P=<L,I">.
Proof
a) Since t interprets Q into R, we have the if-part. Since this
interpretation is faithful, the converse follows from the implication
(a=>c) in the preceding lemma with A=Q.
b) Clear: given oe Snt(I) such I'Fo, by faithfulness, ©¥t(c), whence the
completeness of R yields t(—o)=-t(6)e Cn(©), and by faithfulness I'F—o.

OFD

4.2 Internalisations: diagram, kernel and coequaliser

We now give some more details about the internalisation techniques we
used. We shall examine successively diagram, kernel and coequaliser
internalisations.
We recall that a coproduct of alphabets is simply their disjoint union as
sets [Arbib & Mannes '75; Goldblatt '79]. A coproduct of languages is
formed by taking the coproduct of their alphabets and transferring the
declarations of the symbols from their original languages [Ehrich '82;
Ehrig & Mahr '85; Veloso '93].
A. Diagram internalisation
The diagram axiomatisation of translation t:I-> K consists of the
sentences (i¢>t(i)) of language I+K asserting that each source symbol i is
equivalent to its translation t(i) [Veloso '93, '95]. More precisely, the
diagram axiomatisation A[t] of translation t:I— K consists of the
sentences d[i,k] of the coproduct language L[t]=I+K for each pair of
symbols i of I and k of K such that t(i)=k; where 8[i,k] is
VXpeoo s Xpli(X e X)) K (X, ., X )],
if i is an m-ary predicate symbol;
VyVXq,... . X [y=i(Xps.. .. X)) y=K(Xy,...,.Xp)],
if i is an n-ary function symbol.

Notice that for any formula ¢ of J, we have by induction A[t]F(9e>t(9)).
Thus, for I'cSnt(I), we have <+KA[tJuI>=<I+K,A[tJt(I)>.

12



Proposition Diagram Internalisation (Di)
Consider a translation t:I— K with diagram axiomatisation A[t], and a
presentation R=<K,©> with diagram extension A[tJUR:=<L[t],A[t]U©>.
a) A[tJUR is a conservative extension of R: R<A[t]JUR.
b) Consider a presentation P=<LI'>. Then:
(i) t interprets P into R iff A[tJUR extends P, i. e. PcA[tJUR;
(ii) t interprets P faithfully into R iff A[t]JUR extends P
conservatively, i. e. P<SA[tJUR.
Proof
a) Every symbol iof I is introduced into L[t]=I+K by means of a (single)
axiom &[i,t(i)]e A[t] of the form i¢> (i), which defines i in terms of t(i).
Thus, we have an extension by definitions, which is conservative.
b) For any oe Snt(I), the above remark gives A[tJU@FEo iff A[tJUOFt(c),
and part (a) yields A[tJU©Ft(c) iff ©Et(c); whence A[tJUOFG iff OFt(c).
(i) Hence t:P—R iff t{Cn(I")]cCn(O) iff Cn(IcCn(A[t]u®) iff PcA[t]JUR.
(i) Also, since t'1[Cn(©)]=Cn(A[t]u©)nSnt(D), t is faithful iff P<A[tJUR.

OD

B. Kernel internalisation

Consider a translation t:I— K with kernel ker(t)={<i,i'>:t(i)=t(i'")}. The
(internalised) kernel of this translation consists of the sentences (i<>i')
of source language I asserting the equivalence of source symbols with
the same translation [Veloso '92; Maibaum & Veloso '95]. More
precisely, the (internalised) kernel A[t]:={A[i,i']/<i,i">€ ker(t)} of
translation t:I— K consists of the identifying sentences A[i,i'] of language
I for each pair of symbols i and i' of I such that t(i)=t(i"); where A[i,i'] is
VX1 Xpli(X oo e X)€€' (X500, X )],
if i is an m-ary predicate symbol;
VYVX{yeon X [y=1(X .. X ) Y=i'(Xy,... Xp)],
if i is an n-ary function symbol.

Notice that, by induction, A[t]F(y<8) for all y,6€ Frml(I) with t(y)=t(6).
These two internalisation techniques are connected [Veloso '95]. Given a
translation t:I— K, its diagram axiomatisation A[t] is a conservative

extension of its (internalised) kernel A[t]: <LA[t]><<I+K,A[t]>. (For, any
model XEA[t] can be expanded to a structure D for I+K such that DEA[t].)

Proposition (Internalised) Kernel (iK)

Consider a translation t:I— K with (internalised) kernel A[t]. Given a
presentation P=<I,I'>, interpretation t of P=<LI'> into the image
presentation t(P):=<K,t((T')> is faithful iff the (internalised) kernel A[t]
consists of consequences of T, i. e. A[t]jcCn(T).
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Proof

(=) Clear, since for any Ae Alt] DFt(A).

(<) By the above remark < [A[t]> <<I+K,A[t]>. So, by item (b) of
characterisation (cF) of faithfulness, we have <LA[tJuI'><<I+K,A[t]uI'>;
whence <LA[JUM<<HKA[thA(I)> since <+HKA[JUD=<+KA[thA(T)>.
If A[t]lcCn(D), then <L I>=<LA[tJUr<<I+KA[tJut(T")>. Hence, item (b.ii)
of proposition (Di) on diagram internalisation yields the faithfulness of
interpretation t:P— t(P).

oD

C. Coequaliser internalisation
Given translations e:I—J and f:I— K with common source language I, we
form the language L[e,f] as the coproduct J+K. The (internalised)
coequaliser of these translations is the set Q[e,f] of sentences (e(i)e>f(i))
of the coproduct language J+K expressing the equivalence of the
translations of a source symbol. More precisely, the (internalised)
coequaliser Q[e,f] of translations e:I—J and f:I— K consists of the
sentences o[j,k] of the coproduct language L[e,f]=J+K for each pair of
symbols j of J and k' of K such that j=e(i) and k=f(i) for some symbol i of
the common source language I; where w[j.k] is
Vxl,...,Xm[j(xl,...,Xm)(—)k(xl,...,xm)],
if j and k are m-ary predicate symbols;

VyVXy,.. . Xg[y=i(X .. X)) Y=K(Xp,... . Xp)],
if j and k are n-ary function symbols.

Notice that, by induction, Q[e,.f]=(e(9)—f(¢)) for every @e Snt(l).

Lemma (Internalised) Coequaliser and Diagram Axiomatisations (CD)
Consider translations e:I—J and f:I— K, with respective diagram
axiomatisations Af[e]={8[i,e(i))/ie I} and A[f]={&[i,f(i)]/ie I}, and
(internalised) coequaliser Q[e,f]. Then the (internalised) coequaliser
Q[e,f] consists of consequences of A[e]JUA[f]: Q[e,flcCn(A[e]UA[f]).

Proof

Clear. For a sentence o[j,kle Q[e,f]={w[e(i),f(i)]/ie I}, we have some
symbol i of I such that j=e(i) and k=f(i) and ®[jk] is (e(i)e>f(i)). We then
have (iee(i))eAle] and (ief(i))e A[f], and {(iee(i)),(ief({)) }F(e(i)£(1)).

OFD

Proposition (Internalised) Coequaliser and Pushout Mediator (CM)

Given a pushout rectangle of language translations e:I—J and fiI->K,
yielding g:J—> L and h:K— L, consider the (internalised) coequaliser
Qle,fl={w[e(i),f(i)])/ie I} of e:I—J and f:I—»> K and the mediator
(glh):J+K—L of their pushouts g:JJ—L and h:K—L.
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a) The (internalised) kernel A[(glh)] consists of consequences of the
(internalised) coequaliser Q[e,f]: A[(glh)lcCn(Q[e.f]).
b) The mediator (glh) interprets <J+K,Q[e,f]> faithfully into <L,&>.

Proof
By construction of the pushout, the alphabet of L is the quotient of the
coproduct of the alphabets of J and K modulo the equivalence relation
r* generated by r={<j,k>e (J+K)x(J+K)/ for some 1i in I e(i)=j & k=f(i)}. So,
(glh) maps each symbol ¢ of J+K to its equivalence class [c] modulo r*.

a) First, ker[(glh)]lcr*. Because, for <c,d>e ker[(glh)], [c]=[d] so <c,d>er*.

Now, consider relation s:={<c,d>e (J+K)x(J+K)/ Q[e,flFce>d}.

Notice that relation s is reflexive, symmetric and transitive.

Now, rcs. Because, given <j,k>er, we have some i in I such that e(i)=j
and k=f(i), whence (j<>k)e Q[e,f]. Thus r*cs.

Hence ker[(glh)lcs. Now, for a sentence (jej') of A[(gih)], we have <j,j'>
in ker[(glh)]lcs, so Q[e.flF(je)").

b) Notice that (gih) maps a sentence (e(i)«>f(i))e Q[e,f], with e(i) in J and
f(i) in K, to (glh)[e@i)]<(gh)[f(i)]=gle(i)]eh[f(i)], which is logically valid.
Thus, (glh) interprets <J+K,Q[e,f]> into <L,&>, faithfulness following
from (a) in view of proposition (iK) on (internalised) kernel.

OFD

5. CONCLUSION

We have examined the generalisation of three known results concerning
extensions to interpretations. More specifically, we have generalised
two familiar logical theorems, namely Robinson’s Joint Consistency (RJC)
and Craig-Robinson Interpolation (CRI), as well as the Modularisation
Theorem for logical specifications to interpretations and their pushouts.

The motivations for this investigation stem from two main sources in
logic and in software development. From the logical side, we have
known connections between modularity-like results such as Robinson’s
Joint Consistency and Craig Interpolation theorem [Barwise '77; Chang &
Keisler, '73; Shoenfield '67]. From the standpoint of formal approach to
program and specification development [Maibaum & Veloso '81;
Maibaum et al. '84; Veloso et al. '85], modularity of interpretations is a
crucial property in composing implementations and in instantiating
parameterised specifications [Maibaum et al. '91; Maibaum & Veloso
'95]. Also, its proofs [Veloso '92, '93; Maibaum & Veloso '95] involve
(some version of) Craig Interpolation Lemma as well as internalisation
techniques to reduce interpretations to extensions.

Now, a special case of the Modularisation Theorem, Extension
Modularity (EM), is a slight generalisation of Robinson’s Joint
Consistency Theorem. Both deal with unions of presentations over a
given presentation. But, while the latter guarantees preservation of a
property - consistency - over a maximally consistent presentation, the
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former ensures preservation of the relationship of being conservative.
Also, whereas both Craig Interpolation and Robinson’s Joint Consistency
concern extensions, the Modularisation Theorem involves both
extensions and interpretations and deals with a pushout rectangle of
extensions and interpretations. It is thus quite natural to consider the
generalisation of these results to a more uniform situation where
(conservative) extensions are replaced by (faithful) interpretations.

We have examined the generalisations of these three results to the
situation involving theories over languages in a pushout rectangle of
language translations. They are roughly as follows. Pushout Consistency
asserts that the pushout of consistent interpretations over a maximally
consistent theory 1is consistent. Pushout Modularity guarantees
preservation of faithfulness under pushout constructions. Pushout
Interpolation enables the decomposition derivations of certain
sentences in the pushout theory into derivations in the given theories.

A crucial idea in deriving these generalisations from their known
counterparts is internalisation These techniques code (part of) the
information of language translations, thereby reducing - to a large
extent - interpretations to extensions. We have resorted to two known
internalisation constructions, namely kernel [Veloso '92; Maibaum &
Veloso '95] and diagram [Veloso '93, '95], as well as to a novel one,
coequaliser internalisation, which codes information about pairs of
translations with common source. The simpler technique of kernel
internalisation uses sentences of the source language, whereas the other
two employ sentences of appropriate coproduct languages.

Let us now comment on some possible extensions of these techniques,
including the many-sorted case, which is important for software
specification and development.

Sometimes one considers interpretations mapping symbols to formulae,
which define the translations in the target presentation [Enderton, '72;
Turski & Maibaum '87]. This extended notion can be reduced to a
language morphism into an extension by definitions. Another version
considers interpretations with relativisation predicates, which can be
handled as in the many-sorted case. In the many-sorted case, one
sometimes considers a translation t mapping a sort s of source language
I to a sequence S;,..,s; of sorts, together with a relativisation predicate r
over them in target presentation R [Turski & Maibaum '87]. The idea is
that s is to be represented by the subsort, defined by the relativisation
predicate r, of the product of sorts s;,..,s;. This can be reduced to a
language morphism translating I into an extension of R by introduction
of product sorts and subsorts. The latter is a definition-like extension
obtained by adding axioms characterising product sorts and subsorts
[Meré & Veloso '92, '94].
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Ideas similar to the above ones can be used to adapt our internalisation
techniques to the many-sorted translations. In this case one may wish
to declare equivalent symbols over distinct sorts, say unary predicate
symbols p, over sort s, and g, over sort t. To do this, we first extend
conservatively the presentation by adding a new function symbol b
from sort s to sort t together with axioms expressing that b is a
bijection. (This amounts to regarding one as a subsort of the other with
relativisation predicate defined by x=x.) We can then express that p and
q are equivalent by means of this new function symbol b, namely
(Vx:8)(Vy:t)[b(x)=y—(p(x)>q(y))].

We have established our generalised results by linking them:
PoC=PoM=Pol. It is not difficult to see that the converse implications
also hold. We thus have PoCe& PoM« Pol, showing that either property is
a necessary and sufficient condition for the other two. Moreover, the
connections PoCePoM« Pol hinge on simple properties of pre-images
and faithful interpretations, much as the connections RIC&EM&CRI rely
on corresponding properties of restrictions and conservative extensions.
This observation puts in perspective the role of our internalisation
techniques: since they reduce - to a large extent - interpretations to
extensions, they provide the key link - as in RJC= PoC - from the
version concerning union of extensions to the generalised one involving
pushout of translations.

Summing up, we have generalised three known results, namely the
Modularisation Theorem for logical specifications, Robinson’s Joint
Consistency (RJC) and Craig-Robinson Interpolation, to pushouts of
language translations. By relying on simple properties of pre-images
and faithful interpretations, we have derived PoC from the familiar RJC
by internalisation techniques, and then established the other two by
showing that PoC=PoM=Pol.

These results suggest considering their extensions to more general
frameworks: (II-)institutions or categories (whose objects are sets of
sentences, morphisms being (sets of) derivations, or appropriate
equivalence classes). Preliminary efforts in the direction of II-
institutions are underway. '
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