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Abstract: Design patterns and subject-oriented programming are two object-oriented software
implementation techniques directed toward reuse. Subject-oriented programming supports reuse
at the component level, while design patterns attempt to reuse “good programming practices.” In
this paper we recast these two approaches to reuse in a formal framework based on Abstract Data
Views (ADVs) and process programs, and then demonstrate through an example how they can be
integrated. Basing a design approach on a formal model allows us to reason about the propertles
of a specific design, and also create tools to assist with the generation of code.

Keywords: Object-oriented Programming, Subject-oriented Programming, Design Patterns, Ab-
stract Data Views, User Interfaces, Interfaces, Formal Methods, Development Constructors.

Resumo: Padrées de design e programacao orientada a. “subjects” sio duas técnicas de imple-
mentagio de software orientadas a objetos dirigidas para reuso. Programagéo orientada a “sub-
jects” suporta reuso no nivel dos componentes, enquanto que padrdes de design promovem o reuso
de “boas praticas” de programagao. Neste artigo nés remodelamos estas duas técnicas para reuso
em uma abordagem formal baseada em Visdes Abstratas de Dados (ADVs) e programas de processo
e, entdo, demonstramos através de um exemplo como elas podem ser integradas. O embasamento
da abordagem para design em um modelo formal nos permite raciocinar sobre propriedades de um
design especifico e também criar ferramentas de suporte para geragio de cédigo.

Palavras-chave: Programagao orientada a Objetos, Programagao Orientada a “Subjects”, Padrdes
de Design, Visdes Abstratas de Dados, Interfaces com o Usuério, Interfaces, Métodos Formais, Con-
strutores de Desenvolvimento.



1 Introduction

In this paper we examine two object-oriented software construction techniques within the context
of a formal framework. These two approaches, namely subject-oriented programming [HO93] and
design patterns [GHJV95] address different types of reuse within the software implementation
process. Subject-oriented programming emphasizes component reuse through separation of intrinsic
and extrinsic attributes, while design patterns address reuse of “good programming practices.” A
unified method integrating both approaches should yield highly maintainable systems composed
of reusable objects. Examining these two concepts at a formal level provided several advantages:
we could define design patterns formally as process programs; we could include within the pattern
descriptions an explicit statement of separation of concerns as exemplified by subject-oriented
programming; and we could reason about designs within existing frameworks. In addition, this
formalism clarifies the application of patterns and provides a basis for creating tools to support the
generation of code from designs.

The process of subject-oriented programming through the use of subjects and subject activa-
tions, separates the intrinsic and extrinsic behavior and properties of an object. This clear sepa-
ration of concerns allows objects to be coupled to each other through subject activations without
violating encapsulation, a necessary condition if objects are to be distributed and reused as off-
the-shelf certified components. However, subject-oriented programming which supports the reuse
of components, is not sufficient to ensure that a software system can be effectively maintained over
its entire lifetime. In addition to reuse of components, we should use a process which produces
designs general enough to avoid re-design when addressing future problems and requirements.

In order to produce such maintainable designs from reusable components we need to amalgamate
a reusable design process with the concepts embodied in subject-oriented programming. With
appropriate re-structuring design patterns as described in [GHJV95] can support that approach.

Our approach is based on the Abstract Data View (ADV) [CILS93a, CILS93b, CL95] formal
design model which visualizes software systems as composed of two types of components: objects
(Abstract Data Objects or ADOs) and object views (Abstract Data Views or ADVs). An object
view can be both a viewer and modifier of an object’s state. We accomplish our objective of combin-
ing these two viewpoints by first showing how the ADV model and subject-oriented programming
are related, and that object views are the design analog of subjects. We then show how to specify
design patterns more formally through a process programming language and descriptive schemas
based on the ADV model. In this context we consider ADVs and ADOs as the basic building blocks
of software design supported by various assembly techniques including primitive constructors such
as composition, and acquaintance (interconnection) and complex constructs called design patterns.

2 The Abstract Data Views Concept

A model of the ADV/ADO concept showing how these two types of objects interact is presented
in Figure 1. An ADO is an object in that it has a state and a public interface that can be used to
query or change this state; an ADO is abstract since we are only interested in the public interface.
An ADV is an ADO augmented to support the development of general “views” of ADOs, where a
view could include a user interface or an adaptation of the public interface of an ADO to change



the way the ADO is “viewed” by other ADOs. A view may changé the state of an associated ADO
either through an input action (event) as found in a user interface or through the action of another
ADO. Figure 1 illustrates both these uses of ADVs. '

Objects

Effectual
Action

Effectual
Action

Effectual

Causal Action,

Consistency

Object Views
(Subject Activations)

Figure 1: An ADV/ADO interaction model

Both ADVs and ADOs can be acted upon by actions to change or query their state. Actions can
be divided into two categories: causal actions and effectual actions. We use the term causal actions
to denote the input events acting on an ADV when it is acting as a user interface or interface to
some other media. Causal actions are triggered from outside the system and internal objects are
not able to generate this type of action. Effectual actions are the actions generated directly or
indirectly by a causal action, and are supported by both ADVs and ADOs. The triggering of an
effectual action by another action will normally be a synchronous process. An effectual action can
be viewed as the activation or call of a method or procedure that is part of the public interface of
an ADO or ADV. '

Since an ADV is conceived to be separate from an ADO and yet specify a view of an ADO, the
ADV should incorporate a formal association with its corresponding ADO. The formal association
consists of: a naming convention, a method of ensuring that the ADV view and the ADO state are
consistent, and a method of changing the ADO state from its associated ADV.

An ADV knows the name of any ADO to which it is connected, but an ADO- does not know
the name of its attached ADVs. The name of the ADO connected to an ADV is represented in the
ADV by a placeholder variables that is labeled “owner” in Figure 1.

If the state of an ADO is changed then any part of the state that is viewed by a connected ADV
must be consistent with that change. A morphism or mapping is defined between the ADV and
ADO that expresses this invariant and of course uses the naming convention previously described.
This mapping or morphism links the ADV with the part of the state that is accessible through
the ADO public interface, and so preserves encapsulation. The mapping is a design concept, and
several strategies can be used for its implementation. In addition, an ADV may cjuery or change
the state of a connected ADO through its normal public interface.

Because of the separation between view and object it possible to use several ADVs to create
different views for a single collection of ADOs. In this case both ADOs and their associated views
represented by ADVs must be consistent. For example, where ADVs are part of a user interface, a



ADO ADO_Name

Declarations
Data Signatures - sorts and functions
Attributes - observable properties of objects
Effectual Actions - list of possible effectual actions
Nested ADOs - allows composition, inheritance, sets, ...
Static Properties
Constraints - constraints in the attributes values

Derwed Attributes - non-primitive attribute descriptions
Dynamic Properties

Initialization - list of initialization actions
Interconnection - description of the communication process among objects
Valuation - the effect of events on attributes
Behavior - behavioral properties of the ADO
End ADO_Name

Figure 2: A descriptive schema for an ADO

clock ADO could have a digital view, an analog view or both, and they must show the same time.
We call consistency among the different ADVs horizontal consistency, while consistency between
the visual object{(ADV) and its associated ADO is called vertical consistency. These consistency
properties which are illustrated in Figure 1 must be guaranteed by the specification of ADVs,
ADOs, and their environment.

3 Specification Schemas for ADVs and ADOs

In this section we describe abstract schemas for the specification of ADVs and ADOs [ACLN95].
These schemas which are based on the ones in [CGH92, GCH93, GVH*94] describe how objects
modify their state through associated actions. A schema is divided into three sections: declara-
tions, static properties, and dynamic properties, and aspects of these sections use a temporal logic
formalism [ACL95b, MP92].

A declaration part contains a description of all the elements that compose the object including
sorts, functions, attributes, and actions; the status of these elements is public unless declared
otherwise. The static properties part defines all the properties which do not affect the state of
the object. Their definitions are always based on values stored by primitive attributes. Dynamic
properties establish how the states and attribute values of an object are modified during its lifetime.

3.1 Schemas for ADOs

Figure 2 shows the structure of the schemas used in the specification of ADOs.

The data signature section of an object consists of a set S of sort names, and a set F of
functions. A sort declaration represents an association of a set of values to a sort name. A function
specification associates a specific operation to a function name. Among sort expressions we may
have the basic abstractions such as integer and string, and the application-specific abstractions



including object instances or user-defined sorts. Sort constructors, such as set and union, can also
be applied to compose complex sort expressions. '

Attributes denote the state or the set of features of an object that can change over time. At-
tributes can be used by other objects to report on the current state of an object, since Attributes
are its observable properties. Attribute values can only be affected by actions, defined in the same
schema as the attribute to be changed. We can subdivide types of actions into two subtypes:
observer and change actions. The set of actions includes create and destroy which are object
management procedures for objects derived from this specification.

In the Nested ADOQO section we can introduce the list of all the component objects of a composite
ADO with the specification constructors that support nesting. Composite objects are responsible
for creating the instance of the components.

The static properties of an object are represented by closed formulas. Constraint formulas refer
to properties that must be true for all time, and derived attribute formulas define the derivation
rules for the non-primitive attributes from the primitive (base) attributes. A derived attribute is
an attribute in that it is a property of the object, but computing the derived attribute does not
change the state of the object [Rum91].

The initialization of an object is defined by means of effectual actions that initialize attribute
values of this object when the object is created. Before the creation of an object every attribute
has the value undefined.

The interconnection section is described by morphisms of actions and attributes. These mor-
phisms or mappings have several uses. They can establish how component objects relate to the
composite object, or they can be an instrument to define synchrony between actions of different
objects. The intended interpretation of a morphism is that the mapped attributes must always
have the same values and the mapped actions must happen simultaneously.

The definitions of morphism are organized by objects, and the morphisms between the current
object and other objects are specified by expressions of the form elementl —— element2 where
element2 always refers to attributes or actions which are defined inside the current object. An
important consideration is that an ADO schema cannot contain a reference to any ADV element,
since the ADO has no knowledge about the existing ADVs.

The valuation properties of an object describe the changes occurring in attribute values of this
object as an immediate consequence of a triggered action. However, the valuation rules are applied
only if ail the specified pre-conditions for the occurrence of the action are satisfied.

Behavior description is in general a complex task, and we have chosen temporal logic formulas
to describe the object behavior. The behavior section defines the sequencing of the actions and
changes in the state of the object.

3.2 Schemas for ADVs

Figure 3 contains a schema for an ADV as a user interface view, and as we can see by comparing
Figures 2 and 3, the ADO and ADV schemas are similar, since they both incorporate object
properties. However, there are some distinctions that clearly differentiate their roles.

One difference is found in the header of the schemas. Since an ADO has no knowledge about the
existence of ADVs, the header of an ADO schema has only the definition of the ADO name; while,
the header of the ADV schema contains both ADV_Name and ADO_Name declaring an association



ADV ADV _Name For ADO_Name

Declarations

Data Signatures - sorts-and functions

Attributes - observable properties of objects

Causal Actions - list of possible input actions

Effectual Actions - list of possible effectual/output actions

Nested ADVs - allows composition, inheritarice, sets, ...
Static Properties

Constraints - constraints in the attributes values

Derived Attributes - non-primitive attribute descriptions
Dynamic Properties

Initialization - list of initialization actions
Interconnection - description of the communication process among objects
Valuation - the effect of events on attributes
Behavior - behavioral properties of the ADV
End ADV Name

Figure 3: A descriptive schema for an ADV

of the ADO with an ADV. The description of this association is normally defined further in the
interconnection section. An alternative structure to represent the interconnections between an
ADV and an ADO could use another ADV to specify this relationship. This approach allows
more flexibility in describing the interconnection. In addition, an ADO has no definition of causal
actions in its structure, thus every ADO action is effectual. However, ADVs as interfaces to other
media may receive causal (external) actions, which should be declared in a particular section of the
schema. This distinction clarifies that the ADO has no interface properties.

ADVs can also be used to specify the way in which one ADO views another. In this context the
ADYV schema can be modified to specify the relationship between ADOs. For example, in Figure 4
the client ADO labeled ADO; views the component ADO labeled ADO; using ADV;; and thus,
ADV;; supports the detailed definition of a view between the objects represented by ADO; and
ADO;.

ADO,

(Client)

ADO

(Componeént)

Figure 4: An ADV providing a view between two ADOs

In the ADV approach, the view (ADV) knows the identity of the two participating ADOs, but
the two ADOs do not know the identity of the view (ADV). Thus, both the client ADO name and
the component ADO name must be specified in the ADV. The client ADO name should appear in
the ADV declaration, and the component ADO name in the statement that induces an effectual
action or message.



Whenever ADO names are declared in the ADV, two placeholder variables client_owner and
component_owner become available inside an ADV instance. The variables client_owner and
component_owner are associated with the client and component ADO instances respectively. These
variables refer to the two ADO instances and allow controlled access and naming. Notice that the
concept of component_owner is not required in the ADV when it is used as an interface to an ex-
ternal medium because there is no corresponding ADO. This method of specifying the connection
to the component ADQO instance ensures that the client instance has no knowledge of the view of
the component ADO instance.

The client ADO instance can be modified only through its operations, but read-only access to
its state can be provided through the variable client_owner. The client_owner variable can then
be used in the state invariant for the ADV instance and, in a restricted form, in the pre- and
post-conditions, thus, allowing the “appearance” of an ADV to conform to the state of an ADO
instance. This connection between the ADO instance and ADV instance ensures that the ADV
instance has current knowledge of the state of the ADO instance.

The schema which supports interfaces between ADOQOs, contains only statements that induce
effectual actions, since there is no causal action to trigger an event which would cause an input
message. ADO instances do not trigger events and ADV instances as views between ADOs connect
only ADO instances together. There can be multiple effectual action statements with the same
client ADO instance, since different changes in an ADO instance can trigger different component
ADOs. From an operational viewpoint the ADV can be viewed as a process which responds to
changes in the client ADO state and responds to these changes by activating the interface of the
component ADO.

The view specified in Figures 4 supports only uni-directional communication and does not
allow the component ADO instance to communicate with the client. In order to allow bi-directional
communication we must use a pair of ADVs. This concept and the schemas for ADVs as views
between objects are described fully in [ACL95a]. '

In summary we observe that there are two types of ADVs which are natural extensions of each
other: an ADV which acts as an interface between two different media, and can accept causal
actions and instigate effectual actions; and an ADV which induces only effectual actions and acts
as an interface between two ADOs operating in the same medium.

4 The ADV Model and Subject-Oriented Programming

In this section we illustrate that the ADV model is a formal design model for subject-oriented
programming by using a simple example and a tabular comparison based on the tuples in [HO93].
The ADV model does not necessarily address all the implementation-oriented issues mentioned
in [HO93, HOSD94]. Nevertheless, the main features of the subject-oriented approach are captured
within our ADV formalism.

4.1 An Informal Example

The ADV/ADO model supports the concept of intrinsic and extrinsic properties without violating
encapsulation, and allows the composition of an application from objects or other applications. Fig-
ure 5 contains a simple example that illustrates these concepts. The house in Figure 5 represented



Query Action
Mapping (Buyer Vaiue)
(style)

Mapping
(dimensions, materials,
location,style,etc)

Update Action
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Mapping
(dimensions, materials,
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Query Action

Manoi
(Seller Value) apping

(dimensions, materiats,
location,style,efc)

Query Action
(Assesor Value)

Figure 5: Several views of a house

by an ADO has several intrinsic properties including: materials, dimensions, style and location.
These properties are accessed by a number of ADVs (subject activations) through a mapping, and
then a different extrinsic value is computed by each ADV. Each of these values is made available to
other objects (ADOs) by an effectual action or method. The mapping ensures that the house ADO
does not have to know the identity of the view or the ADOs making the query about the value.

The seller ADO in the Figure decides to modify the style of the house through some construction.
Hence, we require another ADV connecting the seller to the house to allow the style to be modified.
This ADV shows a mapping from style controlled by the seller to the ADV which then causes an
update to the style attribute of the house. As soon as the style changes for the house object the
mapping connected to the other ADVs ensures that they automatically update their values. The
objects in this example do not have to know the identity of other objects, since they are connected
through an ADV or subject activation.

4.2 A Conceptual Comparison

The subject model is based on the notions of subjects and subject activations. According to
Harrison and Ossher [HO93] “A subject is a collection of state and behavior specifications reflecting
a particular gestalt, a perception of the world at large such as is seen by a particular application
or tool.” The essential characteristic of subject-oriented programming is that different subject
activations can separately query and change the state of an object without the object being aware
of any of the subject activations, and any of the subject activations being aware of each other.
Thus, a subject activation can specify extrinsic behavior by utilizing the intrinsic behavior of



the object. Although the ADV model uses schemas and temporal logic, the model can support
concepts analogous to subjects and subject activations, and in fact was originally conceived to deal
with similar issues at a different level of design. There are a number composition rules for ADVs
including nesting and loose interconnection.

An informal comparison of the models based on the concepts in [HO93] is summarized in the
table in Figure 6. In the table we consider how intrinsic and extrinsic entities are distinguished
by both models and we compare how the extrinsic entities are described within the two models.
We also compare the way that the extrinsic entities are composed, their extrinsic entity-oriented
universes, their extrinsic entity universe activations, and their extrinsic entity activations. This
informal comparison indicates that the subject-oriented and the ADV models are conceptually
equivalent although addressing the same problem at different levels of abstraction. A more detailed
formal comparison and extensive example based on the tuples in [HO93], is presented in [ACL95a].

Concepts and Models | Subject Model ADV Model
Intrinsic Usual Class Intrinsic ADO Schema
Entity
Extrinsic Subject ADV Schema
Entity
Extrinsic Class Names Extrinsic ADO Schemas
Entity Interfaces Extrinsic ADO Interfaces
Description Class Description Extrinsic ADO
(Functions) Descriptions
Superclass ADO
" Function Structure Info
Extrinsic Composition Rules: Interconnection Modes:
Entity Nesting, Nesting;
Composition Various Other Forms Design Patterns
Sequence of Components Sets or Sequences of ADVs
(Subjects or Compositions) | (or Interconnected ADVs)
Extrinsic Composition of Interconnected
Entity-Oriented Subjects ADVs
Universe Subject Universe ADV Universe
Activation Activation
Extrinsic Set of Set of Intrinsic
Entity Universe Object Identifiers ADO Instances
Activation Subject ADV
Activation Activation
Extrinsic A Subject An ADV Schema
Entity State Function Extrinsic ADO Instance
State Info
Activation Instance-of Extrinsic ADO Schema
Function State and Behavior Info

Figure 6: A comparison between the subject-oriented and ADV approaches
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5 The ADV Model and Design Patterns

In addition to providing reusable components to build a system, we also require a reusable pro-
cess to guide the designer in assembling those components into a maintainable design. Recent
work [GHJV95] has produced a catalog of design patterns for composing elementary objects into
application structures that are amenable to modification. These guidelines could be used in the
context of subject-oriented programming if the design patterns were organized in the context of
ADVs and ADOs, that is within the framework of reusable components.

In addition to recasting design patterns into the realm of reusable components, we have formal-
ized the patterns through the use of a process programming language. This formalization helps to
eliminate any ambiguities in the process of design pattern instantiation, and should lead to some
automation of code production. We first provide an overview of the formalization and then show
the formal description of some of the patterns in [GHIJV95].

5.1 Design Pattern Constructors

We formalize design patterns by introducing development constructors based on schemas that
indicate how to apply a pattern. We define design pattern constructors to consist of a language-
independent part and a product text specification, where a specific language is adopted; this ap-
proach is similar to that described in [LS94]. The development constructor structure is shown in
Figure 7 where the purpose of each component of the structure is presented.

Operator Pattern Name

Objective Description of the intent of the pattern
Parameters External elements used in the pattern definition
Subtasks Description of pattern in terms of primitive constructors

Consequences How the pattern supports its objective
Product Text Language-dependent specification of pattern
End Operator

Figure 7: Development constructor structure for a design pattern

Applying a pattern in the context of a specific problem requires a process description, and
so we specify this process in terms of primitive development constructors and parameters. The
primitive constructors applied to pattern construction are organized in a section of the schema
called Subtasks, while input parameters used in this process are declared in the Parameters section.

The language-dependent part of the pattern constructor describes the result of the application
of a pattern as a specific formal representation. Since design patterns are solution abstractions,
a template of the pattern is a helpful instrument in guiding the user to a particular specification.
Such templates are illustrated using the pattern development constructors and the formalism of
ADV/ADO schematic representations described in Section 3.
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Operator Design Pattern Facade

Objective Provide a unified interface to a set of interfaces in a subsystem
Parameters Objects: SubSysl, ..., SubSysN;
Subtasks 1 - Create Object: - FACADE

2 - Compose Objects: SubSysl, ..., SubSys, FACADE — FACADE

Consequences FACADE is a higher-level interface object shielding many other subsystem interfaces

Product Text ADV/ADO FACADE

Declarations

Nested ADVs/ADOs
Compose SubSysl, ..., SubSysN;

End FACADE
End Operator

Figure 8: Specification of facade pattern constructor

5.2 Examples of Design Pattern Constructors

In this section we describe how to specify the facade and composite design patterns based on the
pattern constructor described in Figure 7. We have chosen these two patterns since they support
the example in Section 6. Several other examples of design patterns from the three categories
in [GHJV95] are presented in [ACL95a]. There is a substantial difference between the pattern
specifications in [GHIJV95], and our specifications. The patterns in [GHJV95] are based on OMT
diagrams and C++ templates, while our version of the patterns is based on a process language and
the formalism of the ADV design approach.

The development operators in the following examples are sequentially numbered in a section
called Subtasks, while the object schemas are defined in the language-dependent section called
Product Text. Other sections complete the design pattern specifications by providing additional
information. The Subtasks which specify how to instantiate a pattern are given in a task or function
notation of the form: f: x — y where fis a function, x is a list of parameters for the function f, and
y is the result of applying the function f. '

The facade pattern, shown in Figure 8, is a pattern that composes many interface modules into
a single one. The pattern has two subtasks: “Create Object” which returns a copy of the FACADE
Product Text and the function “Compose Objects” which takes the the N+1 arguments SubSysl
..., SubSysN and FACADE and returns the modified Product Tezt for FACADE.

The current specification approach differs from the one proposed in [GHJV95], in that the link
between a view and its application object is represented by the ADV mapping mechanism, which
was explained in Section 2. This approach does not describe the implementation of the link, but
indicates a morphism between elements of the objects involved. In contrast, the design described in
[GHIV95] proposes a design technique that is closer to implementation than the proposed mapping.
However, experiments with the ADV approach [CL95] indicate that efficient implementations of
this mapping are possible.

12



Operator Design Pattern Composite

Objective
Parameters
Subtasks

Consequences

Prioduct Text

End Operator

Compose objects into tree structures to represent part-whole hierarchies
Objects: COMPONENT;
1 - Create a Tree Structure.
1.1 - Instantiate Concrete Object: COMPONENT — COMPOSITE
1.2 - Instantiate Concrete Object: COMPONENT — LEAFs
1.3 - Compose Objecis: LEAFs, COMPOSITE — COMPOSITE
1.4 - If Subtree is needed:
1.4.1 - Recursively Create SubTrees (Step 1)
1.4.2 - Compose Objects: SubCOMPOSITE, COMPOSITE — COMPOSITE

A tree structure composed of LEAF objects and COMPOSITE objects is created, where
the last ones represent the internal nodes of the tree

ADV/ADO COMPOSITE

Declarations

Attributes

ComponentType: ADO COMPONENT;
Nested ADVs/ADOs

Set of ComponentType;

Inherit Component;

End COMPOSITE

ADV/ADO LEAF

Declarations

Nested ADVs/ADOs
Inherit Component;

End LEAF

Figure 9: Specification of composite pattern constructor

13



Figure 9 describes the specification of the composite design pattern. This pattern defines a
hierarchical structure of objects sharing part-whole relationships. In such a relationship between
objects, a composite object performs the “whole” role, while leaf and other composite objects
represent the “parts.” , '

The elements composing the resulting tree structure have uniform interfaces, since all of them
inherit the tree interface from the abstract class called component. Additionally, these elements
might be defined by ADVs or ADOs, since the composite design pattern might be used to structure
both user interface objects and application objects.

6 Integrating Subjects and Design Patterns — A Case Study

In this section we present a partial case study based on the editor described in [GHIV95]. Some of
the design patterns used in this case study are described in Section 5. The structure of the system
is described with an OMT diagram notation [Rum91] extended for the ADV approach. The objects
in this notation are represented by ADV boxes or ADO boxes, while dashed arrows represent the
mapping between an ADV and its associated ADO. The lozenge, triangle and black circle in the
OMT diagram represent aggregation, inheritance and zero or more associations respectively. Thus,
in Figure 10, Document is an aggregation of zero or more Element(s) and Composite View inherits
from Document View.

After the description of the editor OMT diagrams, each of the objects composing the design
is specified by means of the schemas introduced in Section 3. The specifications are somewhat
simplified, so that the concepts are not obscured with detail.

The first OMT diagram presents the basic data structure. This structure is defined using the
composite design pattern, and is illustrated in Figure 10. This structure is used to build a document
and its view from basic elements, which in our example are characters and pictures. While the
application objects (ADOs), defined in Figure 11, are oriented toward sequencing of document
elements, the interface objects (ADVs), specified in Figure 12, represent the user views of the
document, consisting of columns and lines of text.

The sequence of elements is stored in the Document ADO, while the organization of the text
in columns and lines is defined by the composite design pattern, which consists of ADV objects.
Character and picture views are represented by CharView and PictureView ADVs, respectively,
while the document hierarchy is defined by Composite View ADVs. Al of these ADVs have interfaces
defined by the Glyphlnterface abstract class.

The command pattern defines how the document editor functions associated with the user
interface buttons are encapsulated inside objects. While the ButtonsView ADV composes a set of
Button ADVs to create menus or any other user interface objects, the Command ADV defines an
abstract class that specifies the interface of the objects that will implement the respective button
operations. Additionally, the Button ADV composes objects that inherit the Command interface
in order to call the functions associated with these objects. '

In Figure 13 we show the OMT diagram containing the application of the command design pat-
tern to the case study. The diagram shows the objects described in the previous paragraph together
with two examples of interface objects inheriting from the Command ADV, namely ChangeFont
and CutTezt. While the former ADV is related to the CharView ADV, from which it triggers
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Figure 10: The document editor structure
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ADO Document
Declarations
Attributes
DocType: string;
Effectual Actions
InsertElement: position, ADO Element;
DeleteElement: position;
Nested ADOs
Sequence of Element;
End Document

ADO Element
Declarations
Attributes
ASCII: nat; -
Font: string;
File: string;
Format: string;
Effectual Actions
SetValue: nat;
SetForm: string;
SetFileName: string;.
SetFormat: string;
End Element

ADO Char
Declarations
Attributes
Element.ASCII: nat;
Element.Font: string;
Effectual Actions
Element.SetValue: nat;
Element.SetForm: string;
- Nested ADOs
Inherit Element;
End Char

ADO Picture
Declarations
Attributes
Element.File: string;
Element.Format: string;
Effectual Actions
Element.SetFileName: string;
- Element.SetFormat: string;
Nested ADOs
Inherit Element;
End Picture

Figure 11: Basic ADOs of the document editor
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ADV DocumentView ForADO Document
Declarations
Attributes

CompositeView.Glyphlnterface.Child: ADV Glyphlnterface;

Effectual Actions

CompositeView.Glyphlnterface.CreateChild: ADV Glyphlnterface, position;
CompositeView.Glyphlnterface. RemoveChild: position; '

Composite View.Glyphlnterface.Draw: coordinates;
CreateElement: position, ADV GlyphInterface, ADO FElement;

RemoveElement: position;
Nested ADVs
Inherit CompositeView;
End DocumentView

ADV Glyphlnterface
Declarations
Attributes
Size: nat;
Child: ADV GlyphlInterface;
Effectual Actions
Draw: coordinates;
CreateChild: ADV Glyphlnterface;
RemoveChild: ADV Glyphlnterface;
End Glyphlnterface

ADV PictureView ForADO Picture
Declarations
Attributes
GlyphlInterface.Size: nat;
Effectual Actions
GlyphInterface.Draw: coordinates;
Nested ADVs .
Inherit Glyphlnterface;
End PictureView

ADV CharView ForADO Char
Declarations
Attributes
Glyphlnterface.Size: nat;
Effectual Actions
Glyphlnterface.Draw: coordinates;
Nested ADVs
Inherit Glyphlnterface;
End CharView

ADV CompositeView
Declarations
Attributes

GlyphlInterface.Child: ADV Glyphlnterface;

Effectual Actions

Glyphlnterface.CreateChild: ADV Glyphlnterface;

GlyphInterface.RemoveChild: ADV GlyphlInterface;

Nested ADVs
Inherit Glyphlnterface;
Sequence of GlyphInterface.Child;
End CompositeView

Figure 12: ADVs forming the composite pattern
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. e ———
ButtonsView Button < - Command
ADV ADV
ChangeFont - CutText
ADV ADV
CharView DocumentView

Figure 13: The command design pattern application

methods that changes the character font, the CutText ADV performs its operations based on its
relation to the DocumentView ADV. All of these objects have their specification schemas described
in Figure 14.

The facade pattern is the third pattern used in our specification and it has a very simple role.
It composes the functions of the DocumentView and ButtonsView ADVs in order to present the
user interface as a single structure. Such a pattern and the ADV it introduces are shown in Figure
15.

7 Conclusions

This paper contains the description of an integrated formal design model that supports both subject-
oriented programming and design patterns. The basis for the model is the division of a software
system into objects (Abstract Data Objects or ADOs), and object views (Abstract Data Views or
ADVs). The object views are not just observers of objects; they can also change an object’s state.
Furthermore, object views are the design analog of subjects. Using the ADV design approach we
believe we have been able to address many of the design issues of subject-oriented programming.
Although the model is at a higher level of abstraction we have been able to map our designs
systematically into object-oriented implementations of software systems. Of course if subject-
oriented languages and systems were available, then this mapping process would be much easier.
The Abstract Data View Model was first created to separate the specification of the user in-
terface components (ADVs) from the application components (ADOs) in an application, and was
initially described in [CILS93a, CILS93b]. One such implementation was the MVC model, although
several other implementation strategies have been satisfactorily explored. Subsequent work [CL95]
extended the model to include subjects and subject activations which we called interfaces. The
work on subject-oriented programming caused us to view our formal models in this context, and
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ADV ButtonsView . ADV Command

Declarations Declarations
Attributes _ " Effectual Actions
CommandName: ADV Command; Execute;
Effectual Actions End Command
AssociateCommToButton: ADV Command;

ADV ChangeFont OnADO Char
Declarations
- Attributes
FontName: string;

Nested ADVs
Set of Button;
Dynamic Properties

Interconnection
WithADV Button Effectual Actions
SetCommand — AssociateCommToButton; Change: %;
End ButtonsView Command.Execute;
Nested ADVs
Inherit Command;
Dynamic Properties
Interconnection
WithADO Char
ADV Button SetForm — Change;
Declarations End ChangeFont
Attributes ADV CutText
ButtonName: string; Declarations
Position: coordinates; Attributes
CommandName: ADV Command; PosInit: nat;
Causal Actions PosEnd: nat;
Pressed: boolean; ‘ Effectual Actions
Effectual Actions Remove: position;
SetCommand: ADV Command; Command.Execute;
Nested ADVs Nested ADVs
Compose CommandName; . Inherit Command;
Dynamac Properties Dynamic Properties
Interconnection Interconnection
WithADV Command WithADV Document View
Execute — Pressed; RemoveElement —3 Remove;
End Button End CutText

Figure 14: Objects of the command design pattern application

ADV . :
EditorView ADV EdltorV?ew
Declarations
Nested ADVs
Compose DocumentView, ButtonsView;
End EditorView :

i ADV] ADV
{DocumentVie ButtonsView
 —

Figure 15: The facade design pattern
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inspired the production of this paper.
We view ADVs and ADOs as the basic building blocks of software design, where the ADV
approach encompasses at least two basic activities. ADV-oriented design must:

1. identify the ADOs and ADVs or subjects related to an application and determine the way
the views are related to the intrinsic ADO objects, and

2. define approaches to assemble these basic building blocks into a software system.

Both these activities can be performed at various levels of abstraction and can be more or less formal.
Subject-oriented programming currently appears to take an implementation-oriented perspective
in which it does not appear possible to reason about the designs. We are tackling these problems
from a more abstract or design level, and because of our formulation of the design we can support
formal reasoning [ACL95b, BACL95].

In order to assemble the basic building blocks we need various techniques. Our approach
supports primitive constructors such as composition, and acquaintance (interconnection) at one
level, and then allows us to construct components in the form of design patterns, thus, reusing the
work reported in [GHIV95]. Because we have a formal method of expressing design patterns we
are able to map many of the patterns into code schemas that can be completed interactively. We
are currently building tools to support this activity.

Object-oriented analysis and design methods (OOADMs) [Boo91, CY91la, CY91b, dCLF93,
MO92, SM88, WBWW90| do not appear to support subject-oriented programming directly. How-
ever, we have observed that a design level approach as typified by the ADV formalism can be
easily incorporated into most of the well known methods. This observation is supported by the
work reported in [HvdGB93]. Incorporating the ADV approach into one of the common OOADMs
would allow the creation of a subject-oriented method without the necessity of creating a whole
new approach.

8 Note to the Reader

Many of the technical reports mentioned in this paper are available via anonymous ftp from
.[csg.uwaterloo.ca] at the University of Waterloo. The names of the technical reports are in the file
“pub/ADV/README” and electronic copies of the reports in postscript format are in the directo-
ries “pub/ADV/demo,” “pub/ADV /theory,” and “pub/ADV /tools.” These reports are also on the
World Wide Web at “http://csg.uwaterloo.ca:80/ADV.html” or “ftp://csg.uwaterloo.ca/pub/.”
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