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Abstract: In this paper we present a formal approach to define and apply design patterns that
is both process- and reuse-oriented. Initially we use a process program based on design pattern
primitive tasks or constructors to describe how to instantiate a pattern. As we develop the patterns
we introduce a formal model for the interconnected objects that constitute the instantiation. The
formal model which is based on Abstract Data Views divides designs into both objects and views in
order to maintain a separation of concerns. We have chosen a formal model for pattern definition
and application since it allows us to specify the steps in pattern instantiation unambiguously and
to reason about the completed design. Furthermore, a formal statement of the application of a
design pattern can provide the foundation on which to build tools to assist the programmer in code
-generation.

Keywords: Object-Oriented Programming, Design Patterns, Reuse, Abstract Data Views, Formal
Specification.

Resumo: Neste artigo nds apresentamos um método formal para a definigao e aplicagio de padrdes
de design que é tanto orientado ao reuso quanto a processos. Inicialmente nés usamos um programa
de processos baseado em tarefas ou construtores primitivos de padroes de design para descrever
como instanciar um padrdo. Ao apresentarmos os padrdes nés introduzimos um modelo formal
para a interconexdo dos objetos que constituem a instanciagdo. O modelo formal, que é baseado
Visbes Abstratas de Dados (ADVs), divide designs em objetos e visdes para manter a separagio
de atribuicdes. Nés escolhemos um modelo formal para a definigdo e aplicagdo de padrdes uma
vez que este modelo permite especificar os passos da instanciagio de padrdes ndo ambiguamente e
raciocinar sobre o design completo. Além disso, o enunciado formal da aplicagdo de um padrao de
design pode fornecer a base tedrica para a construgéo de ferramentas para assistir o programador
na geragdo de cédigo.

Palavras-chave: Programagao Orientada a Objetos, Padrdes de Design, Reuso, Visdes Abstratas
de Dados, Especificagao Formal.



1 Introduction

Design patterns|GHIV95] can be viewed as an approach to encapsulating “good practice” in object-
oriented programming, where the patterns indicate to the programmer how carefully engineered
collections of objects can be used to produce programs. Design patterns add another reuse dimen-
sion to object-oriented programming since they present a way to use repeatedly the experience of
the best programmers in structuring‘ programs. s '

Design patterns were partially inspired as an outgrowth of the MVC model[KP88] which is a

. programming model to achieve a separation of concerns and allow the definition of the user interface
(controller and view) to be separated from the application (model). Even though the MVC model
provided the inspiration, some of the examples found in [GHJV95] do not uphold this principle of
separation between the model and the controller/view. '

Currently design patterns have been grouped into three major categories and been informally
described in a catalogue[GHJV95] using text and diagrams. The descriptions can be viewed as
an informal recipe or process for producing instantiations of specific patterns in languages such as
Smalltalk or C++.

An examination of design patterns prompts the question: “Can we describe design patterns
more formally, and is there any advantage in such a description?” There are two aspects to design
patterns that could be considered for formalization: the process of producing specific instantiations,
and the use of formally defined components to substitute in these instantiations. If the process
is defined through a process programming language with formal syntax and semantics, then any
ambiguities in the process of design pattern instantiation should be eliminated. Eliminating ambi-~
guity should make it easier to derive code consistently and perhaps even lead to some automation
of the production of code for the particular instantiation of a design pattern. Substituting for-
mally defined components into an instantiation could permit a formal reasoning process about
the resulting system. We currently have established two different frameworks for reasoning about
designs[ACL95, BACL95] of this type. Recent investigationsiBACL95] have shown how both a
formal model and a prototype can be derived from a single component-based specification, thus
providing a strong link between formalism and implementation.

The instantiation of components is based on the Abstract Data View (ADV) approach[CILS93a,
CILS93b, CL95] which uses a formal model to achieve separation by dividing designs into two
types of components: objects and views, and by strictly following a set of design rules. Specific
instantiations of views as represented by Abstract Data Views (ADVs) and objects called Abstract
Data Objects (ADOs) are substituted into the design pattern realization while maintaining a clear
separation between view and object. This creates patterns that are similar but not identical to the
ones in[GHIV95]. Each design pattern has an associated process program that describes how to
substitute these components to create a specific instantiation.

In this paper we describe the ADV formal model and the associated formal schemas for ADVs
and ADOQOs. Some of the patterns are then used to illustrate a formal approach to the process of
constructing instantiations of design patterns. Finally we present a case study based on the editor

described in [GHIV95].



2 The Abstract Data View (ADV) and Abstract Data Object
(ADO) Concepts '

A model of the ADV/ADO concept showing how these two types of objects interact is presented
in Figure 1. An ADO is an object in that it has a state and a public interface that can be used to
query or change this state; an ADO is abstract since we are only interested in the public interface.
An ADV is an ADO augmented to support the development of general “views” of ADOs, where a
view could include a user interface or an adaptation of the public interface of an ADO to change
the way the ADO is “viewed” by other ADOs. A view may change the state of an associated ADO
either through an input action (event) as found in a user interface or through the action of another
ADO. Figure 1 illustrates both these uses of ADVs.

Objects
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Figure 1: An ADV/ADO interaction model

Both ADVs and ADOs can be acted upon by actions to change or query their state. Actions can
be divided into two categories: causal actions and effectual actions. We use the term causal actions
to denote the input events acting on an ADV when it is acting as a user interface or interface to
some other media. Causal actions are triggered from outside the system and internal objects are
not able to generate this type of action. A keystroke or a mouse click are simple examples of input
events that are causal actions. Effectual actions are the actions generated directly or indirectly by
a causal action, and are supported by both the ADVs and ADOs. The triggering of an effectual
action by another action will normally be a synchronous process. An effectual action can be viewed
as the activation or call of a method or procedure that is part of the public interface of an ADO or
ADV.

In an ADV/ADO configuration only causal actions can change the state of the system. In other
words, a causal action can make an effectual action occur, but an effectual action can not make
a causal action occur. Since causal actions come from outside the system, causal actions can not



cause other causal actions. If we visualize a tree of actions occurring over time, then a causal action
can only appear at the root of a tree of action.

Since an ADYV is conceived to be separate from an ADO and yet specify a view of an ADO, the
ADYV should incorporate a formal association with its coiresponding ADO. The formal association
consists of: a naming convention, a method of ensuring that the ADV view and the ADO state
are consistent, and a method of changing the ADO state from its associated ADV. The form of
this association does not violate encapsulation as we compose ADOs and ADVs to make larger
systems. The ADV model supports a number of composition mechanisms which are described in
detail in [ACL95].

An ADV knows the name of any ADO to which it is connected, but an ADO does not know
the name of its attached ADVs. In the formal schema for an ADV, the names of the connected
ADOs are represented by placeholder variables that are collectively labelled “owner” in Figure 1.
This naming convention allows the connection of objects without violating encapsulation.

If the state of an ADO is changed, then any part of the state that is viewed by a connected ADV
must be consistent with that change. A morphism or mapping is defined between the ADV and
ADO that expresses this invariant and of course uses the naming convention previously described.
This mapping or morphism links the ADV with the part of the state that is accessible through
the ADO public interface, and so preserves encapsulation. The mapping is a design concept, and
several strategies are available for its implementation. In addition, an ADV may query or change
the state of a connected ADO through its normal public interface.

Because of the separation between view and object it is possible to use several ADVs to create
different views for a single collection of ADOs. In this case both ADOs and their associated views
represented by ADVs must be consistent. For example where ADVs are part of a user interface, a
clock ADO could have a digital view, an analog view or both, and they must show the same time.
We call consistency among the different ADVs horizontal consistency, while consistency between
the visual object (ADV) and its associated ADO is called vertical consistency. These consistency
properties which are illustrated in Figure 1 must be guaranteed by the specification of ADVs,
ADOs, and their environment.

Since ADVs are also objects they can be encapsulated and connected to other ADOs or ADVs
by ADVs. Thus, if our views are placed in a distributed system, and become separated from their
corresponding objects we can introduce the concept of time delay into the specification through
auxiliary ADVs. )

3 Specification Schemas for ADVs and ADOs

In this section we describe abstract schemas or classes for the specification of ADVs and ADOs
[ACLN95]. These schemas are useful tools for both formal and informal program specifications
[CGH92, FHW93], and are based on the ones described in [CGH92, GCH93, GVH"94]. A schema
for an object in a system describes how that object modifies its state through its associated actions.

Components of the ADV model are called objects since their schema specifications describe
behavior over the lifetime of the object, and involve both static and dynamic properties. Both
interface and application components are composed of dynamic properties that specify changes in
the attributes representing the state memory of the objects.



ADO ADO_Name

Declarations )
Data Signatures - sorts and functions
Attributes - observable properties of objects
Effectual Actions - list of possible effectual actions
Nested ADOs - allows composition, inheritance, sets, ...
Static Properties
Constraints - constraints in the attributes values

Derived Attributes - non-primitive attribute descriptions
Dynamic Properties

- Initialization - Iist of initialization actions
Interconnection - description of .the communication process among objects
Valuation - the effect of events on attributes
Behavior - behavioral properties of the ADO
End ADO_Name

Figure 2: A descriptive schema for an ADO.

ADVs and ADOs have distinct roles in a software system and, as a consequence, they are
described by different schemas. These schemas are not the actual objects inside a system, but
rather provide descriptions of their static and dynamic properties and declarations of entities that
are used within the scope of the object. The specification syntax of the whole schema is presented
essentially through a temporal logic formalism [MP92]. Every ADV or ADO structure is subdivided
into three sections: declarations, static properties, and dynamic properties.

A declaration part contains a description of all the elements that compose the object including
sorts, functions, attributes, and actions. They have a public status unless explicitly declared as
private. The static properties part defines all the properties which do not affect the state of
the object. Their definitions are always based on values stored by primitive attributes. Dynamic
properties establish how the states and attribute values of an object are modified during its lifetime.

3.1 Schemas for ADOs

Figure 2 shows the structure of the schemas to be used in the specification of ADOs.

The data signature section of an object consists of a set S of sort names, and a set F of
functions. A sort declaration represents an association of a set of values to a sort name. A function
specification associates a specific operation to a function name. Among sort expressions we may
have the basic abstractions such as integer and string, and the application-specific abstractions
including object instances or user-defined sorts. Sort constructors, such as set and union, can also
be applied to compose complex sort expressions. The functions, denoting operations over given
values, are also part of the data signature section.

Attributes denote the state or the set of features of an object that can change over time. At-
tributes can be used by other objects to report on the current state of an object, since Attributes
are its observable properties. Attribute values can only be affected by actions, defined in the same
schema as the attribute to be changed.

We can subdivide types of actions into two subtypes: observer and change actions. The set of
actions includes create and destroy which are object management procedures for objects derived



from this specification.

In the Nested ADO section we can introduce the list of all the component objects of a composite
ADO with the specification constructors that support nesting. All objects are components of some
composite object; objects which do not belong to a composite object are a component of the
“system.” Composite objects are responsible for creating the instance of the components. Since
the creation action can happen only once in a life of any object, then a component object can never
be nested in two distinct composite objects. The rules used here for ADOs also apply to ADVs.

The static properties of an object are represented by closed formulas. Constraint formulas refer
to properties that must be true for all time, and derived attribute formulas define the derivation
rules for the non-primitive attributes from the primitive (base) attributes. A derived attribute is
an attribute in that it is a property of the object, but computing the derived attribute does not
change the state of the object [Rum91].

The initialization of an object is defined by means of effectual actions that initialize attribute
values of this object when the object is created. Before the creation of an object, every attribute
has the value undefined.

The interconnection section is described by morphisms of actions and attributes. These mor-
phisms or mappings have several uses. They can establish how component objects relate to the
composite object, how ADVs are associated with an ADO, or they can be an instrument to define
synchrony between actions of different objects. The intended interpretation of a morphism is that
the mapped attributes must always have the same values and the mapped actions must happen
simultaneously. ,

The definitions of morphism are organized by objects and, the morphisms between the current
object and each other object are specified by expressions of the form elementl — element2 where
element2 always refers to attributes or actions which are defined inside the current object. An
important consideration is that an ADO schema cannot contain a reference to any ADV element,
since the ADO has no knowledge about the existing ADVs.

The valuation properties of an object describe the changes occurring in attribute values of this
object as an immediate consequence of a triggered action. However, the valuation rules are applied
only if all the specified pre-conditions for the occurrence of the action are satisfied.

Behavior description is in general a complex task. Most of the object-oriented models represent
system behavior by means of transition networks, which are augmented state-machine diagrams
[dCLF93]. We have chosen temporal logic formulas to describe the object behavior. However,
there are a number of graphical representation languages that we could have chosen instead to
describe the behavior of objects [CCL93, Har87, CHB92, Che91]. The behavior section defines the
sequencing of the actions and changes in the state of the object.

3.2 Schemas for ADVs as User-Interface Views

Figure 3 contains a schema for an ADV, and as we can see by comparing Figures 2 and 3, the
ADO and ADV schemas are similar, since they both incorporate object properties. However, there
are some distinctions that clearly differentiate the roles of ADOs and ADVs in the ADV design
approach.

One difference is found in the header of the schemas. Since an ADO has no knowledge about the
existence of ADVs, the header of an ADO schema has only the definition of the ADO name; while,



ADV ADV Name For ADO _Name

Declarations

Data Signatures - sorts and functions

Attributes - observable properties of objects

Causal Actions - list of possible input actions

Effectual Actions - list of possible effectual actions

Nested ADVs - allows composition, inheritance, sets, ...
Static Properties

Constraints - constraints in the attributes values

Derived Attributes - non-primitive attribute descriptions
Dynamic Properties

Initialization - list of initialization actions

Interconnection - description of the communication process among objects
Valuation - the effect of events on attributes

Behavior - behavioral properties of the ADV

End ADV _Name
Figure 3: A descriptive schema for an ADV.

the header of the ADV schema contains both ADV_Name and ADO_Name declaring an association
of the ADO with an ADV. The description of this association is normally defined further in the
interconnection section. An alternative structure to represent the interconnections between an
ADYV and an ADO could use another ADV to specify this relationship. This approach allows more
flexibility in describing the interconnection. In addition, an ADO has no definition of causal actions
in its structure, thus every ADO action is effectual. However, ADVs may receive causal (external)
actions, which should be declared in a particular section of the schema. This distinction clarifies
that the ADO has no interface properties.

3.3 Schemas for ADVs as Views Between ADOs

ADVs can also be used to specify the way in which one ADO views another. In this context the
ADYV schema can be modified to specify the relationship between ADOs. For example, in Figure 4
the client ADO labelled ADO; views the component ADO labelled ADO; using ADV;; and thus,
ADV;; supports the detailed definition of a view between the modules represented by ADQO; and
ADO;.

Figure 4: An ADV providing a view between two ADOs

Figure 6 contains a modified version of the ADV schema from Figure 3, and this new definition
supports the concept of a view between ADOs. In the ADV approach, the view (ADV) knows the



identity of the two participating ADOs, but the two ADOs do not know the identity of the view
(ADV). Thus, in the syntax of the modified schema, the representation relation requires that both
the client ADO name and the component ADO name be specified in the ADV. The client ADO
name should appear in the ADV declaration, and the component ADO name in the output actions
or messages.

Whenever the ADO names are declared in both the ADV header and output message declara-
tions, two pseudo-variables client_owner and component_owner become available inside an ADV
instance. The variables client_owner and component_owner are associated with the client and
component ADO instances respectively. These pseudo-variables refer to the two ADO instances
and allow controlled access and naming.

The pseudo-variable component_owner connects an instance of the ADV to an instance of the
component ADO and provides access to its view. Notice that the concept of component_owner is
not required in the ADV when it is used as an interface to an external medium because there is
- no corresponding ADOQO. This method of specifying the connection to the component ADO instance
ensures that the client instance has no knowledge of the view of the component ADO instance.

The pseudo-variable client_owner associated with an instance of the client ADO is made avail-
able inside the ADV. This pseudo-variable refers to the client ADO instance and allows con-
trolled access to the state of the ADO instance. The client ADO instance can be modified only
through its operations but read-only access to its state can be provided through the pseudo-variable
client_owner. The client_owner pseudo-variable can then be used in the state invariant for the
ADV instance and, in a restricted form, in the pre- and post-conditions, thus, allowing the “ap-
pearance” of an ADV to conform to the state of an ADO instance. This connection between the
ADOQO instance and ADV instance ensures that the ADV instance has current knowledge of the state
of the ADO instance.

The schema which supports interfaces between ADOs contains only output message definitions,
since there is no causal action to trigger an event which would cause an input message. ADO
instances do not trigger events and ADV instances as views between ADOs connect only ADO
instances together. There can be multiple output messages with the same client ADO instance
since different changes in an ADO instance can trigger different component ADOs.

From an operational viewpoint the ADV can be viewed as a process which responds to changes
in the client ADO state and responds to these changes by activating the interface of the component
ADO. _

In summary we observe that there are two types of ADVs: an ADV which acts as an interface
between two different media and has both input and output messages, and an ADV which supports
only output messages and acts as an interface between two ADOs operating in the same medium.
Although two types of ADVs exist, they are natural extensions of each other.

The view specified in Figures 4 and 6 supports only uni-directional communication and does
not allow the component ADO instance to communicate with the client. In order to allow bi-
directional communication we must use a pair of ADVs as depicted in Figure 5. The second
ADV named ADVj; provides access to the state of ADO; and communicates with ADO; through
the output message. These two ADVs are composed into a single ADV called ADVZ% and this
specification schema is outlined in Figure 7. The associated component schemas ADV;; and ADVj;
are described in Figure 8.



Figure 5: A pair of ADVs providing a bi-directional view between two ADOs

3.4 The specification schemas for ADV and ADO class templates

So far, we have introduced the concept of formal specification schemas or classes for ADVs and
ADOs. However, certain of the design patterns are in the creational category and need the spec-
ification of meta-level requirements such as a limit to the number of instances produced from a
specific schema. For this reason we introduce class templates that reference specific schemas and
manage the creation and destruction of objects produced from those schemas. We consider these
class templates as meta-objects which support inheritance and nesting of classes.

Class templates support an inheritance structure so that they can be derived from existing class
templates. Similarly nesting allows a class template to be composed of other class templates.

The class template for an ADV is described in Figure 9; the schema is similar to the schema for
an ADV object except that we are now primarily describing the class specification related to object
management. The object specification associated with this class, in this case an ADV, is described
in the Class_ Member statement. An object is created from within the class template by using the
name of the specification for that object (ADV or ADO) and invoking the method Add_Object.

4 Design Patterns

The ADV model supports reuse since it divides an application into a set of specialized objects
(separation of concerns) each of which may be used in other designs. However, we would like to
“glue” these objects into reusable systems, that is systems which are easily maintained over time.
Design patterns as proposed in [GHIV95] provide this form of reuse. Each design pattern is a
meta-description of a solution for a small problem that occurs frequently in the design of general
systems. The application of the meta-description results in a collection of a few objects that form
a specific instantiation of such a design problem.

4.1 Design Pattern Constructors

The acceptance of reusable descriptions, such as design patterns, is highly dependent on easily
comprehensible definitions and unambiguous specifications. We address both issues in a single

10



ADV ADV Name For ADO_Map_Name
Declarations
Data Signatures

Attributes

Effectual Actions
Action_Output_1 For ADO_Output_Names;

Action_Output_N For ADO_Output_Names;
Dynamic Properties
Interconnection
Valuation
Behavior

End ADV _Name

Figure 6: An ADV schema for a view.

ADV ADV} Name For ADO_Map_Name
Declarations

Data Signatures

Attributes

Nested ADVs
Compose ADV;; For ADO;
Compose ADV;; For ADO;

Effectual Actions .

Dynamic Properties
Interconnection

Valuation
Behavior

End ADV _Name

Figure 7: An ADV specification schema for a bidirectional view.
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ADV ADV;; [ADV};] For ADO; [ADO;]
Declarations
Data Signatures

Attributes

Effectual Actions
Action_Output_1 For ADO; [ADO;];

Action_Output_N, For ADO; [ADO;];
Dynamic Properties
Interconnection

Valuation
Behavior

End ADV Name
Figure 8: ADV component schemas for a bidirectional view.

formalism for design pattern application.

In order to formalize the application of design patterns we introduce development constructors
which are based on schemas that indicate how to apply a pattern. We define design pattern
constructors to consist of a language-independent part and a product text specification, where a
specific language is adopted; this approach is similar to that described in [LS94].

The language-independent part of the structure should clearly define the characteristics of a
design pattern. According to [GHIV95], a pattern is composed of four essential elements: pattern
name, problem statement, solution, and consequences.

Appropriate pattern names are usually important factors to assist developers in the specification
of a system. In the case of reusable modules, the vocabulary of patterns could be one way of guiding
the user to choosing suitable modules for the solution of particular problems.

A problem statement is a description of the circumstances in which to apply a design pattern,
and clarifies the pattern objectives. Such a statement is described in an Objective section as shown
in the development constructor in Figure 10. ’

Applying a pattern in the context of a specific problem requires a process description, and
so we specify this process in terms of primitive development constructors and parameters. The
primitive constructors applied to pattern construction are organized in a section of the schema
called Subtasks, while input parameters used in this process are declared in the Parameters section.

The consequences of an application of a pattern provide a description of the results of using
such structure in a software system. The roles of the components within the pattern objectives are
also illustrated. This section may be helpful in the evaluation of the suitability of a pattern in a
specific context. These ramifications are specified in the Conseguences section of a pattern schema.

The language-dependent part of the pattern constructors describes the result of the application
of a pattern as a specific formal representation. Since design patterns are solution abstractions, a

12



Class of ADV Class_Name
Class_Declarations
Class_Member Object_ Name(Number) : ADV Specification.Name
Class_ Attributes
Number_of_Members
Class_Actions Create_Class;
Add_Object (Number, Name);
Remove_Object(Number);
Destroy_Class
Nested ADV Classes
allows composition, inheritance, sets, ...
Class_Static Properties
Class_Constraints
constraints in class attributes values
Class_Derived Attributes
non-primitive class attribute descriptions
Class_Dynamic Properties
Class_Initialization
list of class initialization actions
Class._Valuation
Create_Class — O Number_of_members = 0
Add_Object — O Number.of_members = Number_of_members + 1
Remove.Object — (O Number_of_members = Number_of_members - 1
Class_Interconnection
Add_Object (Number, Name) +— Object_Names(Number)-Create(Number,Name)
Remove_Object (Number, Name) > Object_Names(Number)-Destroy(Number,Name)
End ADV Class_Name

Figure 9: A descriptive schema for classes.

13



Operator Pattern Name

Objective Description of the intent of the pattern
Parameters External elements used in the pattern definition
Subtasks Description of pattern in primitive constructors

Consequences How the pattern supports its objective
Product Text Language-dependent specification of pattern
End Operator

Figure 10: The structure of the development constructor for a design pattern.

template of the pattern should be a helpful instrument in guiding the user to a particular specifica-
tion. Such templates are illustrated in the pattern development constructors using the formalism
of ADV/ADO schematic representations described in Section 3. :

4.2 Examples of Design Pattern Constructors

In this section we describe how to specify the adapter, decorator and composite design patterns
based on the pattern constructor described in Figure 10. Several more patterns are described
in [ACG195]. There is a substantial difference between the pattern specifications presented in
[GHIV95], and the specifications introduced in this paper. The patterns in [GHIJV95] are based
. on OMT diagrams and C++ templates, and are much closer to the implementation level than the
version of the pattern descriptions we present in this paper. Our version of the patterns is based
on the specification formalism associated with the ADV design approach.

In the following design pattern examples the pattern specifications provide explanations and
directions to instantiate a design through the use of well-defined development operators and in-
complete object schemas. The development operators are sequentially numbered in a section called
subtasks, while the object schemas are defined in the language-dependent section called product
tezt, which provides reusable patterns for the system design. Other sections complete the design
pattern specifications by providing additional information.

The first pattern we specify is the adapter, and the corresponding specification schema is shown
in Figure 11. The purpose of the adapter is to modify the interface of a given object to conform to
the needs of a client object. It is generally used to produce compatibility between two objects.

The subtasks which specify how to instantiate a pattern are given in a task or function notation
of the form: f: x — y where f is a function, x is a list of parameters for the function f, and
y is the result of applying the function f. In the adapter pattern the function “Create Object”
returns a copy of the ADAPTER Product Text while the function “Inherit Objects” takes the two
arguments TARGET and ADAPTER and returns the modified Product Text for ADAPTER. In
the context of C++ the ADAPTER text would have the words “inherit from TARGET” inserted
in the appropriate location.

The adapter might be seen as an object which is a wrapper for another object, and it can
be used for modifications of interface objects (ADVs) as well as application objects (ADOs). An
adapter object might be seen as a view (ADV) for an application object (ADO).

Figure 12 describes the specification of the composite design pattern. This pattern defines a
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Operator Design Pattern Adapter :
Objective Modify the interface of an object

Parameters Objects: ADAPTEE, TARGET; .
Subtasks 1 - Specify Adaptation Object: ADAPTEE, TARGET — ADAPTER

1.1 - Create Object: - ADAPTER

1.2 - Compose Objects: ADAPTEE, ADAPTER — ADAPTER
1.3 - Inherit Objects: TARGET, ADAPTER —+ ADAPTER

1.4 - Specify Links: ADAPTER — ADAPTER

Consequences ADAPTER will contain most of ADAPTEE functionality available through the TARGET
object interface

Product Text ADV/ADO ADAPTER

Declarations

Nested ADVs/ADOs
Compose ADAPTEE;
Inherit TARGET;

Dynamic Properties

Interconnection
With ADV/ADO ADAPTEE
TargetActions —> AdapteeActions;
End ADAPTER

End Operator

Figure 11: Specification of adapter pattern constructor.

hierarchical structure of objects sharing part-whole relationships. In such a relationship between
objects, a composite object performs the “whole” role, while leaf and other composite objects
represent the “parts”.

The elements composing the resulting tree structure have uniform interfaces, since all of them
inherit the tree interface from the abstract class called component. Additionally, these elements
might be defined by. ADVs or ADOs as well, since the composite design pattern might be used to
structure both user interface objects and application objects.

Figure 13 illustrates how a design pattern called decorator extends the functionality of a module.
The extension is made dynamically by concrete objects that inherit their interface from the abstract
class called decorator, which is also linked to the original functions defined in the component objects.
The concrete component objects, as defined in the pattern constructors, are the ones that will have
their responsibilities extended.

Objects derived from the decorator pattern are particularly suitable when.subclassing is not a
practical option for functional extensions of objects. They are useful elements for both applications
and views.
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Operator Design Pattern Composite

Objective Compose objects into tree structures to represent part-whole hierarchies
Parameters Objects: COMPONENT;
Subtasks 1 - Create a Tree Structure.

1.1 - Instantiate Concrete Object: COMPONENT — COMPOSITE
1.2 - Instantiate Concrete Object: COMPONENT — LEAFs
1.3 - Compose Objects: LEAFs, COMPOSITE — COMPOSITE
1.4 - If Subtree is needed:
1.4.1 - Recursively Create SubTrees (Step 1)
1.4.2 - Compose Objects: SubCOMPOSITE, COMPOSITE — COMPOSITE

Consequences A tree structure composed of LEAF objects and COMPOSITE objects is created, where
the last ones represent the internal nodes of the tree

Product Text ADV/ADO COMPOSITE
Declarations

Attributes

ComponentType: ADO COMPONENT;
Nested ADVs/ADOs

Set of ComponentType;

Inhérit Component;

End COMPOSITE

ADV/ADO LEAF

Declarations

Nested ADVs/ADOs
Inherit Component;

End LEAF
End Operator

Figure 12: Specification of composite pattern constructor.
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Operator Design Pattern Decorator

Objective
Parameters
Subtasks

Consequences

Product Text

End Operator

Attach additional responsibilities to an object dynamically

Objects: COMPONENT;

1 - Instantiate Concrete Object: COMPONENT — Concrete COMPONENT
2 - Create Interface Object: COMPONENT — DECORATOR

3 - Instantiate Concrete Object: DECORATOR — Concrete DECORATOR

You can attach dynamically Concrete COMPONENT functionality to Concrete DECORA-
TOR objects

ADV/ADO DECORATOR

Declarations

Attributes

ComponentType: ADO COMPONENT;
Nested ADVs/ADOs

Compose ComponentType;

Inherit Component;

End DECORATOR

ADV/ADO Concrete COMPONENT
Declarations ’

Nested ADVs/ADOs
Inherit Component;

End Concrete COMPONENT

ADV/ADO ConcreteDECORATOR

Declarations

Effectual Actions
AttachComponent: ADO COMPONENT;
Nested ADVs/ADOs
Inherit Decorator;
Dynamic Properties

Valuation
AttachComponent(ComponentType) —
O ComponentType = ProvideInstance(COMPONENT);

End ConcreteDECORATOR

Figure 13: Specification of decorator pattern constructor.
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5 A Case Study

In this section we present a partial case study based on the editor structure described in [GHIV95].
The design patterns used in this case study are some of the ones described in Section 4, and although
similar in intent to the ones used in [GHJV95], we have adapted them to conform to the concepts
introduced through the ADV design approach.

The static structure of the system is described in terms of an OMT diagram notation [Rum91]
extended to use the ADV approach to design. The objects in this extended notation are represented
either by ADV boxes or ADO boxes, while dashed arrows are used to represent the mapping between
an ADV and its corresponding ADO. Checks should be applied to designs using this notation to
ensure that horizontal and vertical consistency constraints are maintained. The lozenge and the
triangle in the OMT diagram represent aggregation and inheritance respectively. The small black
circle represents zero or more associations. Thus, in Figure 14 Document is an aggregation of zero
or more Element(s) and Composite View inherits from Document View.

After the description of the editor OMT diagrams, each of the objects composing the design
is specified by means of the schematic structures introduced in Section 3. The case study object
specifications are left incomplete and somewhat simplified, so that the basic concepts represented
by the ADV approach and the formal expression of design patterns can be easily understood. The
first OMT diagram to be introduced in the editor specification is the one describing the basic data
structure. This structure is defined using the composite design pattern, and is illustrated in Figure
14. This structure is used to build a document and its view from basic elements, which in our
example are characters and pictures. While the application objects (ADOs), defined in Figure 15,
are oriented toward sequencing of document elements, the interface objects (ADVs), specified in
Figure 16, represent the user views of the document, consisting of columns and lines of text.

The sequence of elements is stored in the Document ADO, while the organization of the text
in columns and lines is defined by the composite design pattern, which consists of ADV objects.
Character and picture views are represented by CharView and PictureView ADVs, respectively,
while the document hierarchy is defined by Composite View ADVs. All of these ADVs have interfaces
defined by the Glyphlnterface abstract class.

In this case study, we use the decorator design pattern to add border and scroll bars to the user
view of the editor. Using the definition of this pattern in Figure 13 together with the diagrams and
schemas shown in Figure 17, we see that the EnhancedDocumentView ADV defines the embellished
user view of the editor. Such an ADV inherits its interface from the Decorator ADV, which has the
responsibility of defining links between the DocumentView ADV and the EnhancedDocumentView
ADV.

6 Conclusions

We describe in this paper a formal approach to using “good” programming practice as embodied
in design patterns. Design patterns are described using a process programming description which
helps in clarifying the intent of each type of pattern. In addition, the patterns have been specified
so as to incorporate the concept of objects (ADOs) and views (ADVs).

Our process-oriented approach to design patterns allows us to define primitive design pattern
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Figure 14: The document editor structure
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ADO Document
Declarations
Attributes
DocType: string;
Effectual Actions
InsertElement: position, ADO.Element;
DeleteElement: position;
Nested ADOs
Sequence of Element;
End Document

ADO Element
Declarations
Attributes
ASCII: nat;
Font: string;
File: string;
Format: string;
Effectual Actions
SetValue: nat;
SetForm: string;
SetFileName: string;
SetFormat: string;
End Element

ADO Char
Declarations

Attributes
Element.ASCII: nat;
Element.Font: string;

Effectual Actions
Element.Set Value: nat;
Element.SetForm: string;

Nested ADOs
Inherit Element;

End Char

ADO Picture
Declarations
Attributes
Element.File: string;
Element.Format: string;
Effectual Actions
Element.SetFileName: string;
Element.SetFormat: string;
Nested ADOs
Inherit Element;
End Picture

Figure 15: Basic ADOs of the document editor
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ADV DocumentView ForADO Document
Declarations

Attributes
CompositeView.Glyphlnterface.Child: ADV Glyphlnterface;

Effectual Actions
CompositeView.GlyphInterface.CreateChild: ADV Glyphlnterface, position;
CompositeView.Glyphlnterface.RemoveChild: position;
CompositeView.Glyphlnterface.Draw: coordinates;
CreateElement: position, ADV Glyphlnterface, ADO Element;

RemoveElement: position;
Nested ADVs
Inherit CompositeView;
End Document View

ADV Glyphlnterface
Declarations
Attributes
Size: nat;
Child: ADV GlyphInterface;
Effectual Actions
Draw: coordinates;
CreateChild: ADV GlyphlInterface;
RemoveChild: ADV GlyphlInterface;
End GlyphInterface

ADV PictureView ForADO Picture
Declarations
Attributes
GlyphInterface.Size: nat;
Effectual Actions
GlyphInterface.Draw: coordinates;
Nested ADVs
Inherit Glyphinterface;
End PictureView

ADV CharView ForADO Char
Declarations
Attributes
GlyphInterface.Size: nat;
Effectual Actions
GlyphlInterface.Draw: coordinates;
Nested ADVs
Inherit GlyphInterface;
End CharView

ADV CompositeView
Declarations
Attributes
Glyphlnterface.Child: ADV Glyphlnterface;
Effectual Actions
GlyphInterface.CreateChild: ADV Glyphinterface;
GlyphlInterface.RemoveChild: ADV GlyphInterface;
Nested ADVs
Inherit Glyphlnterface;
Sequence of GlyphInterface Child;
End CompositeView

Figure 16: ADVs forming the composite pattern
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DocumentView
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ADV
Enhanced
DocumentView

ADV Decorator
Declarations
Attributes
Doc: ADV Glyphlnterface;
Effectual Actions
GlyphInterface.Draw: coordinates;
Nested ADVs
Compose Doc;
Inherit Glyphlnterface;
End Decorator

ADV EnhancedDocument View
Declarations
Attributes
ScrollPosition: position;
Decorator.Doc: ADV Glyphlnterface;
Effectual Actions )
Decorator.Glyphlnterface.Draw: coordinates;
DrawBorder;
DrawScroll: position;
Nested ADVs
Inherit Decorator;
Dynamic Properties
Behavior

Idle A Decorator.Glyphlnterface.Draw — Started;

Started A Decorator.Doc.Draw
A DrawBorder
A DrawScroll — Idle;
End EnhancedDocumentView

Figure 17: The decorator design pattern
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tasks or constructors that can be used in the development of specific instantiations. We believe
that this approach clarifies both the application and structure of the design patterns and can help
to categorize them in a more formal way.

Using this formal approach including objects and views directs us toward several important
results. By using components we are able to reason about the design and prove formally specified
properties as shown in [ACL95, BACL95]. Of course systems often do not yield to formal approaches
because of their size and complexity. However, the formal approach could still produce useful results
in that the models generated could be used to aid in the testing process [BACL95] by serving as a

" basis for test case generation [Kor90], or by providing a means for measuring test coverage.

Experiments with the process program description has strongly indicated that design patterns
can yield corresponding C++ schemas which can be completed by the designer through an inter-
active dialogue. We are completing our experiments with C++ code generation and have started
work on a tool to fill in and generate the schemas.

The relationship of objects and views to subject-oriented programming [HO93] has been ex-
plored in [ACC95], where ADV classes, ADOs and ADVs could be interpreted as formal descrip-
tions of subjects, objects and subject activations respectively. Thus, we believe we can link the
reuse approach embodied in subject-oriented programming to the resue of designs as exemplified
in design patterns.

7 Note to the Reader

Many of the technical reports mentioned in this paper are available via anonymous ftp from
[csg.uwaterloo.ca] at the University of Waterloo. The names of the technical reports are in the
file “pub/ADV/README” and electronic copies of the reports in postscript format are in the
directories “pub/ADV/demo”, “pub/ADV /theory”, and “pub/ADV /tools”.
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