ISSN 0103-9741

Monografias em Ciéncia da Computacao
n° 33/95

Logical Specifications: 4.A - Interpretations
of Unsorted Specifications

Paulo A. S. Veloso
Thomas S. E. Maibaum

Departamento de Informdtica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAQ VICENTE, 225 - CEP 22453-900
RIO DE JANEIRO - BRASIL

PUC RIO - DEPARTAMENTO DE INFORMATICA ISSN 0103-9741

Monografias em Ciéncia da Computacdo, N° 33/95

Editor: Carlos J. P. Lucena October, 1995

Logical Specifications: 4.A - Interpretations of
Unsorted Specifications *

Paulo A. S. Veloso
Thomas S. E. Maibaum

* This work has been sponsored by the Ministério de Ciéncia e Tecnologia
da Presidéncia da RepUblica Federativa do Brasil.

In charge of publications:

Rosane Teles Lins Castitho

Assessoria de Biblioteca, Documentag¢do e Informagdo

PUC Rio — Departamento de Informdatica

Rua Marqués de Sdo Vicente, 225 — Gavea

22453-900 — Rio de Janeiro, RJ

Brasil

Tel. +55-21-529 9386 Telex +55-21-31048 Fax +55-21-511 5645
E-mail: rosane@inf.puc-rio.br

LOGICAL SPECIFICATIONS: 4.A INTERPRETATIONS OF UNSORTED SPECIFICATIONS

Paulo A. S. VELOSO and Thomas S. E. MAIBAUM

{e-mail: veloso@inf.puc-rio.br and tsem@doc.ic.ac.uk}

PUCRioInf MCC 33/94

Abstract. We present basic concepts and results concerning interpretations of
unsorted logical specifications, as well as some connections with extensions. We
start with symbol-to-symbol interpretations, examining syntactic translations of
terms and formulae, semantical induction of structures, and interpretations of
specifications. We then examine some operations on specifications and
interpretations: union and intersection of specifications over orthogonal
languages, composition and decompositions of interpretations, a simple
internalisation technique via kernel, and the unsorted Modularisation
Construction. We next consider the Modularisation Theorem for unsorted
specifications, first the case of extensions, and then its extension to interpretations.
Finally, we consider some variants of interpretations often encountered in the
literature: translations of predicates and operations to formulae, translation of
variables, and briefly relativisation and translation of equality. This report is the
" first part of a draft of the fourth section of a handbook chapter. Other reports cover
the remaining sections.

Key words: Formal specifications, unsorted axiomatic specifications, interpretations of
specifications, unsorted language translations, internalisation of translation,
internalised kernel, conservative extensions, modularity, interpolation, translations
of predicates, operations and variables, relativisation, translation of equality.

Resumo. Apresentamos conceitos e resultados bésicos sobre interpretacoes de
especificacbes logicas sem sortes, bem como algumas conexoes com extensoes.
Comegamos com interpretacoes simbolo-a-simbolo, examinando tradugoes
sintaticas de termos € formulas, inducao semantica de estruturas, e interpretagcoes
de especificagdes. A seguir, consideramos algumas operagoes em especificagoes €
interpretagdes: uniao e intersecio de especificagoes sobre linguagens ortogonais,
composigao e decomposicdes de interpretagoes, uma técnica simples de
internalizacio através de icleo e a versio sem sortes da Construcdo de
Modularizacdo. Tratamos entdo do Teorema da Modularizacao para especificagoes
sem sortes, partindo do caso de extensdes, que é a seguir estendido a
interpretagdes. Por fim, consideramos algumas variantes de interpretacoes
comuns na literatura: tradugdes de predicados e operacdes a formulas, tradugdo de
varidveis e brevemente relativizagao e traducdo da igualdade. Este relatorio € a

primeira parte de um esboco da quarta secdo de um capitulo de um manual.
Outros relatérios cobrem as demais segoes.

Palavras chave: Especificagdes formais, especificagdes axiomaticas sem sortes, interpretagdes
de especificagdes, traducdes de linguagens sem SOrtes, internalizagio de
tradugio, nucleo internalizado. extensoes conservativas, modularidade,
interpolac@o, tradugdes de predicados, operagoes € variaveis, relativizag@o,
traducdo da igualdade.

This report is the first part of a

NOTE

draft of the fourth section of a chapter in

a forthcoming volume of the Handbook of Logic in Computer Science

Other reports, corresponding to

the remaining sections, have been issued

or are in preparation. The plan of the chapter - and series of reports
Logical Specifications - is as follows.

Introduction and Overview
Specifications as Presentati
Extensions of Specifications
Interpretation of Specificat
Implementation of Specific

NO U R B

Conclusion: Retrospect and
The chapter - and series of repo

MCC 13/94, June 1994, (v+11 p)

ons MCC 26/94, July 1994, (vi+24)

MCC 33/94, Sept. 1994, (vi+58)
10ns in two parts: A and B
ations

Parameterised Specifications

Prospects.
rts - is intended to provide an account of

the logical approach to formal specification development.

Any comments oOr criticisms will be greatly appreciated.

The next report in this series is planned to be Logical Specifications: 4.B
Interpretations of many-sorted Specifications, covering the many-sorted

version of the present one, namely:

many-sorted translations and interpretations;
composition, decomposition and internalisations of translations;

variations of translations and interpretations, relativisation, translation

of equality, sort tupling;

joint consistency and modularity of extensions and of interpretations.

ACKNOWLEDGEMENTS

Research reported herein is part of an on-going research
financial support from British, European Community
agencies is gratefully acknowledged. The hospitality and
institutions involved have been very helpful. Collaboration
Sadler, Sheila R. M. Veloso and José L. Fiadeiro was

project. Partial
and Brazilian
support of the
with Martin R.
instrumental in

sharpening many ideas. The authors would like to thank the following

colleagues for many fruitful discussions on these and

related topics:

Carlos J. P. de Lucena, Samit Khosla, Atendolfo Pereda Bérquez, Douglas R.
Smith, Haydée W. Poubel, M. Claudia Meré, Tarcisio H. C. Pequeno and

Roberto Lins de Carvalho

CONTENTS *

4. INTERPRETATIONS OF SPECIFICATIONS

4.1 INTRODUCTION
4.2 UNSORTED SYMBOL INTERPRETATICNS
4.2.1 Syntactic translation
4.2.2 Semantical translation
4.2.3 Interpretations of Specifications
4.3 OPERATIONS ON (UNSORTED) SPECIFICATIONS AND INTERPRETATIONS
4.3.1 Operations on (unsorted) specifications
4.3.2 Composition and decomposition of interpretations
4.3.3 Internalisation of translation via kernel
4.3.4 Modularisation constructed (unsorted)
4.4 THE (UNSORTED) MODULARTSATION THEOREM
4.4.1 Modularity of (unsorted) extensions
4.4.2 Modularity of (unsorted) interpretations
4.5 VARIATIONS OF (UNSORTED) INTERPRETATICNS
4.5.1 Translation of predicates
4.5.2 Translation of operations
4.5.3 Translation of variables

4.5.4 Other cases: relativisation and equality

REFERENCES

* See the preceding note for an explanation of the numbering system

o N b w0 -

o]

13
14
16
16
22

25
277
28
29
31

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

o

List of Figures
4.1: Structure induced by translation
4.2: Decomposition of interpretation via pre and post images
4.3: Decomposition of a translation
4.4: Situation for modularisation
4.5: Modularisation rectangle of language translations
4.6: Modularisation construction: language and translation
4.7: Language Modularity: addition of new symbols
4.8: Axiom Modularity: addition of new sentences
4.9: Proof of Modularity of Extensions: LM&AM=EM
4.10: Reducing modularity of interpretations to extensions
4.11: Reduction of formula to symbol translation for predicate
4.12: Reduction of formula to symbol interpretations

4.13: Assignment induced by translation of variables

12
12
15
15
15
19
20
21
23
26
26
29

4 Interpretations of Specifications !

Specification engineering involves the study and practice of specifications:
construction, refinement, implementation, etc. As mentioned in the
introduction, an implementation step involves an interpretation (and an
extension, see 1.3), as does parameter instantiation (see 1.5). We have
already examined extensions in section 3; we shall now consider
interpretations, as well as some other aspects of extensions.

Aside from the technical details of the definition, the most important
property of interpretations is that they preserve properties, a requirement
that is crucial for the use of abstractions. One reasons about a program on
the basis of some axiomatisation of the abstract objects used in this
program; when these objects are implemented by more concrete objects,
one expects that the conclusions reached at the abstract level will still
hold. Otherwise one would lose all the work done at the abstract level,
presumably having to redo it (or some part of it) at the more concrete
level. This is in general much more difficult because of the extra details
used at the concrete level and is exactly what one wanted to avoid by the
use of abstraction and stepwise refinement.

In implementing abstract objects in terms of more concrete ones, we are
generally dealing with distinct languages. For instance, we may choose to
represent sets (of natural numbers, say) by lists (of natural numbers).
Since these languages may be quite different, we must begin by providing
a common ground for comparison; this can be done by means of a
translation of one language to the other. Once this is provided, we can
compare the specifications with respect to their consequences or their
realisations.

Translation is a very important activity in program development; an
automatic form of this activity is compiling. The translations underlying
interpretations bear some similarity to the binding established between a
procedure invocation and its definition.

Because we are interested here in the concept of spec1flcat10n and
identify specifications with theory presentations, we wish to explore the
translations within the same logical system: first-order logic. A largely
neglected, but for computer science very important, area of concern is the
study of translations between theories in different logical systems.

This section presents the concepts and results pertaining to translations
and interpretations in two stages. We first examine the unsorted case
(from 4.2 to 4.5) and then extend this treatment to the many-sorted case

I See the preceding note for an explanation of the terminology ‘chapter’, ‘section’,
etc., as well as for the numbering system.

(from 4.6 to 4.9)L

The presentation of the unsorted case is as follows. We start in 4.2 with
symbol-to-symbol interpretations, examining syntactic translations of
terms and formulae, semantical induction of structures, and
interpretations of specifications. We then examine in 4.3 some operations
on specifications and interpretations: union and intersection of
specifications over orthogonal languages, composition and decompositions
of interpretations, a simple internalisation technique, and the unsorted
Modularisation Construction. In 4.4 we consider the Modularisation
Theorem for unsorted specifications, first the case of extensions in 4.4.1,
which is extended to interpretations in 4.4.2. Then, we consider in 4.5
some variants of interpretations: translations of predicates and operations
to formulae, translation of variables, and briefly relativisation and
translation of equality.

The presentation of the many-sorted version follows basically the same
outline as the unsorted case. We begin in 4.6 with symbol-to-symbol
interpretations, examining syntactic translations of terms and formulae,
semantical induction of structures, and interpretations of specifications.
We then consider in 4.7 some operations on specifications and
interpretations. Union and intersection of specifications over orthogonal
languages as well as composition and decompositions of interpretations are
the expected extensions of their unsorted versions; we also present a more
powerful internalisation technique, and then many-sorted Modularisation
Construction. In 4.8 we consider the Modularisation Theorem for many-
sorted specifications, first some variations in 4.8.1, then modularity of
extensions in 4.8.2, which is extended to interpretations in 4.8.3. Then, we
consider in 4.9 some variants of many-sorted interpretations and their
connections with the sort-introducing constructs seen in 3.8. We first
examine translations with relativisation (reduced to subsort) in 4.9.1,
translation of equality (reduced to quotient) in 4.9.2, translation with sort
tupling (reduced to product) in 4.9.3. We then consider general
interpretations, combining the above three variants, in 4.9.4, and finally
examine in 4.9.6 the reduction of many-sorted logic to unsorted logic.

Some examples in 4.10 illustrate these ideas.

4.1 Introduction

Several somewhat different notions of interpretation have been proposed
in the literature (Enderton 1972; Shoenfield 1967; Veloso and Pequeno
1978; Goguen et al. 1978; Turski and Maibaum 1987), and it is not quite
clear which one is most appropriate. In the case of first-order logic, an

I' The many-sorted case in presented in the report Logical Specifications: 4.B.
Interpretations of many-sorted Specifications.

obvious candidate has been developed by logicians: interpretations
between (unsorted) theories (Enderton 1972, p. 156-163; Shoenfield 1967,
p. 61-62). Computer scientists have extended this idea to many-sorted
first-order logic, and it is this that we will discuss below. Some efforts
have also been made to develop appropriate notions of translation for
equational logics (Ehrig et al. 1982, Ehrich 1982).

Now, the exact definitions of translation/interpretation present some
variation in technical details. The common factors underlying these
concepts can be identified, however, as including the following:

1. The logical symbols need no translation as they form the common
infrastructure for the theories under consideration. Thus, translations
concentrate on describing the extra-logical symbols of one theory in
terms of those of another.

2. Translations between theories will induce translations between
corresponding models. Some (abstract) objects in a model of the
theory being translated may be represented by more that one
(concrete) object in a model of the target theory. In our example
above, we may choose to represent a set (of natural numbers) by any
list (of natural numbers) with no repetition of values in the list, as
long as it contains the 'same’ natural numbers as the set. So, equality
may need translation.

3. Given the induced translation between models, we may have some
concrete objects in the model of the target theory which are not used
to represent any objects in the model of the abstract theory. We will
need to differentiate between representatives and such non
representatives within models of the target theory in order to make
sense of property preservation. The concept of relativisation
‘predicate is introduced to cope with this problem.

4. Translation of formulae involving quantifiers may be tricky in the
following sense. Quantifiers usually felate the quantified variable to
the range of possible values in structures. Since formulae are used to
express properties, when these formulae are translated, care must be
taken to make sure that the translated formulae are restricted in the
domain of values to which they might potentially be applied. The
concept of relativisation is again pertinent.

We now proceed in stages to define for first-order logic the concepts of
language translation and specification interpretation. We shall first deal
with the unsorted case, and its variations, and then proceed to the many-
sorted case.

4.2 Unsorted symbol interpretations
We shall now examine unsorted language translations and specification

interpretations. We first concentrate on the simple case of symbol to
symbol translation, and later consider some possible variations.

We begin by considering translations of languages, which are mappings
enabling syntactical translations of properties expressed in the language
(Shoenfield 1967). We then examine how these translations also induce
mappings between the corresponding structures - albeit in the ‘reverse’
direction - and establish a. Translation Connection: a formula and its
translation “express the same thing” (Enderton 1972).

4.2.1 Syntactic translation

We first examine the simple case of a translation between (unsorted)
languages - sometimes called interpretation of languages (Shoenfield 1967,
p. 61, 62; Turski and Maibaum 1987, p. 82, 265) or signature morphism
(Ehrich 1982) - as a mapping between symbols enabling syntactical
translations of terms and formulae.

A (symbol) translation from a language L’ to language L” is a mapping t
that assigns to each symbol of the former a symbol of the latter, respecting
their syntaxes. More precisely, a (symbol) translation (or renaming oOf
signature morphism) 1 from source language L’ to target language L” -
denoted I:L’— L” - is a mapping [:Alph(L’)— Alph(L”), composed of
predicate renaming and operation renaming, both respecting syntactical
declarations, in the following sense:

- if r is an m-ary predicate symbol of L’ then I(r) 1s an m-ary
predicate symbolof L”;
- if f is an n-ary operation symbol of L’ then I(f) is an n-ary operation
symbol of L”.
Note that mapping I is not necessarily surjective nor injective. For the
unsorted case, we do not have to translate the variables; but we may. (If
we do, the translation of variables is to be injective, as explained below.)

The translation 1 of symbols of L’ to L” can be naturally extended to
translate terms and formulae. The translation of a term te Trm(L’) -
respectively, formula ¢e Frml(L’) - via I is the term I(t)e Trm(L”) -
respectively, formula I(¢)e Frml(L”) - obtained by the replacing each
occurrence of a symbol of L’ by its translation according to the mapping L
More precise definitions of translation of term and formula are formulated
by induction (Shoenfield 1967, p. 61, 62).

A special case is obtained when language L’ is a sub-language of L”; then
the inclusion mapping J:L’—L” is a symbol translation.

4.2.2 Semantical translation

We now examine how a translation of languages induces a natural
connection between structures (albeit in the ‘reverse’ direction) by giving

rise to an induced structure (Enderton 1972). The motivation is being able
to discuss structures of a language in terms of another language
(Shoenfield 1967, p. 61).

A translation from a language to another one permits terms and
~ formulae of the former to be translated to terms and formulae of the
‘latter. We would like to claim that the original formula and its translation
“say the same thing”. But, they are formulae in different languages. For
this claim to make sense, we must relate the structures in these two
languages.

When language L’ is a sub-language of L”, the inclusion mapping J.;L’—>L”
is a symbol translation and the reduct of a structure for L” is a structure
for L’ (see 3.3). We shall now see how this natural connection generalises
to language translations.

Let LL’—>L” be a (symbol) translation from source language L’ to target
language L”. A structure for L” assigns realisations to 1its symbols; by
composing the translation with this assignment, we obtain realisations for
the symbols of L’ (see figure 4.1). Given a structure fl” for target language
L”, the structure induced by #t” under I - denoted #i”)1 - is the structure

f° for source language L’ such that

- its universe M’ is the universe of M”: M’=M";

- for each predicate symbol r of L', its realisation in the induced
structure M”01 is the realisation of its translation I(r) in the given
structure M7: M [r]1=M"[I(0)];

- for each operation symbol f of L’, its realisation in the induced
structure M”01 is the realisation of its translation I(f) in the given

structure M7 #0 [£1=#0"[I(D)].

_ T
a SN a"
Mm 1 l M
ICONENN SCY

Fig. 4.1: Structure induced by translation

Notice that a translation of a language to another one induces structures
in the “reverse” direction: from the latter to the former (Enderton 1972, p.
159). Similarly, notice that any assignment a:Var(L”)—>M” of values in the
domain M” of the given structure #i” to the variables of L” is, in view of
the above construction, an assignment of values in the domain M’=M" of
the induced structure 7]I to the variables of L’.

The clause indicating how the realisation of an operation symbol f of L’

in the induced structure M ”JI comes from its realisation in # 7 1is
M LI[f]=m "[I(f)]. This extends inductively to any term te Trm(L’):
M LI[t)=M[I(0)]. Similarly, for any formula @e FrmI(L*), M”}I[o]=#"[I(¢)]:
the relation defined by the translated formula I(¢) on the given structure
. #” and the relation defined by the original formula ¢ on the induced
structure M |1 are the same. This is the - expected - content of the

Translation Connection (Enderton 1972, p. 161), which indicates that one
can discuss structures for one language in the other.

Proposition Translation Connection (unsorted case)

Let I:L’—>L” be a (symbol) translation from source language L’ to target
language L”. Consider a structure fff for L” inducing #Ml]I

Then, for every assignment a:Var(L”)—M of values in the universe of M
to - the variables, we have
a) for each term t of source language L’: M JI[t]1[a]l=M [I(t)][a];

b) for each formula ¢ of source language L’: Ml [IF ¢ [a] iff Mtk I(@) [a].
In particular, for every sentence ce Sent(L’): Ml |IF o iff fiik (o).

4.2.3 Interpretations of specifications
We shall now consider interpretations of specifications as translations of
languages that preserve the properties proved (Shoenfield 1967; Turski
and Maibaum 1987). We shall also establish the Interpretation Theorem,
which characterises interpretations by means of axioms, theorems and
models, and use it to characterise faithfulness.

Consider specifications P’=<L’,G’> and P”"=<L”,G”>. A symbol interpretation
from source specification P’ to target specification P” - denoted I:P’—P” - is
a language translation L:L’—L” preserving logical consequences, in the
following sense: for every sentence o of L’, if P’kc then P’FI(c). In other
words, I translates the source theory Cn[P’] into the target theory Cn[P”]:
[(Cn[P’)cCn[P”].

An example of symbol interpretation is provided by extension of
specifications. The analogue of conservative extension is a faithful
interpretation: one where P’Fo iff P”FI(c) for every sentence ¢ of L.

In view of the Translation Connection, a symbol translation I:L’—>L?”
maps logically valid formulaec of L’ to logically valid formulae of L”. Thus,
we may regard a language translation I:L’— L” as a specification
interpretation from Trv(L’):=<L’,&@> to Trv(L”):=<L”,&>. This is roughly the
idea of interpretation of languages (Shoenfield 1967, p. 61).

We now characterise which language translations are interpretations, by
means of axioms and (induced) models. This is the content of the next

result, implication (b=>a) of which is sometimes called the Interpretation

Theorem (Shoenfield 1967, p. 62: Turski and Maibaum 1987, p. 85).
Assertion (b) gives a useful property-oriented criterion for interpretation,
assertion (c) being its model-oriented counterpart.

Theorem Interpretation Theorem (for unsorted specifications)

Consider a language translation [.L’—L”. Given specifications P’=<L’,G’>
and P’=<L”,G”>, the following are equivalent.

a) I is an interpretation from P’ to P”.

b) For every axiom ye G’, its translation I(y) is a consequence of P”.

¢) For every ffle Mod[P”], the induced structure #}I is a model of P’.
Proof.
(a=b) Clear, because G’cCn[P’].
(b=>c) Given a structure ffle Mod[P”], we shall show that fil}le Mod[P”].
For this purpose, consider an axiom ye G’cCn[P’]. By (b), P"FI(y), whence
mFI(y). But then, by the Translation Connection, mllEy.

(c=a) Given a theorem 1€ Cn[P’], we will show P”FI(1).
For this purpose, consider a model e Mod[P”],. By (c), M [le Mod[P”], thus
fi L I=1. But then, by the Translation Connection, ik I(Y).
Hence, #fi=1(y), whenever file Mod{P”].
OFD

As a consequence, if I interprets <L’,G’> into <L”,G”>, then I also
interprets <L’,G’UH> into <L”,G”UI(H)>, for any set HcSent(L’). We can also
characterise which interpretations are faithfull.

Proposition Characterisation of faithfulness (for unsorted specifications)

Consider an interpretation from P’=<L’.G’> to P’=<L”,G”>. Then, the
following are equivalent.
a) Interpretation I:P’—P” is faithfull.
b) For every HcSent(L’), I interprets <L’,G’uH> faithfully into
<L”,G"UI(H)>. '
¢) For every HcSent(L'), if <L’.G’UH> is consistent, then so is <L”.G"UI(H)>.
d) For every structure @€ Mod[P’], there exists Be Mod[P’], such that & is
elementarily equivalent to the structure induced by B: a=m;.1.
Proof.
(a=b) Consider ce Sent(L’) with I(o)e Cn[<L”,G’UI(H)>]. Then, by
compactness, there exist sentences ©,,...0e H, with I(c) 1n

Cn[<L”,G"U{I(8),....I(8,)}>]. Letting 6 be the conjunction of 8y,...,0y, we
have HF6 and, by the Deduction Theorem, I(6—oc)e Cn[<L”,G”>], with
(8—0)e Sent(L’). Thus, (6—0)e Cn[<L’,G">] by (a), whence o€ Cn[<L’,G’UH>].
(b=>c) Assume <L”,G”UI(H)> is inconsistent and let ce Sent(L’). Then
[(6A—0)=I(c)r=I(c)e Cn[<L”,G”UI(H)>]. Thus ca—ce Cn[<L’,G"UH>] by (b).
(c=d) Given Ae Mod[P’], <L’,G’UTh(@)> is a consistent extension of P’. Thus,
by (¢) <L”,G”UI[Th(&)]> is consistent, so has some model B. Now,
e Mod[P”] and B/IF Th(d), so d=BlL ‘

(d=>a) Given te Sent(L’) with I(t)e Cn[P”], we will show te Cn[P’]. Given a
model @ e Mod[P’], we have some e Mod[P”] with d=8B|I by (d). Thus,
B+ 1(1), and so BLI=t, whence @k . Hence, dF1 whenever de Mod[P’].

OFD . |
4.3. Operations on (unsorted) specifications and interpretations

We shall now examine some concepts and notations which will be useful in
the sequel. These have to do with some simple operations on specifications,
composition and decompositon of interpretations and a simple
internalisation technique. We also introduce the (unsorted) Modularisation

Construction.

4.3.1 Operations on (unsorted) specifications

We will now examine some simple operations on languages and
specifications, as well as orthogonal families of languages.

A. Union and intersection (unsorted case)
We first review some simple ideas concerning languages and specifications
within the same context.

Imagine that a symbol of a language L’, say a predicate symbol,
happened to be a symbol of a different kind in another language L”, say an
operation symbol. Then, considering the two languages in the same context
would lead to a somewhat confusing situation. This would not occur if both
L’ and L” happened to be sub-languages of some language L; we then call
L’ and L” compatible. This is usually the situation when we wish to form
the intersection or union of languages.

Consider an unsorted language L with alphabet A and set of variables V.
Given a sub-alphabet A’c A, we can form the sub-language of L with
alphabet A’ and set of variables V; we will call this sub-language the
restriction of L to sub-alphabet A’cA and denote it by LIA’. Notice that, for

each ve V, v=v is a formula of LIA’.
Now, consider a family of sub-languages LijcL, for ie I. .Then

Alph(Li)f;Alph(L) and Var(Lj=Var(L). We then form

« the intersection language Nicili as the restriction of L to sub-alphabet
mieIAlph(Li)c;Alph(L); and

« the union language Ui Li as the restriction of L to sub-alphabet
uieIAlph(Li);Alph(L).

Notice that the intersection and the union language have the same set of

variables as the given (unsorted) languages.

We say that sub-languages L’ and L” of L are disjoint (which we denote
by L'nL”=90) when they have no common extra-logical symbol
(Alph(L’)mAlph(L”):@), sharing only variables and the common equality.

Given a family of specifications Pi=<L;,Gi{> over sub-languages LicL, for
ie I, by the union specification we mean Uije Pir=<Ujc1liVie 1Gi>.

B. Orthogonal families of languages '
We will now examine orthogonal families of languages and their joint
expansiveness property.

Orthogonality is a condition for “union without confusion”. By an
orthogonal family of languages we mean a family of sub-languages Li of
some language L, for i€ I, such that whenever j#k in I we have LinLkcLn,
where L.:=NjciLi is the intersection of the family Lj.

Orthogonality is also a condition for joint expandabilitiy of structures for
languages of the family to structures for the union language. We shall use
the notations ae L for ‘ais a symbol of language L’ and 4B for ‘structure 1B

expands 4’.

Lemma Joint expandabilitiy for orthogonal family

Given an orthogonal family of languages LicL, for ie I, let L:=Nje1Li and
LV:=UjcLi. Consider a family of structures B for L;, for ie I, such that any

two fBj and Bk have a common reduct aBjJ«Lm=3,IBk¢Lm to L. Then, there
exists a structure € for LY that is a common expansion of the given Bi,

for ie I.
Proof.
Given a symbol a of Lv, let I(a)={ie 1/ae L;}; so ae I(a).
By orthogonality, for each symbol ae LV we have:

either ae L. and I(a)=I; or else I(a) is a singleton {i} for some ie I.
We have t:Lv—>Tu{x*} such that, for ae L. t(a)=*, and otherwise I(a)={t(a)}.
Now, let L,:=LA and B, be the common reduct of the Bj to LA.
We define structure € for LY by ¢al:=Ba)lal since ae Lt(a)-
We will then have B;icC, for each ie .

Indeed, given aeL;, either ac L, and ¢[a]=PB.[a]=Bi[a], or C[a]=Bya)lal=MBi[a].
OFD

Union of an orthogonal family preserves expansiveness, in the sense of
the next result.

Proposition Orthogonal expansiveness

Given an orthogonal family of languages Lj, for iel, let L :=Nj¢ Li and
Lv:=Uj; (Li. Consider a specification P=<L.,G> and a family Pi=<L;,G;> of
extensions of P, for ie I. Assume that for every iel we have an expansive
extension P<P;. Then, the union specification PY=<Lv,U;.1Gi> Is an
expansive extension of P, as well: P<Pv.

Proof.

A model e Mod[P] has an expansion Bic Mod[Pj] for each kel.

We thus have a family of structures Bic Mod[P;i] for L;, ie I, with a
common reduct @ toL .. By the preceding lemma, this family {#Bi/ie I} has
a common expansion € to LV.

To see that €e Mod[PV], consider an axiom ye Ui 1Gi.

Then, ye Gj, for some iel, and BiFy. Hence €CFy, since BicC.

OFED

4.3.2 Composition and decomposition of interpretations

We shall now briefly examine composition and decomposition of
translations and of interpretations. We shall consider two kinds of
decompositions: some with a more ‘global’ nature and some of a more
‘local’ character. _

A. Composition of interpretations

Composability of (symbol) translations and interpretations is to be
expected.

Consider (symbol) translations I:L—L’ and I":L’— L”. Clearly the
composite mapping I';I” assigns to each symbol of L a corresponding
symbol of L” of the same kind, being thus a (symbol) translation I’;I”:L—L7
from source language L to target language L”.

Similarly, given (symbol) interpretations I':P—P” and I”:P’—P”, involving
specifications P=<L,G>, P'=<L’,G’> and P’=<L”,G”>, we have successive
preservation of theorems, which makes the composite I’;I” an
interpretation from source specification P to target specification P”.

More interesting than composition is decomposing -a translation. We shall

examine two kinds of decompositions: first those with a more ‘global
nature’, via pre and post images; and then those of a more ‘local’ character,

10

induced by partitioning the source language.

B. Decompositions via pre and post images

The Interpretation Theorem (for Specifications) suggests an interesting
byproduct: the idea of pre and post images of a specification under a
translation. (A model-based concept of preimage 1is used by Enderton
(1972, p. 159). These will provide decompositions for interpretations with
a more global character, which- will be useful in the sequel.

Consider a translation I:L’—L”. Given a speéification P’=<L’,G’> over
source language L’, consider the set I(G’) := {I(y)e Sent(L”)/ye G’} of the
translations of its axioms. This gives a specification over the target
language, namely I(P’):=<L”,I(G’)>, called the postimage of PP under
trranslation 1. Also, given a specification P”’=<L”,G”> over target language L7,
consider the set I''(Cn[P”]):={ce Sent(L’)/I(c)e Cn[P"]} of sentences of L’ that
I translates to theorems of P”. This gives a (not necessarily finite)
presentation of a theory, namely FHP):=<L’ T{(Cn[P”])>, called the
preimage of P” under translation L

The pre and post images of a specification are meant to characterise
interpretations. The preimage of a target specification characterises the
specifications that the translation can interpret into the given specification
(Enderton 1972, p. 162), whereas the postimage of a source specification
characterises the specifications into which the translation can interpret the
given specification. This is made precise in the following result, whose
assertions turn out to be reformulations of the Interpretation Theorem.

Proposition Characterisation of interpretation by pre and post images
Consider a translation I:L’—L” from language L’ to language L”.
a) Given a specification P’=<L’,G">, its postimage I(P")=<L",1(G*)> under 1 is
the weakest specification over L” into which I interprets P’, in that:
(i) T is an interpretation from P’ to I(P’), and
(ii) any specification P over L” that I interprets P’ into P is an
extension of I(P’): I(P)cP).
b) Given P"=<L”,G”>, its preimage I'(P")=<L’T'(Cn[P”])> under I is the
strongest specification over L’ that I interprets into P”, in that:
(i) I is an interpretation from I'l(P”) to P”, and
(ii) T1(P”) extends any specification P over L’ that I interprets into P”:
PcIH(P).
Pre and post images also give decompositions of an interpretation akin
to that of a function via its kernel and image, as illustrated in figure 4.2.

11

Corollary Decomposition of interpretation via pre and post images

Consider an interpretation I from P’=<L’,G"> into P’=<L”,G”>. We then have
postimage I(P’)=<L”,I(G’)> and preimage I(P)=<L’, I (Cn[P"])>.
a) Interpretation I:P’— P” can be decomposed via postimage into an
interpretation I":P’—I(P") followed by an extension e”:I(P")cP”.
b) Interpretation I:P’— P” can be decomposed via preimage into an
extension e :P’cI'Y(P”) followed by a . faithful interpretation
I”:THP)—=P”.

1

P = P P i (e
1d LT 1l US4
Pn)](Pl) P" - P"
eH

Fig. 4.2: Decomposition of interpretation via pre and post images

C. Decompositions based on language partitions

We shall now consider decompositions of a more ‘local’ character, induced
by partitions of the source alphabet. Such decompositions will indicate that

one can treat each extra-logical symbol separately, which is convenient,
both for theoretical and practical purposes.

Consider a (symbol) translation I from source language L’ to target
language L”, and assume them to be disjoint. Consider a partition
Alph(L’)=A*UA¥#, which induces sub-languages L*:=L’IA™ and L#:=L"IA*¥ so
that L’=L*UL#. We then have two translations I* and I#, as follows (see
figure 4.3):

- translation I* acts as I over L* and acts identically on the reamining

symbols; ’

_ translation I# acts as I over L¥ and is the identity on the reamining

symbols.

The composite map I*;I* is a translation with the same behaviour as the
original I, which has thus been decomposed into two translations, each one
acting on a sub-language of L’.

IS, G PRESES 6§

L' = 4 U)) c L"
Lets o —I5I(h)
~— —
T g
Fig. 4.3: Decomposition of a translation

Now, given specifications p’=<L’,G’> and P’=<L”,G”> such that .P’—P” is an

interpretation, the above decomposition yields a specification P=I*[P’],

12

together with interpretations [*:P’—P and I#:P—P” decomposing L

For our present purposes, the main point of the above decompositions is
that they permit translating each extra-logical symbol separately, which
will simplify some considerations in the sequel.

4.3.3 Internalisation of a translation via the kernel

We shall now introduce an internalisation technique, coding part of the
information provided by a translation, which was conceived to prove the
Modularisation Theorem. This technique will internalise the kernel of a
translation, by coding its information into sentences of the source
language. As such, it reduces, to some extent, interpretations to extensions
(Veloso 1992; Veloso and Maibaum 1992). Another internalisation
technique, via the diagram (Veloso 1993), will be considered when dealing
with many-sorted interpretations.

Translations consist of mappings from source to target symbols. As
usual, the kernel of a mapping I:Alph(L")— Alph(L”) is the (equivalence)
relation ker[I]:={<a;,ay>:1(a;)=I(a;)} We shall now show how this concept of
kernel can be ‘internalised’ within the source language (Veloso 1992;
Veloso and Maibaum 1992).

We can ‘internalise’ the kernel by coding its information into the set
Alll={(aj<>aj):a;,ar€ Alph(L*)&I(a;)=I(a,)} of sentences of L’ - expressing
the equivalence of source symbols with the same translation. More
precisely, for each pair <aj,a;> of symbols of source language L’, we
construct its identifying sentence Afl]<aj,ar>€ Sent(L’), as follows:

- for each pair <r,r,> of predicate symbols of L’ - with the same arity,

say m - its identifying sentence M[1]<r, 1> is the sentence of L’:

Vvl...VVm[rl(vl,...,vm)<—+r2.(vl,...,vm)];

- for each pair <f;,f,> of operation symbols of L’ - with the same arity,

say n - its identifying sentence A[I]<f).f,> is the sentence of L’:

V.. VX[(X, Xp)=a (X, X))

We now collect the appropriate identifying sentences into the set A[I] :=
{M[I]<a;,ap,>€e Sent(L’):<ay,ar>€ ker[I]}, called the identifying diagram of
translation I.L’—L”. By the (internalised) kernel of translation IL’—>L” we
mean the specification Krnl[I]:=<L’,A[I]>. '

For a translation I:L’—L”, its (internalised) kernel Krnl[I]=<L’,A[I]>

provides part of the information given by the mapping, namely which
symbols have the same translation, without providing the translations
themselves. This information will be seen to be enough to characterise
faithfulness.

An injective translation I:L’—L” applied to a specification P’=<L’,G’> will

13

just copy the axioms in G’ onto I(G’); one thus expects the interpretation
[:P’— I(P’) to be faithful. This is a special case of the next result, which
indicates how the kernel can be used to characterise faithfulness.

Proposition Characterisation of faithfulness by the (internalised) kernel

Consider a translation I:L’—L” with (internalised) kernel Krnl[I} =
<L AD]>. |

a) For formulae v and 6 of L’, if I(y)=1(8) then A[I]Fy«6.

b) Given a specification P’=<L’,G’>, interpretation I:P’—I(P’) is faithful iff
the identifying diagram A[I] of translation I:L’— L” consists of
consequences of P’: Krnl[I]cP’.

Proof.

a) By induction on the structure of formulae of L’, preserved by L

b) Notice that for every (a;«>aj)e A[ll, I(a;)=I(a,); so Fl(a;<ay).

(&) Clear: for Ae A[l], DEI(A), so Ae Cn[P’].

(=) Given LLP’—I(P’), we have a surjective I*:P—I[P’] with Krnl[I*]=Krnl[I]
and I faithful iff I* faithful. Thus, it suffices to show that a surjetive

. P—I[P’] with Krnl[I]cP’ is faithful.

Let A’:=Alph(L’). Since mapping I is onto I(A’), we have an injective map
I*:I(A’)— A’ such that the composite LI# is the identity on I(A’). This gives a
translation [:I(L’)—>L” such that LI*(y)=y, for ye Frml(I(L")).

Thus, for @e Frml(L’), I(¢)=FI*I(¢), so part (a) yields A[I]F [Fl(@)<>0].

We claim that F interprets I[P’]=<I(L"),I[(G’)> into <L’,G’UA[I]>.

Then, considering a theorem I(t) of I[P’], the claim yields G’UA[IIpF[I(7)],
whence G’UA[IlET by the above remark.

To see the claim, consider an axiom of I[P’]: a sentence I(y) with ye G’. By
the remark A[I]E [Fol(y)<>y], whence G UA[I]FFoI(y).

{A model-oriented argument can use I to extract from & e Mod[Krnl[I]] a
structure %, for L” such that =%]I.}

OFD
4.3.4 Modularisation construction (unsorted)

We shall now examine the Modularisation Construction for (unsorted)
interpretations, leaving their extensions to the many-sorted case for later.
The Modularisation Construction completes a rectangle of interpretations,
and the Modularisation Theorem guarantees that this construction
preserves conservativeness, as required for composing implementation
steps (see 1.4) and in instantiating parameterised specifications (see 1.5).

The Modularisation Construction -deals with the situation where one has

14

specifications P=<Lg,Go>, Q=<L,G,;> and R=<L,,G,>; as well as an extension
e:PcQ, and an interpretation f:P— R (see figure 4.4). It completes a
rectangle of interpretations by amalgamated sum.
Q
e U
P — R
Fig. 4.4: Situation for modularisation
The Modularisation Construction is in two stages: one first completes the

rectangle of underlying language translations f:L;— L, and e:LocL (see
figure 4.5), and then constructs an appropriate specification.

g
Ly — L
U U

Lg ———)f L,

Fig. 4.5: Modularisation rectangle of language translations

The unsorted Modularisation Construction for languages proceeds as
follows (see figure 4.6). Without loss of generality, we may assume, by
resorting to renaming if necessary, that the underlying languages L; and
L, are disjoint: LynL,=@. Let N:=Alph(L,)-Alph(Lg) consist of the new
symbols added to Ly to form L. We first construct a new language Lj3: we
extend L, by adding the extra-logical symbols in N (together with their
declarations). For instance, the m-ary predicate symbols of L; are those of
L, together with those in N. We now extend the translation f:Lo—L, to a
map g from L, to the new language L, by using the identity on N. We calll
language L; the amalgamated sum of L, and L, under e and f (over Lo),
and translation g:L,— Lj the canonical extension eclf] of f:Ly— L, over e.

We have achieved the situation depicted in figure 4.5.

N —— N

gla) = {f(a) ?faEAlph(L") L, = U U = 1,
a ifae N

Ly —5 L,
Fig. 4.6: Modularisation construction: language and translation
Proposition Properties of the Language Modularisation Construction

Consider an extension e:LocL, and a translation f:Ly—L,. The Language

! This construction is a special pushout, or amalgamated sum (Ehrich 1982; Goldblatt
1979).

15

Modularisation Construction yields a language Lj; and a mapping
g:Alph(L;)— Alph(L3) so that:

a) language Lj extends L;

b) g is a language translation from L, to L; extending f:Lo— Lo;

c) the only symbols that g maps into L, are those of LO:.g'l(Lz)zLO.

Now, the Modularisation Construction for specifications uses g:L;—Lj to
translate the set G, of axioms of Q into g(G;) in language Lj, and constructs
specification S=<Lj;,G3> by taking as its set of axioms the union
G;:=G,ug(G). (Notice that it would suffice to translate the new axioms In
G1-Cn[Gol.)

Corollary Properties of the Specification Modularisation Construction

Consider specification extension e:PcQ and interpretation f:P—>R. The
Specification Modularisation Construction yields a specification
S=<L;,G,ug(Gy)>, such that SOR, and g interprets Q into S.

4.4 The (unsorted) Modularisation Theorem

The Modularisation Theorem guarantees that the Modularisation
Construction preserves conservativeness: if P<Q then R<S. We shall now
examine the Modularisation Theorem in the context of unsorted
interpretations, even though some considerations extend to the many-
sorted case, as will be seen later.

We will consider first the special case of Modularity of Extensions in
4.4.1, and then examine Modularity of Interpretations in 4.4.2.

4.4.1 Modularity of (unsorted) extensions

The Modularisation Construction in the special case of extensions yields the
union specification. The corresponding version of the Modularisation
Theorem, Extension Modularity, asserts that the union construction
preserves conservativeness. We shall now examine modularity of
(unsorted) extensions, starting with some simple special cases.

A. Expansive Modularity

A special case of modularity concerns expansive extensions. In this case,
we can resort to model-oriented reasoning to establish preservation of
expansiveness.

Proposition Expansive Modularity

Given an orthogonal family of languages L, for iel, let L.:=N;c1Li and
Lv:=Uj; [Li. Consider a specification P=<L.,G> and a family P;=<L;,G;> of
extensions of P. for ie . Assume that, for some je I, we have an expansive

16

extension Pj=<Py, for each k#j in I. Then, the union specification
Pu=<Lv,U;.{G;> is an expansive extension of Pj: Pj<Pv.

Proof
Let K:=I-{j} and PK:=Uge KPk=<Uke KLk Vke K Gk>; and notice that
Pu=Ujc [Pi=PjuPX. By the proposition on orthogonal expansiveness in
43.1.B, we have an expansive extension P<PK,
Given a model @€ Mod[Pj], we will expand it to a structure €Ce Mod[PV].
Since Png, the reduct @4L~ is a model of P; so we have an expansion
Be Mod[PK] of glL .. Thus, we have a family {@.,J8} of structures for the
orthogonal languages Lj and LK:=Uke KLk, with common reduct qlL to
LmzijLK. By the lemma on joint expandabilitiy for orthogonal family (see
4.3.1.B), the family {&.%} has a common expansion €.
Since € expands both @e Mod[Pj] and Be Mod[PK], €e Mod[PjuPK]=Mod[PU].
OFD

‘Expansiveness is a sufficient condition for conservativeness (see 3.4);
but, unfortunately, it is not necessary. So, we cannot immediately conclude
Extension Modularity from Expansive Modularity.
B. A first proof attempt (of extension modularity) and its difficulties

Let us now sketch what might be a first approach towards a proof of the
Modularisation Theorem for extensions and some of the difficulties

encountered.!

We have that Q is a conservative extension of P and we wish to prove
that R<S. For this purpose, we must take an arbitrary sentence T of L,, such
that SE t and establish Re . The point is that we have to rely on the
assumed conservativeness P<Q, which is the idea behind this proof
attempt. We might proceed as follows.

0. SFo with oe Sent(Ly) o in LocL, {special case!}
1. QUREGC since S=QUR
2.QFc with oe Sent(Ly) by ignoring R {why?}
3. PFo : because P<Q
4. RFo because PcR

Now, there are two objections to this proof attempt:
1. it deals only with the special case of sentences in LocLy;
2. step 2 is ‘justifed’ by “ignoring R” (and how is this justified?).

I The reader not interested in this motivation may proceed directly to C.
Interpolation properties.

17

The point is that we must rely on the assumed conservativeness P<Q,
which is the idea behind the above proof attempt. We will overcome these
difficulties by reducing Extension Modularity to a composition of two
special cases: Language Modularity followed by Axiom Modularity. The
former will reduce te Sent(L,) to be o€ Sent(Ly), thus overcoming the
special assumption (in step 0), and the latter will justify “ignoring R” (in
step 2).

C. Interpolation properties
We shall now examine some interpolation properties of first-order logic
which will be used to prove some versions of Modularity of Extensions.

An important property of first-order logic is the so called Craig
Interpolation Property, which appears in a few versions in the literature
(Shoenfield 1967; Chang and Keisler 1973). Such interpolation properties
enable the decomposition of derivations involving formulae in distinct
languages by interpolating formulae with the common extra-logical
symbols. A simple version of the Craig Interpolation Lemma is as follows.

Proposition Simple Craig Interpolation (Chang and Keisler 1973, p. 84)

Given sentences o of L* and t of L#, if te Cn(c), then there exists an
interpolant sentence p of L*nL#, such that ok p and pFT.

A model-theoretic formulation is “whenever Mod(c)cMod(t) with
ceSent(L*) and te Sent(L¥), there exists pe Sent(L*nl#) such that
Mod(o)cMod(p)cMod(1)”. A variant of the Craig Interpolation Lemma is
the so called Split Interpolation version (Rodenburg and van Glabbeek
1988). This is close to the following usual formulation of the Craig-
Robinson Interpolation Lemma (Shoenfield 1967, p. 80). Consider
specifications P*=<1*G*> and P¥=<L#G*> with union PruUP#. If
(o—>y)e Cn[P*UP#], for formulae ¢e Frml(L*) and ye Frm1(L#), then there
exists an interpolant formula 9e Frml(L*nL#), such that (¢—8)e Cn[P*] and
(0—y)e Cn[P#].

In classical first-order logic, these versions of interpolation are
interderivable, because of the Compactness and Deduction Theorems. Any
such version can be applied to the above proof attempt to overcome the
difficulties encountered. We prefer, however, to follow an alternative
route, which will clarify the roles played by these interpolation properties
in guaranteeing modularity of extensions.

D. Language, Axiom and Extension Modularity

We shall now establish modularity of (unsorted) extensions, starting with
some simple special cases. One can view an extension as being constructed
by a two step procedure: first add new symbols, then add new axioms (see

18

3.4). Two simple properties, which turn out to be special cases of
Modularity of Extensions, refer to these two steps: modularity with respect
to language and axioms.

Language modularity concerns the addition of new symbols to both
languages of an extension; it guarantees that such an addition preserves
conservativeness (se€ figure 4.7). This property of Language Modularity
should not be confused with the more familiar property of symbol
extensions (see 3.4). The latter asserts that the addition of new symbols
produces a conservative extension; whereas what this property asserts 1s
that such an addition pIeserves conservativeness.

<1L".G"> < <LUL"G"~
LNAL"'CcL' = \Y% = \%
<L.G™> < <LULG™>
Fig. 4.7: Language Modularity: addition of new symbols
Lemma LM: Language Modularity

Consider a conservative extension P’=<L’,G’>£<L”,G”>=P”. Then, for each
language L, compatible with L7, such that LAL”cL’, we have a
conservative extension <L’UL,G’><<L"UL,G">.
Proof '
First, notice that L”m(L’uL):(L”mL’)u(L”mL):L’u(L”mL)zL’.
Now, consider a sentence T of L’UL such that G’k 7 (in L”UL).
By Compactness!, there exists a sentence C€ Sent(L”) such that
(1) G’Fo and » (ii) oF 1.
The Craig Interpolation Lemma applied to (i) yields an interpolant
sentence p of L”~(L’uL)=L’, such that
(iil) oFp and (iv) pFT.
From (i) and (iil) we have G p with pe Sent(L). Thus, <L’.G’><<L”,G"> yields
G’k p. Hence, from (iv), we have G'F 1.
OFD
In fact, Language Modularity turns out to be equivalent to Simple Craig
Interpolation, a remark that provides a reformulation of the latter as

preservation of conservativeness under addition of new symbols. Also, it is
not difficult to see that Language Modularity 1is a special case of

Modularity of Extensions. Indeed, given <L’.G’><<L”,G”> with LAL”cL’, we

-

INotice that this formulation of (simple) compactness can be viewed as an
interpolation property: G is a finite conjunction of sentences of G”.

19

also have <L’,G’>c<L’UL,G’> with L”n(L’UL)=L’; hence Extension Modularity
yields <L’UL,G"><<L”"UL’UL,G'UG” =<L."UL,G">, as required by LM.
The second property, axiom modularity, concerns the addition to both

specifications of a set of new sentences of the smaller language. It asserts
that such addition preserves conservativeness (see figure 4.8).

< LII’G ll> g < L"’H UG">
H c Sent(L") = v = v
< L.,G"™> c <LHULUG™

Fig. 4.8: Axiom Modularity: addition of new sentences
Lemma AM: Axiom Modularity

Consider a conservative extension pP’=<L’,G’><<L”,G”>=P”. Then, for every
set H of sentences of language L’, we have a conservative extension

<L G G UH>.

Proof

{(This is a special case of the corollary on characterisation of faithfulness

(for unsorted specifications) in 4.2.3. We present a direct proof to note
some connections with interpolation. }

Consider a sentence o of L’ such that G"UHF .
By Compactness!, there exists a sentence 0e Sent(L’), such that

(i) HF6 . and (ii) G"u{B}Eo.
From (ii) we have a sentence? y of L’, such that
(1) G7Fy and (iv) {x}u{B}Fo.

From (iii), since <L’,G’><<L”,G”> and ye Sent(L’), we have G’Ey. Thus, by the
Cut Rule, (iv) yields G’u{6}F o, whence G’UHF o, in view of (1).
OED

It is easy to see that Axiom Modularity is a special case of Modularity of
Extensions. Indeed, given <L’,G’><<L”,G"> and a set HcSent(L’), we also have
<L’.G’>c<L’,G’UH>; hence Modularity of Extensions yields, as required by
AM: <L G'UH><<" L GG U<, G UH>. ‘

The preceding remarks indicate that both Language and Axiom

Modularity follow from Extension Modularity. We now derive the latter
from them, thereby establishing Modularity of Extensions.

! Notice that this formulation of (distributed) compactness can be viewed as an
interpolation property: 6 is a finite conjunction of sentences of H.

2 Notice that this is connective-free formulation of the Deduction Theorem: ¥ can be
taken as (6—0).

20

Proposition EM: Modularity of (unsorted) Extensions

Given sub-languages L; and L, of L, let Ly=L;nL,. Consider a specification
P=<L,Go>, with extensions Q=<L,G> and R=<L,,G,>. If Qs a conservative
extension of P (P<Q), then the union specification S:=<LuL,,G;uGy> is a
conservative extension of R: R<S.

Proof (see figure 4.9)

By Language Modularity, we have <L,,Gp>=<LguL3,Go><<L Ly, G1>. Thus,
Axiom Modularity yields <L2,G2>5<L2,G0uGz>S<L1uL2,G1uG2>, since

G,cSent(Ly).
OFD
Q S=Q UR
N — ——
<1,6,> ¢ <LjUL,6, > < <L, UL,,G, UG, >
LM AM
v = v = v
<L,G,> C <L,UL,G,> C <L,,G,UG,>=R
— N ——’
P - L

Fig. 4.9: Proof of Modularity of Extensions: LM&AM=EM

E. General Modularity of Orthogonal Extensions
We can now generalise modularity of extensions to specifications over
orthogonal families of languages in the spirit of Expansive Modularity.

We first establish that union of an orthogonal family preserves
conservativeness, a result akin to orthogonal expansiveness in 4.3.1.B.

Lemma Orthogonal conservativeness

Given an orthogonal family of languages L;, for ie I, let Lo :=Nje Li.
Consider a specification pP=<L.,G> and a family Pi=<L;,G{> of extensions of
P, for ie I. Assume that, for every iel, we have a conservative extension
P<P;. Then, the union specification PY=Ui¢ [Pi is a conservative extension
of P: P<Pv.

Proof

Consider oe Sent(Lg) such that ce Cn[Pv].

Then, by compactness, there exists a finite Fcl such that oe Cn{U e gPil-
Notice that we may assume F=@. We claim that P<Uj¢ gPi. Then ce Cn[P].

The claim follows from Extension Modularity by induction.
The basis, with IFl=1, being trivial, consider the inductive step.

21

Given F with IFI>1, choose fe F and set F’:=F-{f}cF. The inductive hypothesis
gives P<Uj. p'Pj. Since LiN(Uje prLi)=Uie pr(LiNLi)cL 4, Extension Modularity
yields P<PsU(Uje prPi)=Vic FPi. Hence P<Pi<Ujc gPi.

Therefore P<PV.

QED

We can now establish the generalisation of Extension Modularity to
specifications over an orthogonal family guaranteeing preservation of
conservativeness under such union.

Theorem Orthogonal Extension Modularity

Given an orthogonal family of languages Li, for ie I, let L:=Mje L.
Consider a specification P=<L.,G> and a family Pj=<L;,Gi{> of extensions of
- P, for ie l. Assume that, for some je I, we have a conservative extension
P;<Py, for each k#j in I Then, the union specification PY=U;cPi is a
conservative extension of Pj: Pj<Pv.
Proof
Let K:=I-{j}. By the preceding lemma, we have a conservative extension
P<PK, where PKZ=UkE KPk=<U1-(€ KLk Vke KGk>~
Notice that Po=Uj Pi=PjuPK and Lin(Uge kLk)=Vke k(LjnLx)cLA.
Thus, Extension Modularity yields PjstuPKzPU.
OFD

4.4.2 Modularity of (unsorted) interpretations

We shall now consider the case of Modularity of Interpretations, rather
than extensions, aiming at establishing the Modularisation Theorem for
(unsorted) specifications.

We will examine some cases where the extension P<Q has some special
form and then consider a first - unsuccessful - attempt at reducing
modularity of interpretations to that of extensions, which will point out the
difficulty to be overcome by the successful reduction.

A. Modularity with special syntactical forms

We shall first examine some special cases, where the given extension P<Q
has some known syntactical form. The proof of the Modularisation
Theorem for such cases is quite straightforward, as we shall see.

Consider first the case where the extension from P to Q is by definitions:
of predicates (see 3.5.1) and operations (see 3.6.1). Let us re-examine
again the Modularisation Construction given in 4.3.4. If the extension PcQ
happens to be by definitions, then G, consists of Gy with some new axioms
defining the symbols in N in terms of those of Lg. It is easy to see that the

22

translation via g of each such axiom is still a defining axiom: of a new
symbol of Lj;-L, in terms of those of L, Hence, the Modularisation
Construction yields S as an extension by definitions of R.

Since an extension by definitions is known to be a special case of
conservative extension; this is indeed a special version of the
Modularisation Theorem: with a stronger hypothesis, but also yielding a
more informative conclusion.

Notice that the argument outlined above relies heavily on the special
syntactical form of the axioms added in extending P to Q. It carries over 10
other kinds of conservative extensions with such special syntactical form:
addition of predicates via constraints or of inductive predicates (see 3.5.2
and 3.5.3) as well as addition of operations via constraints (see 3.6.2). It
does not, however, appear to extend to the general case, when the new
axioms are not guaranteed to have any such special form.

B. A first reduction attempl and its difficulties

We now sketch what might be a first attempt towards a proof of (the
general case of) the Modularisation Theorem and some of the difficulties
encountered in trying to derive it from modularity of extensions.

Let us outline an approach for reducing Modularity of Interpretations to
that of Extensions. We can start by constructing the language postimages:
f[P]=<f(L).f(Go)> and g[Q]=<g(L1),g(G1)>. We then have the situation in
figure 4.10. By properties of the Language Modularisation Construction, we
have g‘l(L2)=L0, so Lyng(L)=f(Lo)- Thus, if we had f[P]<g[Q], we could apply
Extension Modularity to conclude sz[P]uRSg[Q]uRES. So, this reduces the
problem to f[P1<g[Q].

Q glQ] L, G,
e i g’ — e e
<L,G,> — <g(Lrg(G)> < < L,ug(l) . g(GIVEG, > = S

? ME '

v = \Y = \Y
<L,.G,> —— <EREG)> < < L,UE(L) . £(GUG, > = R
A ———’ —— ———

P £[P] L,

Fig. 4.10: Reducing modularity of interpretations (o extensions

We now wish to establish f[P1<g[Q]: given 1€ g(L,) such that g[Ql=1, we
must show that f[P]F T. For this, we must rely on the assumed
conservativeness P<Q. This is the .dea of this reduction attempt. We might

23

proceed as followsl.

0. g[QIFf(c) with oe Sent(L) assumption
1. g[QlFg(o) because f and g agree on L
2.Qrc with oe Sent(Lg) by cancelling g {wow!}
3. PFo because P<Q
4. f[PIEf(o) : because f:P—f[P]

There is an objectionable step in this proof attempt:
step 1 is ‘justifed’ by “cancelling g”.

Now, cancelling g would be acceptable if g happened to be faithful. Note
that, in view of the Specification Modularisation Construction, g would be
faithful if f happened to be so. But this is an unwarranted assumption,
which would mar the intended applications of the result to composing
implementations and to parameter instantiation, as indicated in 1.4 and
1.5.

The point is that we must rely on the assumed conservativeness P<Q,
which is the idea behind the above reduction attempt. It would work if f
(and g) happened to be faithful; otherwise we have an unjustified step.
This can be overcome by resorting to the internalisation techniques in
4.3.3: we replace the given specifications P and Q by stronger ones, without
affecting conservativeness or interpretability, so that both f and g become
faithful, thereby justifying the above (previously) objectionable step. We
will still start from a conservative extension, but now have faithful
interpretations, so we will be able to establish f[P]<g[Q].

C. Reduction of Modularity: Interpretations to Extensions
We will now establish (the general case of) the Modularisation Theorem by
reducing it to Modularity of Extensions via the internalised kernel.

We must rely on the assumed conservativeness P<Q. The key idea is to
replace the given given P and Q in figure 4.10 by their kernel extensions
PuUKrnl[f] and QuUKrnl[f]. This will not affect conservativeness - by Axiom
Modularity - or interpretability. Also, in view of the Modularisation
Construction, g will become faithful2.

Theorem Modularity of (unsorted) Interpretations

Consider specifications P=<L,G>, Q=<L,,G;> and R=<L,,G,>; as well as an
extension e:PcQ, and an interpretation f:P—R. Let S=<L;,G,ug(G)> be the

| The reader not interested in this motivation may proceed directly to C. Reduction of
Modularity: Interpretations to Extensions.

2 This will overcome the difficulty with “cancelling g” in step 1 in the reduction
attempt in 4.4.1.B

24

specification yielded by the Specification Modularisation Construction. If
Qisa conservative extension of P (P<Q), then S is a conservative
extension of R: R<S.
Proof (see figure 4.10)
‘We consider the language postimages f[P}=<f(L¢),f(Gg)> and
g[Q]=<g(L1),g(G1)>, and claim that f[P]<g[Q]. We will then have the situation
in figure 4.10. By the proposition on properties of the Language
Modularisation Construction (in 4.3.4), gl(Ly)=Lg, so L,ng(L=f(Lg). So, we
can apply Extension Modularity (see 4.4.2.B) to conclude
R=f[PJUR<g[Q]UR=S.
To establish the claim that f[P]<g[Q], we extend P=<L;,Go> and Q=<L,,G;> by
the (internalised) kernel Krnl[f]=<Lg.Alf]> obtaining PUKrnl[f]:=<Lg,GouAlf]l>
and QuKrnl[f]:=<L1,G1uA[f]> and show that PUKrnl[f]<QuUKrnl[f] and that g
interprets QUKrmI(f] faithfully into g[Ql.
Since A[f]lcSent(Lg) and P<Q, Axiom Modularity yields PUKri[f]l<QuKrnl[f].
Also, by the Language Modularisation Construction 1in 4.3.4, g extends f by
the identity. Thus, we have AlglcCn{Krnl[f]], whence QuKrnl[f]zQuKrnl[g].
Thus, by the proposition on characterisation of faithfulness by
(internalised) kernel in 4.3.3, we have the faithfulness of g:QuKrnl[f]——)Q.
Now, given G€ Sent(Lg), such that g[QJFf(c), we have successively:
g[QJF g(o), QuKml[flFo, Q=o, PEC, f[Pl=f(c).
OFED
4.5 Variations of (unsorted) interpretations

We have been concentrating on symbol translations, which map symbols to
symbols. Other possibilities also occur in the literature: mapping symbols
to formulae, relativisation of quantifiers and translating equality (Enderton
1972; Shoenfield 1967; Turski and Maibaum 1987). We shall now examine
them, as well as translations of variables.

These relaxations of translation affect only the translation of terms and
formulae; the concept of interpretation still requires preservation of
theorems. Thanks to the decomposition in 4.3.2.C, we can isolate their
effects on each symbol, without loss of generality.

4.5.1 Translation of predicates

A version of translation often encountered in the literature assigns to a
predicate symbol a formula, rather than a predicate symbol (Enderton
1972, p. 158). As might be expected, such a predicate translation can be
replaced by a symbol interpretation into an extension by definition.

Let us concentrate on examining the case of a predicate symbol being

25

mapped to a formula. Consider (unsorted) languages L’ and L7; a ormula
translation I:L’— L” for m-ary predicate symbol r of L’ assigns to r a
formula p of L” with free variables vy,...,v,. The idea is that atomic
formula r(ty,...,ty) of L’ is to be translated to p(ty,....ty,) (see, ‘e. g. Enderton
1972, p. 160). This is how it affects the translation of formulae.

For a simple example, consider the introduction of a new predicate
symbol r into specification P=<L,G> with defining axiom &(r\p) of the form
YV, ... VVulr(vi,...,vp)e>p] with p a formula of L, as in 3.5.1. We then have
an expansive extension P=<Lu{r},Gu{8(r\p)}>, with eliminability. The latter
means that we have a function e mapping formulae of Lu{r} back into L, so
that 8(r\p)E [y<«>e(y)]. We thus have a a formula translation e:Lu{r}—L for
predicate symbol r, which is a faithful interpretation of P° into P. Notice
that e acts identically on the symbols of sub-language L.

This example suggests how we can reduce a formula interpretation to a
symbol interpretation in the case of a predicate: the sentence
VVi...VVyg[t(vi,...,vp)ep]l of L” has the form of a definition of predicate

symbol re Prd(L’) in terms of peFrml(L”) (see 3.5.1). Thus, the next result -
illustrated in figure 4.11 - is not surprising.

Proposition Formula vs. symbol interpretation (for a predicate)

Given a formula translation I:L’—L” assigning to predicate symbol r of L’
formula p of L”, let 8(r\p) be the sentence Vvy...Vvp[r(vy,....,vp)epl.

a) Specification <L”u{r},{8(r\p)}> is an extension by definition of
Trv(L”)=<L”,@> where I interprets Trv(L’)=<L’,0>.

b) There exists a symbol interpretation [*:<L’,@>—<L”uU{r},{8(r\p)}>
equivalent to the composite I:Trv(L’)= Trv(L”)c<L”uU{r},A[I]> in the
following sense.

(i) For every ¢e Frml(L’): &(r\p)FI(¢)I*(p).
(ii) Given specifications P’=<L’,G’> and P’=<L”,G">, I interprets P’ into P”
iff I* interprets P’ into the extension P*=<L”u{r},G”u{d(r\p)}> > P”.

I
<L’',G'"> —— <L",G">
| A

<L,G'> —E 5 <i'U{r}{dx\niuc">

Fig. 4.11: Reduction of formula to symbol translation for predicate

The content of this result is that we can always reduce a formula
interpretation for a predicate to a symbol interpretation with the same
effect. For instance, if we have another interpretation J:P”— P, we can

26

replace the composite LJ:P’—P by I*;J*:P’—P, where J* is the composition
of the given J:P”—P with the faithful e:P*— P” which eliminates r back to p.
This is illustrated in figure 4.12.

Pl: PI
T l T
<
P" « P’
e
Jg il 7
P = P

Fig. 4.12: Reduction of formula to symbol interpretations

4.5.2 Translation of operations
Another version of translation often encountered in the literature assigns
to an operation symbol a formula, rather than an operation symbol
(Enderton 1972, p. 158). As might be expected, such an assignment
involves some restrictions - like those involved in definitions of operations
- in order to exhibit the desired behaviour.

Formula interpretation for operation can be illustrated by considering
the specifications for Booleans in 3.10 (see Spec 3.1 and 3.2). One can
assign to Dbinary predicate symbol less? of the language of

BOOL_EXT _NEG&LESS the formula x=flay=tr of the language of BOOL.

Let us concentrate on the case of an operation symbol being mapped to a
formula. Consider (unsorted) languages L’ and L”; a formula translation
I:L’—L” for n-ary operation symbol f of L’ assigns to f a formula 6 of L”
with free variables Xi,...,X,.y. The idea is that atomic formula f(ty,...,t,)=t of
I’ is to be translated to O(t;,...,t,,t) (see, e. g. Enderton 1972, p. 160). This
takes care of the translation of formulae, even if not of terms.

If we adapt the idea of the previous reduction, we obtain the sentence
VXy... VX VY[E(X{,... . Xp)=y 0], which is the form of a definition of operation
symbol fe Opr(L’) in terms of 8eFrml(L”) (see 3.6.1). This indicates that
some precautions are necessary. The requirements to be imposed on such
a formula translation for an operation have two, related, goals.

We wish to preserve induction of structures; for this the realisation of

formula 6 in a structure for L” must be the graph of a function.

We wish such translation to preserve logical validities; and the

translation of the valid sentence VX;...VX,3!yf(Xy,....Xp)=y is -

equivalent to - the conjunction of the existence and uniqueness

conditions for 0 (see 3.6.1).

We are thus led to restricting such formula translations for operations -

27

in the spirit of the interpretation of a language into a theory (Shoenfield
1967, p. 61) - as follows. Given a specification P’=<L”,G”>, we say that
formula translation I:L’—L”. assigning to operation symbol f of L’ formula 6
of L, is a formula interpretation I<L’.@>—<L”,G”> for operation symbol f
of L’ iff the existence 3(8) and uniqueness 1(9) conditions for 6 are in Cn[P”].
Recall, from 3.6.1, that these conditions are expressed by Vxj...Vx,3y6 and
Vxl...Vany’Vy”{[B(XI,...,xn,y’)/\e(xl,..‘,xn,y”)]—ay’zy”}, respectively.

With these requirements we achieve the desired goals. But, as in the
case of predicates, such formula interpretations can be reduced to symbol
interpretations without any loss. '

Proposition Formula vs. symbol interpretation (for an operation)

Given a formula translation I:L’—L” assigning to operation symbol f of L’
formula 6 of L”, let 8(f\6) be Vxl...Vany[f(xl,...,xn)=y<—>9]. Given
specification P"=<L”,G”>, consider its extension Pr=<L"U{f},G"U{8(1\6) }>.

a) The following are equivalent for a specification P’=<L’,G’>.

(i) 1 is a formula interpretation I:P’—P” for operation symbol f.

(ii) P* is a conservative extension of P”.

(iii) P* is an extension by definition of P”.

b) If P’E 3(6)A!(8), then there exists a symbol interpretation
I*:Trv(L’)—> P* equivalent to the composite I:Trv(L’)—> P”cP* in the
following sense.

(i) For every ¢e Frml(L’): S(f\0)E I(0)=>1*(0).

(ii) Given a specification p’=<L’,G’>, I interprets P’ into P” iff I*

interprets P’ into P*.
4.5.3 Translation of variables
As mentioned in 4.2.1, in the unsorted case we do not have to translate the
variables, but we may. Since translation of variables appears naturally in
the many-sorted case, Wwe shall now examine what is involved in
translating variables. By an argument similar to that of decomposition of
translations in 4.3.2.C, we can treat this case in isolation.

Consider (unsorted) languages I’ and L” with sets of variables V’=Var(L’)
and V”=Var(L”). A translation of variables from L’ to L” would be a
function I:V’— V” mapping each variable Vv’ of L’ to a corresponding
variable v’ of L”. The idea is that a term te Trm(L’) - respectively, formula
e Frml(L’) - is translated by simply replacing all occurrences of variables
v’ in V’ by I(v)e V”. Thus, translation of terms and formulae is

straightforward.

28

We are concentrating on translation of variables, leaving the other
symbols untouched, soO Alph(L’):Alph(L”). Thus., each structure M for
source language L’ is already a structure for L”. Now, given an assignment
a:V’—M of values in the universe of structure g for the variables of L’, we
can compose it Wwith the translation L:V’— V7, to obtain a composite
assignment L:a:V’—M for the variables of L”, as illustrated in figure 4.13.

I

Al

v ————)I "
Tal 1 l ta

m = m

Fig. 4.13: Assignment induced by translation of variables

Variables play a somewhat subsidiary role in safisfaction of sentences in
structures; but, for formulae, we would wish that a formula and its
translation “express the same thing”. For this, some precautions concerning
identification of variables are pecessary. The requirements to be imposed
on such translations of variables have two - related - goals, namely

we wish to preserve the Translation Connection, in the now natural

form: #iiFI(o) [a”]iff fiiFo [L;a”]; and

we wish such a translation to preserve logical consistency: a non-

contradictory formula © should not be translated to 2 contradiction.

Now, assume that two distinct variables u’ and w’ of L’ get translated to
the same variable Vv” of L”. Then, formula Ju’(—~u’=w’) is translated to
v (=V7=V7), undermining both goals.

It is thus in general wise to restrict our attention to one-to-one
translations of variables. A faithful translation of variables from L’ to L” 18
an injective function [:V’— V”, mapping distinct variables of L’ to distinct
variables of L”.

The reason for the name ‘faithful’ translation of variables is that a
translation of variables 1:V’— V” interprets faithfully Trv(L)=<L’,&> into
Trv(L”)=<L",0> iff it is injective. For such injective translations of variables,
we have the desired goals. But, as in the case of predicates, they can be
reduced to symbol translations without any loss, by suitable renamings.

4.5.4 Other cases: relativisation and equality

We shall now briefly examine two other versions of translations that are
important for implementations. One of them deals with relativising the
range of variables and the other one with translation of equality. AS might
be expected, these versions involve some restrictions. The effects of these
variants are less local than the preceding ones. They can be reduced to

29

introduction of sorts, subsort and quotient sort (see 3.8), as will be seen
later on when we consider the many-sorted case (in 4.9.1 and 4.9.2).

Our example of implementing Sets of naturals by sequences of naturals
in 4.1 indicates why they are useful. The relativisation predicate will
restrict quantification to the sequences that represent sets - those without
repetitions - and equality of sets will be translated to sequences having
the same elements, regardless of their place of occurrence.

A. Translation with relativisation

A version of translation/interpretation often encountered involves
relativisation predicates (Enderton 1972, P. 157-161; Shoenfield 1967, p.
61; Turski and Maibaum 1987, p. 82).

Such a translation L:L’— L” with a relativisation predicate provides a
unary predicate symbol 1 of L”. The idea is that T represents within L” the
universe of L’, over which quantifiers of L’ range. The effect of this in
translating is felt only in the quantified formulae of L’: the quantifiers are
relativised by replacing each part Vv.. by vvr(v)— ...] and 3v... by
Iv[r(v)a...] (Enderton 1972, p. 157-161). (One sometimes also prefixes the
result by r(vl)/\.../\r(vm), where Vi,....Vm ar¢ its free variables (see, €. &
Shoenfield 1967, p. 62; Turski and Maibaum 1987, p. 83).)

As in the case of a formula translation of operations, some care is
necessary. The requirements o be imposed on such a translation with a
relativisation predicate have two - related - aims.

From a model-oriented standpoint, we wish to induce structures taking

the extension of r as the universe of the structure for L’; for this the

realisation of the relativisation predicate I in a structure for L7 must

be nonempty. It must also be closed under the realisation of each

operation symbol.

From a property—oriented viewpoint, we wish such a translation to
preserve logical validities; and the relativisation of the valid sentence
Jyv=v is equivalent to Jvr(v). Also, the relativisation of the valid
sentence Vxl...Vanyf’(xl,...,xn)zy expresses the above closure
requirement for operation symbol I(f").

We are thus led to restricting such translations with relativisation
predicates - once again as interpretations of languages 1nto theories
(Shoenfield 1967, p. 61) - as follows. We consider an interpretation
I:Trv(L’)— P” with relativisation predicate [just in case the sentences
Jvr(v) and Vxl...Vanlyf’(xl,...,Xn)zy, for each source operation symbol f’,
are consequences Of P”. With these requirements we achieve the desired
goals. Such interpretations with relativisation predicates- can be reduced to
symbol interpretations into subsorts (see 3.8.2). We shall come back to this
point when examining many-sorted interpretations in 4.9.1.

30

B. Translation of equality

A variant of translation/interpretation sometimes encountered involves
translation of equality (Turski and Maibaum 1987, p. 163). This is
motivated by the fact that, as in our example in 4.1, several target objects
may represent the same source object.

Such a translation :L’—= L” of equality provides a binary predicate
symbol q of L”. The idea is that q represents within L” the identity on the
universe of L’. The effect of this in translating-is felt only in the equality
formulae: an atomic formula t=t" of L’ is translated to q(t,t’) (see, e. g.
Turski and Maibaum 1987, p. 163). : _

As in the .case of translation with a relativisation predicate, some
precautions are needed for proper behaviour.

From a model-oriented standpoint, to maintain the idea that q

represents within L” the identity on the universe of L’, we wish to take

M =/"/M"[q); for this the realisation of q in a structure fl” for L” must

be an equivalence relation. It must also be a congruence if we wish the

natural projection onto the quotient to be a homomorphism.

From a property-oriented viewpoint, we wish such a translation to

preserve logical validities; and the translation of the valid sentences

vx(x=x), VXX’ [x=x’—Xx’=x)] and Vx,x X [(x=x’AX’=X")—>Xx=X"] express the
equivalence requirement. Also, the translation of valid equality axioms
express the above congruence requirement with respect to the
translations of operation and predicate symbols.

We are thus led to considering restrictions on such translations of
equality in the same spirit as before. We consider such an interpretation
[:Trv(L’)— P” with translation of equality just in case the equivalence and
congruence requirements are consequences of P”. With these requirements
we achieve the desired goals. But, as before, such interpretations with
translation of equality can be reduced to symbol interpretations into
quotient sorts with conversions (see 3.8.6); a point we shall return to when
considering many-sorted interpretations in 4.9.2.

REFERENCES

Arbib, M. and Mannes, E. (1975) Arrows, Structures. and Functors :@ the
Categorical Imperative. Academic Press, New York.

Barwise, J. ed. (1977) Handbook of Mathematical Logic. North-Holland,
Amsterdam.

Bauer, F., L. and Wossner, H. (1982) Algorithmic Language and Program
Development. Springer-Verlag, Berlin. :

Broy, M. (1983) Program construction by transformations: a family of

31

sorting programs. In Breuman, A. W. and Guiho, G. (eds) Automatic
Program Constructiom, Reidel, Dordrecht.

Broy, M., Pair, C. and Wirsing, M (1981) A systematic study of models of
abstract data types. Centre de Recherche en Informatique de Nancy
Res. Rept. 81-R-042, Namcy.

Broy, M. and Pepper, P. (1981) Program development as a formal activity.
IEEE Trans. Software Engin., SE-7 (1)14-22.

Broy, M. and Wirsing, M (1982) Partial abstract data types. Acta
Informatica, 18 47-64.

Byers, P. and Pitt, D. (1990) Conservative extensions: a cautionary note.
Bull. EATCS.,41, 196-201.

Chang, C. C. and Keisler, H. J. (1973) Model Theory. North Holland,
Amsterdam.

Dahl, O., Dijkstra, E. and Hoare, C. (1972) Structured Programming.
Academic Press, New York.

Darlington, J. (1978) A synthesis of several sorting algorithms. Acta
Informatica, 11 (1), 1-30.

Ebbinghaus, H. D., Flum, J. and Thomas, W. (1984) Mathematical Logic.
Springer-Verlag, Berlin.

Enderton, H. B. (1972) A Mathematical Introduction to Logic. Academic
Press; New York.

Ehrich, H.-D. (1982) On the theory of specification, implementation and
parameterization of abstract data types. J. ACM, 29 (1), 206-227.

Ehrig, H. and Mahr, B. (1985) Fundamentals of Algebraic Specifications, 1:
Equations and Initial Semantics. Springer-Verlag, Berlin.

Gehani, N. and McGettrick, A., D. (1986) Software Specifications
Techniques. Addison-Wesley, Reading.

Ghezzi, C., Jazayeri, M. (1982) Programming Languages Concepts. Wiley,
New York.

Goguen, J. A.; Thatcher, J. W. and Wagner, E. G. (1978) An initial algebra
approach to the specification, correctness and 'implementation of
abstract data types. In Yeh, R. T. (ed.) Current Trends in
Programming Methodology: Prentice Hall, Englewood Cliffs, . 81-149.

Guttag, J. V (1977) Abstract data types and the development of data
structures. Comm. Assoc. Compul. Mach., 20 (6), 396-404.

Guttag, J. V (1980) Notes on type abstraction. IEEE Trans. Software Engin.,
6 (1)..

32

Guttag, J. V. and Horning, J. J. (1978) The algebraic specification of
abstract data types. Acta Informatica, 10 (1), p. 27 - 52.

Hoare, C. A. R. (1972) Proof of correctness of data representations. Acta
Informatica, 4, 271-281.

Hoare, C. A. R. (1974) Notes on data structuring. In Dahl et al. 1(974); 83-
174.

Hoare, C. A. R. (1978) Data Structures. In Yeh, R. (ed.) Current Trends in
Programming Methodology, Vol IV. Prentice Hall, Englewood Cliffs, 1-

11.
Jackson, M., A. (1980) Principles of Program Design. Academic Press,
London.

Ledgard, H. and Taylor, R. W. (1977) Two views on data abstraction.
Comm. Assoc. Comput. Mach., 20 (6), 382-384.

Maibaum, T. S. E. (1986) The role of abstraction in program development.
In Kugler, H.-J. ed. Information Processing '86. North-Holland,
Amsterdam, 135-142.

Maibaum, T. S. E., Sadler, M. R. and Veloso, P. A. S. (1984) Logical
specification and implementation. In Joseph, M. and Shyamasundar
R. eds. Foundations of Software Technology and Theoretical
Computer Science. Springer-Verlag, Berlin, 13-30.

Maibaum, T. S. E. and Turski, W. M. (1984) On what exactly is going on
when software is developed step-by-step. tProc. 7h Intern. Conf. on
Software Engin. IEEE Computer Society, Los Angeles, 528-533.

Maibaum, T. S. E, Veloso, P. A. S. and Sadler, M. R. (1985) A theory of
abstract data types for program development: bridging the gap?. In
Ehrig, H., Floyd, C., Nivat, M. and Thatcher, J. eds. Formal Methods and
Software Development; vol. 2: Collogquium on Software Engineering.
Springer-Verlag, Berlin, 214-230.

Maibaum, T. S. E, Veloso, P. A. S. and Sadler, M. R. (1991) A logical
approach to specification and implementation of abstract data types.
Imperial College of Science, Technology and Medicine, Dept. of
Computing Res. Rept. DoC 91/47, London. ,

Manna, Z. (1974) The Mathematical Theory of Computation. McGraw-Hill,
New York. '

Meré, M. C. ; Veloso, P. A. S. (1992) On extensions by sorts.. PUC - RJ, Dept.
Informética, Res. Rept. MCC 38/92, Rio de Janeiro..

Pair, C. (1980) Sur les modeles des types abstraites algébriques. Centre de
Recherche en Informatique de Nancy Res. Rept. 80-p-042, Namcy.

33

Parnas, D. L. (1979) Designing software for ease of extension and
contraction. IEEE Trans. Software Engin., 5 (2), 128-138.

Pequeno, T. H. C. and Veloso, P. A. S. (1978) Do not write more axioms

than you have to. Proc. Intern. Computing Symposium, Taipei, 487-
498.

Shoenfield, J. R. (1967) Mathematical Logic. Addison-Wesley, Reading.

Smirnov, V. A. (1986) Logical relations between theories. Synthese, 66, p.
71 - 87.

Smith, D. R. (1985) The Design of Divide and Conquer Algorithms. Science
Computer Programming, 5 37-58.

Smith, D. R. (1990) Algorithm theories and design tactics. Science of
Computer Programming., 14, 305-321.

Smith, D. R. (1992) Constructing specification morphisms. Kestrel
Institute, Tech. Rept. KES.U.92.1, Palo Alto.

Turski, W. M and Maibaum, T. S. E. (1987) The Specification of Computer
Programs. Addison-Wesley, Wokingham.

van Dalen, D. (1989) Logic and Structure (2nd edn, 3rd prt). Springer-
Verlag, Berlin.

Veloso. P. A. S. (1984) Outlines of a mathematical theory of general
problems. Philosophia Naturalis, 21 (2/4), 354-362.

Veloso, P. A. S. (1985) On abstraction in programming and problem
solving. 2nd Intern. Conf. on Systems Research, Informatics and
Cybernetics. Baden-Baden.

Veloso, P. A. S. (1987) Verificacdo e Estruturagdo de Programas com Tipos
de Dados. Edgard Bliicher, Sdo Paulo.

Veloso, P. A. S. (1987) On the concepts of problem and problem-solving
method. Decision Support Systems,3 (2), 133-139.

Veloso, P. A. S. (1988) Problem solving by interpretation of theories. In
Carnielli, W. A. ; Alcantara, L. P. eds. Methods and Applications of
Mathematical Logic. American Mathematical Society, Providence,
241-250.

Veloso, P. A. S. (1991) A computing-like example of conservative, non-
expansive, extension. Imperial College of Science, Technology and
Medicine, Dept. of Computing, Res. Rept. DoC 91/36, London.

Veloso, P. A. S. (1992) Yet another cautionary note on conservative
extensions: a simple example with a computing flavour. Bull. EATCS,
46, 188-192.

34

Veloso. P. A. S. (1992) On the modularisation theorem for logical
specifications: its role and proof. PUC - RIJ. Dept. Informdtica Res.
Rept. MCC 17/92, Rio de Janeiro.

Veloso, P. A. S. (1992) Notes on interpretations of logical specifications.
COPPE-UFRJ Res. Rept. ES-277/93, Rio de Janeiro.

Veloso, P. A. S. (1993) The Modularization Theorem for unsorted and
many-sorted specifications. COPPE-UFRJ Res. Rept. ES-284/93, Rio de

Janeiro.

Veloso, P. A. S. (1993) A new, simpler proof of the Modularisation
Theorem for logical specifications. Bulletin of the IGPL1 (1), 1-11.

Veloso. P. A. S. and Maibaum, T. S. E. (1984) What is wrong with errors:
incomplete specifications for abstract data types. UFF, ILTC, Res.
Rept., Niteroi. .

Veloso, P. A. S. and Maibaum, T. S. E. (1992) On the Modularisation
Theorem for logical specifications. Imperial College of Science,
Technology & Medicine, Dept. of Computing Res. Rept. DoC 92/35,
London.

Veloso, P. A. S., Maibaum, T. S. E. and Sadler, M. R. (1985) Program
development and theory manipulation. In Proc. 3rd Intern.
Workshop on Software Specification and Design. IEEE Computer
Society, Los Angeles, 228-232.

Veloso. P. A. S. and Pequeno , T. H. C. (1978) Interpretations between
many-sorted theories. 2nd Brazilian. Colloquium on Logic; Campinas.

Veloso, P. A. S. and Veloso. S. R. M. (1981) Problem decomposition and
reduction: applicability, soundness, completeness. In Trappl, R.; Klir,
J. : Pichler, F. eds. Progress -in Cybernetics and Systems Research.
Hemisphere, Washington, DC, 199-203.

Veloso, P. A. S. and Veloso. S. R. M. (1990) On extensions by function
symbols: conservativeness and comparison. COPPE-UFRJ Res. Rept.
ES-288/90, Rio de Janeiro.

Veloso, P. A. S. and Veloso, S. R. M. (1991) Some remarks on conservative
extensions: a Socratic dialogue. Bull. FATCS, 43, 189-198.

Veloso, P. A. S. and Veloso, S. R. M. (1991) On conservative and expansive
extensions. O que no faz pensar: Cadernos de Filosofia, 4, 87, 106.

Veloso, P. A. S. and Veloso, S. R. M. (1991) On conservative and expansive
extensions: why and how they differ. Imperial College of Science,
Technology & Medicine, Dept. of Computing Res. Rept. DoC 91/30,
London.

35

Wirsing, M., Pepper,'P. and Broy, M. (1983) On hierarchies of abstract
data types. Acta Informatica 20 (1) 1-33.

36

