f
5

=
L=

ISSN 0103-9741
Monografias em Ciéncia da Computacdo

n°® 34/95

Logical Specifications: 4.B - Interpretations
of Many-Sorted Specifications

Paulo A. S. Veloso
Thomas S. E. Maibaum

Departamento de Informatica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22453-900
RIO DE JANEIRO - BRASIL

PUC RIO - DEPARTAMENTO DE INFORMATICA ISSN 0103-9741

Monografias em Ciéncia da Computacdo, N° 34/95
Editor: Carlos J. P. Lucena October, 1995

Logical Specifications: 4.B - Interpretations of
Many-Sorted Specifications *

Paulo A. S. Veloso
Thomas S. E. Maibaum

* This work has been sponsored by the Ministério de Ciéncia e Tecnologia
da Presidéncia da Republica Federativa do Brasil.

In charge of publications:

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documenta¢do e Informagdo

PUC Rio — Departamento de Informdtica

Rua Marqués de Sdo Vicente, 225 — Gavea

22453-900 — Rio de Janeiro, RJ

Brasil

Tel. +55-21-529 9386 Telex +55-21-31048 ~ Fax +55-21-511 5645
E-mail: rosane@inf.puc-rio.br

LOGICAL SPECIFICATIONS: 4.B INTERPRETATIONS OF MANY-SORTED SPECIFICATIONS

Paulo A. S. VELOSO and Thomas S. E. MAIBAUM

{e-mail: véloso@inf.puc—rio.br and tsem@doc.ic.ac.uk}

PUCRioInf MCC 34/94

“Abstract. We present basic concepts and results concerning interpretations of
many-sorted logical specifications, as well as some connections Wwith extensions. We
start with simple symbol-to-symbol interpretations, examining syntactic
translations of terms and formulae, semantical induction of structures, and
interpretations of specifications. We then examine some operations on specifications
and interpretations: union and intersection of specifications over orthogonal
languages, composition and decompositions of interpretations, an internalisation
technique via translation diagram, and the many-sorted Modularisation
Construction. We next consider the Modularisation Theorem for many-sorted
specifications, first some simple variants, then the case of extensions, and next
modularity of many-sorted interpretations. Finally, we consider some variants of
interpretations found in the literature: translation with relativisation (and its
reduction to subsort), translation of equality (and its reduction to quotient),
translation with sort tupling (and its reduction to product), as well as general
interpretations incorporating these three features, and the reduction of many-
sorted logic to unsorted logic via relativisation. Some examples illustrating these
ideas are presented. This report is the second half of a draft of the fourth section of a
handbook chapter. Other reports cover the remaining sections.

Key words: Formal specifications, many-sorted axiomatic specifications, interpretations of

specifications, many-sorted language translations, internalisation of translation, translation
diagram, conservative extensions, modularity, joint consistency, translations with
relativisation, translation of equality, translations with sort tupling, sort introducing
constructs.

Resumo. Apresentamos conceitos e resultados bisicos sobre interpretagdes de
especificagdes l6gicas poli-sortidas, bem como algumas conexdes com extensoes.
Comecamos com interpretagdes simples simbolo-a-simbolo, examinando tradugoes
sintdticas de termos ¢ formulas, indugdo semantica de estruturas, e interpretagdes de
especificagbes. A seguir, consideramos algumas operagdoes em especificacdes ¢
interpretagdes: uniao ¢ intersegio de especificacdes sobre linguagens ortogonais,
composicdo € decomposigdes de interpretagbes, uma técnica de internalizacdo através’
de diagrama de tradugdo e 2 versio poli-sortida da Construgdo de Modularizagao.
Tratamos entdo do Teorema da Modularizagdo para especificacoes poli-sortidas,
comecando com algumas variantes simples e o0 caso de extensdes, para entao passar a
modularidade de interpretagdes poli-sortidas. Por fim, consideramos algumas
variantes de interpretacoes encontradas na literatura: traducdo com relativizagdo (e
sua reducdo a subsorte), traducdo da igualdade (e sua reducdo a quociente), traducao
com tuplagem (e sua redugdo a produto), bem como interpretagdes generalizadas,
incorporando estas trés caracteristicas, e a reducdo da l6gica poli-sortida a logica sem
sortes através de relativizagéo. Apresentam-se também alguns exemplos que ilustram
essas idéias. Este relatério € a segunda metade de um esbogo da quarta segdo de um
capitulo de um manual. Outros relatérios cobrem as demais secoes.

Palavras chave: Especificagoes formais, especificacoes axiomaticas poli-sortidas, interpretagdes
de especificagoes, traducdes de linguagens poli-sortidas, internalizacdo de tradugao, diagrama
de traducdo, extensoes conservativas, modularidade, consisténcia conjunta, tradugoes com
relativizacdo, tradugdo da igualdade, traducdes com tuplagem de sortes, construtores de sortes.

NOTE

This report is the second half of a draft of the fourth section of a chapter
in a forthcoming volume of the Handbook of Logic in Computer Science

Other reports, corresponding to the remaining sections, have been issued
or are in preparation. The plan of the chapter - and series of reports
Logical Specifications - is as follows.

1. Introduction and Overview MCC 13/94, June 1994, (v+11 p)
‘2. Specifications as Presentations MCC 26/94, July 1994, (vi+24)
3. Extensions of Specifications MCC 33/94, Sept. 1994, (vi+58)
4. Interpretation of Specifications in two parts: A and B
5. Implementation of Specifications

6. Parameterised Specifications

7. Conclusion: Retrospect and Prospects.

The chapter - and series of reports - is intended to provide an account of
the logical approach to formal specification development.

Any comments or criticisms will be greatly appreciated.

The preceding report in this series was Logical Specifications: 4.A
Interpretations of unsorted Specifications, covering the unsorted version

of the present one, namely:
unsorted translations and interpretations;

composition, decomposition and internalisations of translations;
tons of translations and interpretations, relativisation, translation

zquality, sort tupling;
interpolation and modularity of extensions and of interpretations.

ACKNOWLEDGEMENTS

Research reported herein is part of an on-going research project. Partial
financial support from British, European Community and Brazilian
agencies is gratefully acknowledged. The hospitality and support of the
institutions involved have been very helpful. Collaboration with Martin R.
Sadler, Sheila R. M. Veloso and José L. Fiadeiro was instrumental in
sharpening many ideas. The authors would like to thank the following
colleagues for many fruitful discussions on these and related topics:
Carlos J. P. de Lucena, Samit Khosla, Atendolfo Pereda Bérquez, Douglas R.

4, Haydée W. Poubel, M. Claudia Meré, Tarcisio H. C. Pequeno and

. ..woerto Lins de Carvalho

CONTENTS !

4.6 MANY-SORTED INTERPRETATIONS? 1
4.6.1 Simple many-sorted translations 1
4.6.2 Simple many-sorted interpretations 4

4.7 OPERATICNS ON SPECIFICATICNS AND INTERPRETATIONS 4
4.7.1 Operations on many-sorted specifications 4
4.7.2 Decomposition of (many-sorted) interpretations 6
4.7.3 Internalisation via translation diagrams 7
4.7.4 Modularisation construction (many-sorted) 13

4.8 THE (MANY-SORTED) MODULARISATICN THEOREM 14
4.8.1 Variations of (many-sorted) modularity 14
4.8.2 Modularity of (many-sorted) extensions 15
4.8.3 Modularity of (many-sorted) interpretations 17

4.9 VARIATIONS OF INTERPRETATION 19
4.9.1 Relativisation and subsort 20
4.9.2 Translation of equality and quotient sorts 22
4.9.3 Sort tupling and product sort 25
*.9.4 General interpretations 27
4.9.5 Reduction of general to simple interpretations 30
4.9.6 Reduction of many-sorted logic to unsorted logic 32

4.10 EXAMPLES 35
4.10.1 Example specifications 35
4.10.2 Example interpretations 36

REFERENCES 40

I See the preceding note for an explanation of the numbering system.
2 The report Logical Specifications: 4.A Interpretations of unsorted
Specifications covers the unsorted version of the present one.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

4.14:
4.15:

4.16:
4.17:

4.18:
4.19:
4.20:
4.21:
4.22:
4.23:
4.24:
4.25:
4.26:
4.27:
4.28:
4.29:
4.30:

List of Figures
Translation preserving declarations

Sort based decomposition of translation

Sort connection sentence B[I](s)

Structure of diagram language L[I]=L’UKI[IJUL”
Matching sentence w[I](p) for (unary) predicate
Matching sentence p[I](f) for (unary) operation
Diagram extension and translation

Interpretétion characterised by translation diagram
Expansiveness by translation diagram: P”<Dgrm([I]UP”
Many-sorted Modularisation: language and translation
Many-sorted Language Modularisation Construction
Proof of Modularity of (many-sorted) extensions

Languages in diagrams of modular translations

O o o0 O\ N

10
11
13
14
14
16
18

Proof structure for (many-sorted) Interpretation Modularity 19

General translation: sort renaming
Decomposition of general interpretation

Reducing general to simple interpretations

28
30
31

4.6 Many-sorted interpretations !
We shall now examine the extensions of the previous concepts and results?
to the many-sorted case: translations of many-sorted languages and
interpretations of many-sorted specifications.

These extensions are generally easy, but the notation is somewhat more
elaborate. The basic ideas are, as before, translating formulae to formulae

and structures to stuctures in a property preserving manner. We start
with the simple case of symbol to symbol translation, and later consider

some possible variations in 4.9.

4.6.1 Simple many-sorted translations

We begin by considering simple translations of languages, which translate
vmbols to symbols, enabling syntactical translations of properties
ressed in the language and reverse semantical translations of

>tructures, as before.
A. Syntactic many-sorted translation
'Weé shall now consider a many-sorted language to have a single equality
symbol =, instead of an equality symbol =; for each sort s. Thus, the
equality formulae are now of the form t=t’, where t and t’ are terms of the
same sort, say s (instead of the previous t=gt’).

A (simple) translation from a language L, to language L, is a mapping

that assigns to each symbol of the former a symbol of the latter, respecting
their declarations. Now, that sorts are translated, their variables are
lated as well.
sore precisely, consider many-sorted languages L; with sets of sorts
Srt(L;)=S;, of predicate symbols Prd(L;)=R;, of operation symbols Opr(Lj)=F;,
and of variables Var(L;)=V;, i=1,2. A (simple) translation (or renaming) I
from source language L, to target language L, - denoted I.Li—>L, -is a
mapping, consisting of renaming of sorts, variables, operation and
predicate symbols, respecting syntactical declarations, in the following
sense.
» Sort renaming I5:S;— S, assigns to each sort se S; a sort Ig(s)e S,.
« Predicate renaming Iz:R,—R, assigns to each predicate symbol
re Ry, over sorts s;,....s, in L;, a predicate symbol Iz(r)e R,, over
sorts Ig(sy),...,Is(sm) n Lo.
« Operation renaming Ig:F;—F, assigns to each operation symbol fe Fy,

I See the preceding note for an explanation of the terminology ‘chapter’, ‘section’,
etc., as well as for the numbering system. . '

2 The unsorted case is presented in the report Logical Specifications: 4.A.
Interpretations of unsorted Specifications.

1

from sorts sj,...,S, to s in Ly, an operation symbol Ig(f)e F,=0pr(L,),
from sorts Ig(sy),....Is(sy) to Ig(s) in L.
» Variable renaming Iy:V|—V, assigns to each variable ve V, ranging
over sort s in L;, a variable Iy(v)e V,, ranging over sort Ig(s) in L,.
We shall generally denote each one of these mappings, or their (disjoint)
union, simply by L
We can regard a many-sorted language L with sets S of sorts, R of
predicate symbols, F of operation symbols, and V of variables, as an S-
sorted set with declaration d assigning:

- to each variable ve V the sort d(v)e S over which it ranges;
- to each predicate symbol reR its profile d(r)=<s;...s,>€ S™ of sorts;

- to each operation symbol fe F its profile d(f)=<s;...s,,s>€ S* of sorts.
Now, a sort renaming I:S;— S, extends naturally to a renaming of
sequences of sorts I*:S,*—S,*. So, the above requirement of ‘respecting
syntactical declarations’ becomes the requirement for I to be a language
homomorphism, making the diagrams in figure 4.14 commute.

IV V2 R'l IR R2 Fl IF FZ

Vl
a, 4 la, a i la, 4, la,
Sl

N s —55 s 5. —= s

Fig. 4.14: Translation preserving declarations

As in the unsorted case, the translation I of symbols of L; to L, can be
naturally extended to translate terms and formulae. The translation of a
term te Trm(L,) via I is the term I(t)e Trm(L,) obtained by replacing each
occurrence of a symbol of L; by its translation according to the mapping I

ce that this translation preserves sorts of terms: it translates term

.rm(L;)[s], of sort s in L,to term I(t)e Trm(L,)[I(s)], of sort s in L,. The
rranslation of a formula ¢oe Frml(L;) via I is the formula I(¢)e Frml(L,) -
obtained by replacing each occurrence of a symbol of L; by its translation
according to the mapping I. Each quantification part (Vu:s), or (Ju:s), is
replaced by (Vw:t), respectively (Iw:t), where Iy(u)=w and Ig(s)=t; and
each equality formula t=t" of L;, with terms t,t'e Trm(L,)[s], is replaced by
the equality I(t)=I(t’) of L,. '

Notice that these mappings are not necessarily surjective. Neither are
they required to be injective; except for the renmaming of variables. For
reasons mentioned in 4.5.3, we do not wish two distinct variables to be
mapped to the same target variable. We require this injectivity even for
variables ranging over distinct source sorts. For, imagine that source

variables uy:s; and v,:s, are mapped to the same target variable w:t. This

has the following unpleasant consequences.

« The non-contradictory sentence (3x’,u;:8))(Vy’:85)(3vyisy)[=x"=u;avy=y’]
is translated to (3x”,w:t)(Vy :t)(Iw:t)[-x"=waw=y”], where I(x’)=x" and
I(y’)=y”, and the latter entails the contradictory Ax7:)(Vy i) [-x"=y"].

« For a unary source operation symbol f from sort s; to s, the sentence
(Elul:sl)(3v2:s2)f’(u1)=v2 is logically valid, which does not happen with
its translation (3w:t)f”(w)=w, which asserts that the realisation of f’=I(f")
has a fixed point.

« For a binary source predicate symbol 1’ over sorts s; and s, the
sentence (3uy:s;)(Iv,isy)ri(uy,v,) asserts that its realisations are
nonempty. But, its translation (Iw:t)r”’(w,w) asserts the much stronger
requirement that the realisation of r’=I(r’) meets the identity.

B. Semantical many-sorted translation

As in the unsorted case, a simple translation of many-sorted languages
induces a connection between structures (in the ‘reverse’ direction), which
permits discussing structures for one language in the other.

Let I:L;—L, be a (simple) translation from source language L, to target
language L,. By composing the assignments given by the translation and
the structure for L,, we obtain realisations for the symbols of L; (see
fonee 4.1). Given a structure i for target language L,, the structure

¢d by " under I is the structure M LI for source language L;, where

its universe of sort se S, is the universe of I(s)e S, in ft: MLIs]=M[I(s)];

- for each predicate symbol re Ry, its realisation in the induced structure
M L1 is the realisation of its translation I(r)e R, in the given structure
;L AL Ir]=g[I(0)];

- for each operation symbol fe F;, its realisation in the induced structure
M I is the realisation of its translation I(f)e F, in the given structure
o LI =)

Now, an assignment a of values in structure ffl to the variables of L,
assigns to each variable ve Var(L,), ranging over sort se S, of L,, a value
a(v)e M[s] in the universe of sort s in #ft. Thus, by composing a translation
[:L,—L, with this assignment we obtain an assignment [;a of values in the
induced structure # JI to the variables of L;. We thus have a Translation
Connection, as in the unsorted case.

Proposition Translation Connection (many-sorted case)

Let I:L,—L, be a (simple) translation from source language L; to target

language L,. Consider a structure #it for L, with induced structure /I
Then, for each formula ¢ of source language L;, we have
a) for every assignment a of values in Mto the variables of L,
fLIF o [La] iff M (o) [al;
b) the realisation of formula ¢e Frml(L,) in the induced structure and the
realisation of its translation in the original structure are the same:

mlI[e]=M[I(9)]. :
“he proof of this result is, as in the unsorted case, by structural
_action. We just mention that the injectiveness requirement for
renaming of variables is important for the cases of quantification.
4.6.2 Simple many-sorted interpretations

We shall now consider interpretations of many-sorted specifications by
adapting the ideas of the unsorted versions in 4.2.3.

Consider specifications P;=<L;,G;> and P,=<L,,G,>. A simple
interpretation from source specification Py to target specification P, -
denoted I:P;— P, - is a language translation L:L,—>L, preserving logical

consequences, in the following sense: for every sentence o of L; if Pk o,

then- P,=1(c), i. e. I translates the source theory Cn[P;] into the target
theory Cn[P,]. As in the unsorted case, a faithful interpretation is one

where P ko iff Py=I(c) for every sentence ¢ of L.
Theorem Interpretation Theorem (for many-sorted specifications)

~~ncider a language translation I:L;—L,. Given specifications P;=<L{,G;>
. P,=<L,,G,>, the following are equivalent. |
a) I is an interpretation from P, to P,.
b) For every axiom ye G, its translation I(y) is a consequence of P,.
¢) For every structure ffle Mod[P,], the induced structure M LI is a model
of Py. ‘
The proposition characterising those interpretations which are faithful
also carries over to the many-sorted case.
4.7. Operations on specifications and interpretations
We shall now extend to the many-sorted case the ideas in 4.3.

4.7.1 Operations on many-sorted specifications

We now extend the ideas in 4.3.1 concerning languages and specifications
within the same context to the many-sorted case. It will be seen that the
main difference lies in the part concerning languages, because of the
presence of sorts.

A. Union and intersection (many-sorted case)
When operating with many-sorted languages, we must generally start with
the sets of sorts and then proceed to the rest.

As before, we call (many-sorted) languages L’ and L” compatible iff they
are sub-languages of some language L. In this case, there is no confusion of
~ymbols and we can form intersection or union of languages.

Consider a (many-sorted) language L with set of sorts S, alphabet A, set
of variables V, and declaration d. A sub-signature of L consists of subsets
TcS and BcA, such that, for every be Bc A, d(b) involves only sorts of the
subset T. Now, such a sub-signature of L, consisting of TcS and BcCA, gives
rise to a sub-language of L, with set of sorts T, alphabet B, set of variables
VIT:={ve V/d(v)e T}, and the declaration being the appropriate restriction
of d; we call such a language the restriction of L to the sub-signature
consisting of TcS and BcA. {In case T=J, a sub-signature of L. must have
B=, which leads to the restriction &, with no sorts or variables and empty
alphabet. This is an uninteresting limit case, for it has no terms or
formulae.)

Consider a family of sub-languages Li=<Sj,A;,Vi> of L=<S§,A, V>, for ie I.
Notice that we have a sub-signature of L consisting of S.:=M;.[Si and
A.:=Mi.1Aj; by the intersection language NMiciLi we mean the restriction
of L to this sub-signature. We also have a sub-signature of L consisting of
Su:=U;.1Si and AV:=U . fAj; by the union language UiciLi we mean the
restriction of L to this sub-signature.

We say that sub-languages L’ and L” of L are disjoint (which we denote
by L’nL”=0) when they have no common sorts: Srt(L")nSrt(L”7)=L.

As before, given a family of specifications Pj=<Lj,Gi> over sub-languages

LicL, for ie I, by the union specification we mean Ui 1Pi:=<Ujc 1Li,Vie 1Gi>.

B. Orthogonal families (many-sorted case)

The idea of orthogonal families of languages and their properties of joint
expansiveness seen in 4.3.1.B extend to the many-sorted case.

An orthogonal family of languages is a family of sub-languages L; of
some language L, for iel, such that all j#k in I LinLxcL :=Njc1Li. Such
orthogonal families of languages have the following properties (see
4.3.1.B).

Joint expandability:

A family of structures B; for L;, for ie I, such that any two #Bj and Bk

have a common reduct alBjiLmzaIleLﬁ to L. has a common expansion €

to Lv: i€ for each iel. '
Orthogonal expansiveness:

Given a family Pj=<Lj,Gj> of extensions of P=<L,G>, for iel, let
Pv:=Uje 1Pi. If P<Pj, for every iel, then P<Pv.

4.7.2 Decomposition of (many-sorted) interpretations
We shall now examine some simple decompositions of (many-sorted)
interpretations, similar to those seen in 4.3.2.

The concepts of pre and post images as well as the associated
decompositions seen in 4.3.2.B carry over to the many-sorted case without
any conceptual difficulty.

Also, the decompositions induced by language partitions of 4.3.2.C
extend to many-sorted versions with due consideraton of the fact that
sorts must be treated before the symbols touching them (see the remarks
concerning symbol removal in 3.4 and 3.8).

The preceding remark suggests a decomposition of many-sorted
interpretations based on sorts (see fig 4.15). Consider a (simple)
translation I:L’—L” from L’=<S’,A’,V’> to L"=<S5",A”,V”>. We will construct an
intermediate language L°=<S°,A°,V°> and translations I*:L’—L° and
[#:L°—L” so that I can be decomposed as I*;I¥#.

r/ r r'l
I T
| | |
Sl S" S"
R
I

Fig. 4.15: Sort based decomposition of translation .

We first construct language L°=<S°,A° ,V°> by taking S°:=S”, V°:=V” and
defining A° as follows: for each symbol a’e A’, A° has a corresponding
symbol a° whose profile is obtained from the profile of a’ by replacing each
sort s by its translation I(s). We now define the translations:

- translation I* acts as I over S” and V’; over A’, I* maps (bijectively)
each symbol a’e A’ to its corresponding one a’e A°;

- translation I# is the identity on S°=S” and V°=V”; over A°, I¥ maps each
symbol a°ec A° to I(a’)e A” where I*(a’)=a’.

For instance, consider formula r’(v’) of L’, with v’:s’, which I translates to

r’(v”), with v’:s” in L”. Then, I* translates r’(v’) to r°(v”), where r° is a unary

predicate symbol over sort s” in L°; and I# translates r°(v”) to r”’(v”) in L”.

As before, if I interprets P=<L,G> into P’=<L’,G’>, the above decomposition
can be used to obtain a specification P°=<L°,G°> so that [*:P’— P° and
[#:P°—P”.

4.7.3 Internalisation via translation diagrams

The notion of induced structure shows how a structure for the target
language defines - via the translation - a structure for the source language.
We shall now indicate how this idea can be ‘internalised’ (Veloso 1993).
We can ‘internalise’ the translation by coding its information into
sentences of an appropriately richer language - one expressing that each
source symbol is equivalent to its translation. This set of sentences will
describe a process of structure induction.

Consider first the unsorted case, to get the gist of the idea. Given a
translation I:L’—L”, we may, by resorting to renaming if necessary, assume
that the source and target languages L’ and L” are disjoint and compatible.
We then construct the union language L’UL”, as in 4.3.1, which has
alphabet A’UA”, and common set of variables.

We can now ‘internalise’ the translation by coding its information into a
set ®[I] of formulae a<>I(a) of L’UL” - expressing the fact that each source
symbol is equivalent to its translation. More precisely, ®[I] consists of the
following sentences of L UL”™:

SV YV (Ve V) T (VL V)] for each m-ary predicate symbol r’
of L’, with I(r’)=r"; and
- VX VX[(X5, Xn)=E7(X ..., Xy)], for each n-ary operation symbol f* of

L’, with I(f")=f".

Then, it is not difficut to see that we have a description of the process of
structure induction: every structure #ii for the union language L’UL” has
reducts Mgt LL’ and MIL”; and M= &[] iff the reduct MIL’ is the structure
(M LL”)LI induced by the reduct M LL”. Notice that ®[I] provides the
information about the translation in the form of an extension of <L”,@> by
definitions of the symbols of L’, a remark which can be used for an
alternative proof for the Translation Connection.

For a translation I:L’—L”, its (internalised) kernel Krnl{I]=<L’,A[I]> (see
4.3.3) provides part of the information in its diagram Dgrm[I]=<L’+L”,®[I]>,

namely which symbols have the same translation, but not the translations
themselves. This connection can be expressed more precisely. Consider the
extension of translation I:L’— L” by the identity (since L’'nL”=g) to
It:-L’UL”—L”. We then have the equivalence Dgrm[I]=Krnl[I], as well as an
expansive extension Krnl[I]=<L’,A[I]> <<L’UL”,®[I]>=Dgrm(I].

In the many-sorted case, we must construct a language that 1s
appropriate for expressing the equivalence between a source symbol and
its translation by connecting source and target sorts. The idea is that, in
the presence of bijective connections, a source symbol and its translation
become interdefinable.

Consider a translation I:IL’—L” from language L’=<S’,A’,V’> to language
L”=<S”,A”,V”’>. We may, by resorting to renaming if necessary, assume that
I’ and L” are disjoint sub-languages (of some sufficiently large language L).
We then form the union language L’UL”, which has sets of sorts S’US” and
of variables V'’uUV”, and alphabet A’UA”.

T .
s——-ﬂt:s——l———)t
—_——

" BII1(s)

Fig. 4.16: Sort connection sentence B[I](s)

We first connect the sorts in S’ and S” via Ig. We select (from L) a set J[I]
of new symbols (not in L’ or L”) for unary functions: a (conversion)
ation symbol js with source sort se S’ and target sort I(s)e S”, for each
s of L’. We thus have a sort connection language K[I] with set of sorts
> US”, alphabet J[I]={js(s)—>t/seS’}, and set of variables V’uV”. Now, for
each source sort, we have a sentence of K[I] expressing that each
connection is a bijection. More precisely, for each sort s of L’, with I(s)=t,
its sort connection sentence B[I1(s) is (Vy:t)(F!x:8)js(x)=y. We now collect all
these sentences to obtain the sort connection diagram SrCnt[I]:=<K[I],Z[I]>
of I, where =[I]:={B[I](s)/se S’}. The idea of SrCnt[I] is that a sort se S’ and its
translation I(s)e S” are interexplicable via B[I](s) (see figure 4.16).

7 A "
L 14 Lll
J
{ SI [I} a Sll }
—_—

K [1]

Fig. 4.17: Structure of diagram language L[I}=L’UK[IJUL”
We now extend the sort connection language K[I] by adding the extra-
logical symbols in the union alphabet A’UA”, to obtain the alphabet
matching language L[I] with set of sorts S’US”, alphabet A’UJ[IJUA”, and set

of variables V’UV”. The structure of these languages - L’'=<S’,A’>, L"=<8",A">,
K[1]=<S’uS”,J[1]>, and L[I]=<S’uS”, A’ UJ[IJUA”> - is depicted in figure 4.17.
Now, for each source symbol, we have a sentence of LI[I] .expressing that

it has the same behaviour as its translation. More precisely, for each
symbol a of source alphabet A’, we construct its alphabet matching

sentence w[I}(a) in L[I], as follows:

- for each m-ary predicate symbol p, over SOrts sj,....Sp in L’, with
I(s{)=ty,....I(sm)=ty and I(p)=q, w[I1(p) is the universal closure of
p(xl,...,xm)eq(jsl(xl),...,jsm(xm)) (see figure 4.18);

- for each n-ary operation symbol f, from sorts sy,...,8, tO S in L’, with
I(s))=ty,....1(sp)=ty, I(s)=t and I(f)=g, p[I1(f) is the universal closure of
f(X 5o X=X g(s, (X1, s, (Xn))=Js(x) (see figure 4.19).

—_
p — S p(x)
d = 0
a — I(s) .q@d&)
S
ui)

Fig. 4.18: Matching sentence p[I](p) for (unary) predicate

s —-f——> t X —f——> f(xFy.
d = i { 0
Is) —> It) ix) — gii&x)=1ity)

uiI €

Fig. 4.19: Matching sentence w[I)(f) for (unary) operation

We now collect all these sentences to obtain a specification: the alphabet
matching diagram AlMch[I]:=<L[I],A[I]> of I, where A[ll:={u[I](a)/ac A’ }.
Finally, by the (full) diagram of translation I:L’— L” we mean the
specification Dgrm{I]:=<L[I],®[I]>, where ®[I]:=2[IJUA[I]. The idea of Dgrm(I]
is that, in the presence of X[I], a symbol ae A’ and its translation I(a)e A”
become interdefinable via p[Ij(a).

It is not surprising that the (full) diagram of a translation internalises
the information of the translation. In particular, it internalises the process

of structure induction. This is the content of the next result, which gives a
model-oriented characterisation of the diagram of translation.

Lemma Models of translation diagrams
Consider a translation I:L’—L” with translation diagrams
SrCnt[I}:=<K[I],Z[I]> and Dgrm([I]=<L[I],®[I]>.
a) Given a structure & for language K[I], &k Z[I] iff, for each se S’, with
I(s)=te S”, & [js]l:R[s]>%[t] is a bijection from &[s] onto &[t].
b) Given a structure B for language L[I], BF ®[1] iff the family BIK[I] of
functions B[js]:B[s]—>B[I(s)], for se S’, is an isomorphism from the reduct
pLlL’ onto the structure (BLL”){I induced by the reduct BIL”.
Proof.
a) By construction (see figure 4.16),
&= B[I](s) iff function & [js]:&[s]—%[t] is a bijection from % [s] onto & [t].
b) By the definition of reduct and induced structure, we have
wlL)D]=BIL")IN)]=B[I(1)], for each le S’UA”.

. consider the reduct &=B{K[I] of B to K[I].
By the construction of alphabet matching sentences, we have:

- for a predicate symbol p, over sorts Sj,...,Sy in L7, (see figure 4.18)
pF u[Il(p) iff B[js1..... B [js,] map B [p] homomorphically to B[I(p)] ;

- for an operation symbol f, from sorts s;,...,8, to s in L’, (see figure 4.19)
BEp[I]() iff JBUSI],...,%DSm] and B[js] map B[f] homomorphically to
BI(D)].

Thus, the assertion follows from part (a).

QBED

The diagram of a translation matches each source symbol to its
translation. One can expect it to match a source sentence to its translation,
which is the content of the next result, illustrated in figure 4.20.

P’ I(pY
e T e —
<L"G'> —_— <LI(G)>

N N

SL[I]G’U¢[H> = \<L[I]‘P[IJUI(G‘)>
P’ UDgrm [I] Dgrm [I] W I(PY

Fig. 4.20: Diagram extension and translation

Proposition Diagram and translation
Consider a translation I:L’—L” with (full) diagram Dgrm[I]=<L[I],®[I]>.

a) For every sentence ¢ of L": ®[I]F [c<1(0)].

10

b) Given a specification P’=<L’,G’>, with postimage I(P")=<L”,I(G’)>,
consider the diagram extensions P’uDgrm[I]=<L[I],G’u®[I]> and
Dgrm[IJUL(P’) = <L[1],®{IlUl(G’)>. Then we have:

(1) an equivalence P’uDgrm[I]EDgrm[I]uI(P’); and
(ii) an extension I(P")cP’uDgrm[I].
Proof
a) Consider a sentence oe Sent(L’) and a model Be Mod[Dgrm{I]].
By the preceding result characterising the models of Dgrm[I], we have an
isomorphism between BLL’ and (BIL”)LL. Thus BF[ce1(0)]. '
Indeed, we have successively: Bk o iff {since ce Sent(L’)} BIL’Eo iff {by the
isomorphism} (BIL”){I=c iff {by the Translation Connection} BIL7E1(0) iff
{since I(c)e Sent(L”)} BFI(c). Hence BF [c=I(o)].
{ A property-oriented argument can be obtained by using
- (I)[I]l=jsl(x1)zy1/\.../\jsn(xn)zyn/\js(x)zy-e[f(xl,... X=X (Y, yn=Y1s
- CD[I]#jsl(xl)zylA---Ajsm(xm>=ym—>[p(xl,---,xm)Hq(yl,---,ymﬂ;
as a basis for induction on terms and formulae (relying on z[I]), to
establish that, if I(@(X1,....Xm))=¥(Y1,----Ym)> then
o O[IIFjs, (X)=Y 1A Alsy Xm)=Ym = [O(X1,- Xm) W (Y102 Y)] -}
b) Both assertions follow immediately form part (a).
i) Indeed, for each axiom ye G’, ®[I]JF [yeI(n].
i) We have [(P)cDgrm[IJUl(P")=P’UDgrm[l] by (1).
QFD

The diagram of I:L’—L” provides the information of the translation in

the form of a special extension of Trv(L”):=<L”,@>, which is expected to be

expansive. This is a corollary of the next result, which uses extensions by
translation diagram to characterise interpretations, as in figure 4.21.

P p
————— T ———
<LI,G,> > <L",G">

) A
<L"G'> C <L[I,®[TJuG" >
[—

P’ Dgrm [JuUP"

Fig. 4.21: Interpretation characterised by translation diagram
Proposition Characterisation of interpretations by translation diagrams

Consider a translation I:L’—L” with (full) diagram Degrm([I]=<L[I],®[I]>.

11

Given specifications P’=<L’,G’> and P"=<L”,G”>, consider the diagram
extension Dgrm[[JUP”:=<L[I],G"u®[I]>. _
a) Dgrm[IJUP” is an expansive, hence conservative, extension of P”.
b) I interprets P’ into P” iff Dgrm[IJUP” extends P’.
¢) I interprets P’=<L’,G’> faithfully into P” iff Dgrm[IJuP” is a conservative
extension of P’.
Proof (see figure 4.22)
a) We will show P” <SrCnt{IJUP” <AlMch[IJuSrCnt[I}UP”=Dgrm[IJUP”.
We first show that P”=<SrCnt[IJUP” where SrCnt[IJUP”:=<K[I]JUL” Z[IJuG">
We can add each sort one at a time. Given a sort se S’, consider the
extension Pg:=<Ls,{B[I](s) }uG”>, where Lg:=<{s}US”,{js}UA">.
We have an extension P”<Unrlt by definition of unary predicate symbol rs
ar sort t with defining axiom (Vy:t)[rs(y)<>y=y] (see 3.5.1). We now
.roduce s as the subsort of t relativised to relativisation predicate rs,
with insertion js(s)—t; so Unrlt<Sbsrt (see 3.8.3).

On the other hand, Sbsrt is equivalent to the extension of Ps by definition
of unary predicate symbol rs over sort t with defining axiom

(Vy:t)[rs(y)e> (3Ix:8)y=js(x)] (see 3.8.3). Thus P”<Ps.

Now, for all s#t in S’ LgnLicL”. So, orthogonal expansiveness (see 4.7.1.B)
yields P”=<Uge s Ps, and Uge 52 Ps=SrCnt[IJUP”.

We now show SrCnt[IJuP” <AIMch{IJuSrCnt[IJUP”.

As already remarked, in the presence of Z[I], the alphabet matching

:ence n[I}(a) is (equivalent to) a proper defining axiom of symbol ae A’
.n terms of its translation I(a)e A”. Hence, as above, we have
StCnt[IJUP” < {u[I](a) }uSrCnt[1JUP” <AIMch[I]uSrCnt[IJuP”.
{ Alternatively, given @e Mod[P”], we first expand it to Be Mod[SrCnt[IJUP”],
by taking B[s]=4[I(s)] and B[js] as the identity function on @[I(s)]. Then, we
expand Be Mod[SrCnt[IJUP”] to €e Mod[Dgrm[IJuP”] by using pflIl(a) to
define €[a] in terms of B[I(a)] for each ac A’.} '
b) By part (a) and item (a) of the proposition on diagram and translation,
for every oe Sent(L’), G”FI(o) iff ®[IJUG”FI(c) iff O[IUG’Fo.
Thus, I(Cn[P’])cCn[P”] iff Cn[P’]cCn[Dgrm({IJUP”].
¢) Similarly to (b), I'{(Cn[P"])cCn([P’] iff Cn[Dgrm[I]UP”]<Cn[P’].
OFD

These properties of translation diagrams enable one' to reduce, to a large

extent, interpretations to extensions. They will be applied to reduce
modularity of many-sorted interpretations to that of extensions.

12

L"

——
Pll = < SH /A" , GII >
A
Br1] (s)dP" = <{sps" ,{Frua", PBII](syGc">
A
SrCnt {IQ P" = <snwus" JK[IlAa', Z[IUG">
A
{,LL[I] (a)xySrCnt[IQ P" =< S'US" ,{a}UK[IJUA", {H[I] (A Z[TLG">
A
AlMch[IJUuSrCnt[IlU P> <gwwug" ,A'UKI[IVA", A[IUZI[IIVU G">
\.—___V—__/
Dgrm[I] L{T] ®[I]

Fig. 4.22: Expansiveness by translation diagram: P”<Dgrm[IJUP”

7.4 Modularisation construction (many-sorted)
hall now examine the Modularisation Construction, by extending to
many-sorted interpertations the ideas seen in 4.3.4 for the unsorted case.

As in figure 4.4, we have (many-sorted) specifications P=<L,,Gy>,
Q=<L,,G,;> and R=<L,,G,>; as well as an extension e:PcQ, and an
interpretation f:P— R. The Modularisation Construction completes a
rectangle of interpretations by amalgamated sum.

As before, the Modularisation Construction is in two stages: one first
completes the rectangle of underlying language translations f:L;—L, and
e:LocL, (see figure 4.5), and then constructs an appropriate specification.
The main difference in the many-sorted case lies in the first stage: the
Language Modularisation Construction.

The many-sorted Modularisation Construction for languages proceeds as
follows (see figure 4.4). We have languages Lj=<Sj,Aj,Vj> with declaration d;,
for j=0,1,2. Without loss of generality, we may assume, by resorting to
renaming if necessary, that the underlying languages L; and L, are
disjoint: L;nL,=@. We shall construct a language L3;=<S3,A3,V3> with
declaration d; and translation g:L;— Lj in two steps: first sorts (and
variables), then alphabet (and declaration).

We first obtain the sets of sorts S; and of variables V3 as before. We set
T:=S,-S, and S5:=S,UT, then we extend fg5:Sy—S, to gg:S;—S; by letting it be
the identity on T. Similarly, we put V3:=V,u(V-Vy) and extend fy:Vy—V,
to gy:V;— V3 by the identity.

We are now ready for the second step: the construction of the alphabet
and declaration. We let B:=A,-A; for each extra-logical symbol in B we add
to A, a corresponding symbol b# of the same kind and extend declaration

13

d, by d;(b#):=ggs*[d;(b)] (see figure 4.23), as well as fo:Ag—> A, to gotA|— A3
by ga(b):=b#. We thus have language L;:=<S3,A3,V3> with declaration ds.
Also, mappings gg:S;—S3, gv:V[—>V; and go:A;— A3 make the diagrams in
figure 4.14 commute, so we have a translation g:L;—Lj as in figure 4.5.

9a

b — b’
a, ¢ L g,
d, (b) ——— d; (b")
Is

Fig. 4.23: Many-sorted Modularisation: language and translation

This many-sorted Language Modularisation Construction is a special
pushout. Notice that, in general, gg is not injective; nevertheless, ga 1s
injective on the new symbols in A;-A,, even though not the identity (see
figure 4.24). The properties of this Language Modularisation Construction
are similar to its unsorted version (see 4.3.4), as is the Specification
Modularisation Construction: specification S=<Lj;,G3> has as its set of axioms
the union G3:=G,ug(Gy).

Ly Lj
—_———

g 1] L]

p 9 — P a

so{ s s £ £(sy £(s7)3
Fig. 4.24: Many-sorted Language Modularisation Construction

4.8 The (many-sorted) Modularisation Theorem

The Modularisation Theorem asserts that the Modularisation Construction
-reserves conservativeness. As in the case of unsorted specifications, we
snsider first some variations, including the case of extensions, which as in
4.4.2, guarantees that union preserves conservativeness.

4.8.1 Variations of (many-sorted) modularity

We shall now examine some variations of (many-sorted) modularity:
modularity which can be easily seen to carry over from the unsorted case.
These concern extensions with special syntactical forms, expansive
extensions and extensions by axioms of language L, (Axiom Modularity).

We first consider the particular case where the given extension has
some special syntactical form. The cases mentioned in 4.4.2.A carry over to
the many-sorted case. We now have some further extensions with special
syntactical forms, namely the sort introduction constructs seen in 3.8.. But,
the arguments in 4.4.2.A extend to cover these new cases as well. The
proof of the Modularisation Theorem for such cases is quite

14

straightforward. Unfortunately, these arguments still rely heavily on the
special syntactical form of the new axioms. They do not appear to extend
to the general case, when the new axioms are not guarnteed to have any
such special form.

Another special case of modularity concerns expansive extensions. In
this case, the extensions are not required to have some special syntactical
forms, but the previous model-oriented arguments carry OVer to establish
many-sorted preservation of expansiveness:

Orthogonal Expansive Modularity (see 4.4.1.A)

Consider an orthogonal family of languages LicL, for ie L, let L :=MjcLi.

Given a family Pj=<L;,G;> of extensions of P=<L.,G>, for iel, let

Pu:=U;Pj. For each jel such that Pj<Py, for every k=j in I, Pj<Pv.

Expansiveness is a sufficient, but not necessary, condition for
conservativeness. So, we have again a special version of the Modularisation
Theorem: with stronger hypothesis and conclusion.

Finally, another special version carrying over to the many-sorted case 1is
Axiom Modularity. Notice that its proof in 4.4.1.D relied on the
Compactness and Deduction Theorem. We thus have:

Axiom Modularity (see 4.4.1.D)

¥ <L’ ,G’><<L”,G">, then <L’,G’UH><<L”,G”"UH>, for every HcSent(L’).

.2 Modularity of (many-sorted) extensions
We shall now proceed towards establishing the Modularisation Theorem
for (many-sorted) extensions.

Modularity of extensions guarantees that wunion preserves
conservativeness. As such, it resembles a well known logical result related
to union of consistent theories: Robinson’s Joint Consistency Theorem
(Chang and Keisler 1973, p. 88). Recall that a maximally consistent
specification is one that is both complete and consistent.

Proposition Robinson’s Joint Consistency Theorem

Given sub-languages L; and L, of L3, let Ly=L;nL,. Consider a
specification P=<L,Gy>, with consistent extensions Q=<L,G;> and
R=<L,,G,>. If specification P=<L,Gy> is maximally consistent, then the
union specification QUR=<L;UL,,G;UG,> is consistent.

Proof

The usual proofs, as in (Chang and Keisler 1973), either in the

Lindenbaum-Henkin style with witnesses (p. 84-89) or by elementary
chains (p. 116-117), can be adapted to the many-sorted case.

OFED

15

Let us compare more closely Robinson’s Joint Consistency Theorem and
~ Modularity of Extensions. Robinson’s Joint Consistency Theorem guarantees
that a property - consistency - of specifications is transmitted to the union
specification (over a maximally consistent specification); whereas
Modularity of Extensions asserts that a relationship between specifications
- conservativeness - is preserved by the union construction. So, the latter
-npears to be more flexible than the former, in that it replaces consistent
xtensions of a maximally consistent specification by a conservative
extension of a (not necessarily complete) specification. We know that the
conservative extensions of a maximally consistent specification are exactly
the consistent ones (see 3.4). So, indeed Robinson’s Joint Consistency
Theorem follows from Modularity of Extensions.

We shall now use Robinson’s Joint Consistency Theorem to establish
Modularity of (many-sorted) Extensions.

P TV,
———A——— \
< LGy > < Ly, CnH VI, > < <L, H > = T
A ‘:; A A
<L,G, > < Lul , G1UCH[HNL<J >c< LluLz,GluCn[H]\/LouH>
—_— [— U
0 L,

<L uUL,G, VH > =SUT

Fig. 4.25: Proof of Modularity of (many-sorted) extensions
Proposition Modularity of (many-sorted) Extensions

Given sub-languages L; and L, of Ls, let Ly=L;nL,. Consider a

specification P=<L(,G>, with extensions Q=<L;,G;> and R=<L,,G,>. If Qis a

~~ngervative extension of P (P<Q), then the union specification
R=<L;UL,,G;UG,> is a conservative extension of R: RSQUR.

Proof (see figure 4.25)

Let S:=QUR. Given a maximally consistent specification T=<L,,H> extending

R=<L,,G,>, we will show that SUT=<L,UL,,G;uUG,UH> is consistent.

For this purpose, consider the restriction TVLg:= <Lg,Cn[H]VLy> of T=<L,,H>
to sub-language LycLs, where Cn[H]VL(:={oe Sent(Ly)/HFG}. '

We then have a conservative extension TVLG<T (see 3.3), with PcTVL,
since PcRcT. So, PcTVL(<T.

Thus <L, Cn[H]VLy>=<L,GouCn[HINLy>, and Axiom Modularity yields
<Lo,Cn[HIVL><<L,,G;Cn[HNLy>.

Since T is maximally consistent, so is TVL,; entailing the consistency of its
conservative extension <L;,G;uCn[H]VLy>.

16

Hence, Robinson’s Joint Consistency Theorem yields the consistency of
<L,UL,,G;uCn[H]VLoUH>, and hence that of SUT=<L;UL,G;UGUH>.

D
3 Modularity of (many-sorted) interpretations

We shall now proceed towards a proof of the (many-sorted)
Moduliarisation Theorem. We could adapt the proof for its unsorted
version, but we prefer to present a sligthly different proof, which
illustrates the application of the technique of diagram internalisation. We
shall reduce it to Modularity of Extensions by means' of (many-sorted)
diagram internalisation.

The diagram of I:L’—>L” provides the information of the translation in
~e language L[I] extending the union language L’UL”. As such, it can be
used to extend specifications over a sub-language L of the alphabet
matching language L[I]. We will show that translation diagrams code the
information for completing the pushout rectangle of language translations
in the Modularisation Construction. The idea is that each new symbol I#
added in extending L, to L; is explicable in terms of its originator 1 by

means of the corresponding diagram sentence.

Lemma Diagrams of modular translations
Given a translation f:Ly—L, and an extension e:LocL,, let g:L;—Lj be the

~nonical extension of f provided by the Modularisation Construction. We
aen have an expansive extension <L;UK[f]UL,,®[f]> <<L;K[g]uL;,®[g]> =
Dgrm(g]. In particular, Dgrm[f]<Dgrm[g].
Proof (see figure 4.26)
Letting T=<L;UK[f]UL,,®[f]>, we will show T<TuSrCnt[g]<Dgrm(g].
A symbol 1# of L;uL3 not in LyuL, is a symbol of Ls not in L,, with, by the
Language Modularisation Construction (see 4.3.4), a unique symbol 1 of
L,-L, such that g(D=1*#.
We first show T=<TuSrCnt[g]
For each sort s#e (S3-S,), we have se (S;-Sp) with g(s)=s# and an expansive
extension from T to Tu{PB[gl(s)}, the latter over language
Lg:=<S,;US,u{s#},A;UI[fluA,>. So, for all st# in (S3-S5), LsnLi=L{UK[f]UL,.
Thus, orthogonal expansiveness (see 4.7.1.B) yields, as desired, that
T <<L,;UK[g]uL,,®[fluz[g]>=TuSrCnt[g].
We now establish TuSrCnt[g]<Dgrmig].
Each predicate or operation symbol ate (As-A,) has ae (A|-A() with g(a)=a#,
and TuSrCnt[g]lu{ulgl(a)} is equivalent to an extension by definition of

17

TuSrCnt[gl=<L,UK[g]uL,,®[f]uZ[g]> to Lg:=<S;US3,A;UJ[glUAU{at >

For all a#zb# in (Az-A,), LanLp=L;uK[g]uL,. Thus, orthogonal expansiveness
(see 4.7.1.B) yields TuSrCnt[g] <<L;UK[g]uL;,Gud[g]uZg]>=Dgrm(g].

{ Alternatively, we use Z[g] to expand @€ Mod[T] to Be Mod[TuSrCnt[g],
~and then A[g] to expand B to Ce Mod[Dgrm[g]]. }

OFED
L, UK[fluL, : L, {A’ JE] AZ} L,
- S, o §;,—8, :
KI[f]
Igl N
L, UK[gluL, : L, {A‘ Jel Aa } L,
S,—=—>S;, 2 5,
K(g]
Algl m

g K : S -
: ! 1 - _g‘ >S'§

K[g]
Fig. 4.26: Languages in diagrams of modular translations

.corem Modularity of (many-sorted) Interpretations

Consider specifications P=<L,G¢>, Q=<L;,G;> and R=<L,,G,>; as well as an
extension e:PcQ, and an interpretation f:P—R. Let S:=<L3,G,ug(G)> be the
specification yielded by the Specification Modularisation Construction. If
Q is a conservative extension of P (P<Q), then S is a conservative
extension of R: R<S.

Proof (see figure 4.27)

We will construct a conservative extension R<T, so that T extends R.

1. Since f:P—R, by item (b) of the proposition characterising
interpretations by translation diagrams, we have R<Dgrm[f]JURZP.

2. Since L[f]=LyuKI[flUL,, we have L,nL[f]=L, and L,uL[f]=L,UK[fJUL,.

So Modularity of (many-sorted) Extensions yields
Dgrm[ﬂuRs<L1uK[ﬂuL2,¢[ﬂuG2uG1>=Dgrm[ﬂuRuQ.

3. By the preceding lemma, <L]uK[ﬂuL2,<I>[ﬂ>S<L1uK[g]uL3,<I)[g]>=Dgrm[g].
So, Axiom Modularity yields the conservativeness

18

<L1uK[fJuLz,d)[ﬂuG2uG1>S<L1uK[g]uL3,(D[g]uG2uG1>, i.e.
Dgrm[f]uRuQngrm[g]uRuQ.

4. Now, by item (b) of the proposition on diagram and translation
¢(Q)cDgrm{g]uQ. Thus, S=g(Q)URcDgrm[g]UQUR. '

. 5. Therefore Rngrm[f]uRngrm[f]uRuQngrm[g]uQuR, with
R<Dgrm[g]UQUR. '

OED
p L[f] R
e e ———
ZL.G,5 c < L,UKAUL, . @fluG, > < <L.G,>
EM
A = A
<L.G,> c <L, UKIfJUL,®@[fJuG,UG,> = Dgrm [fJURUQ
Q

Dgrm [fJURUQ

<L, UK[f]UL,,®[f] > ZL UKIIUL,@fluG, UG, >
M
A = A
<L, UK[g]UL,,®lg]> <L, UK[g]UL,,®[glUG, UG, >

N

Dgrm [gJURUQ

Dgrm {gluQ Dgrm [g]UQUR
U = U
g(Q) g(Q JUR
=T
R

Fig. 4.27: Proof structure for (many-sorted) Interpretation Modularity

9 Variations of interpretation

A variant of translation/interpretation sometimes encountered (Turski and
Maibaum 1987, p. 265; Maibaum et al. 1991, p. 14) involves mapping a
sort to a sequence of sorts with relativisation predicates and translation of
equality. This is motivated by some needs in implementatation. We shall
examine such general variants and see that they can be reduced to simple
interpretations with introduction of product sorts, subsorts and quotient
SOrts.

At the beginning of 3.8 we mentioned the overused implementation of
stacks by arrays with indices. Here one wishes to represent a stack by
means of an array, containing the elements stored in the stack, together
with an index, indicating the position of the topmost element. Thus, each
stack s is to be represented by a pair <a,i>; but, not every such pair will

19

represent a stack; furthermore distinct such pairs may represent the same
stack. This suggests translating sort Stk to sequence <Arr,Ind> of sorts, with
a (binary) relativisation predicate, over sorts Arr,Ind, as well as a relation,
over sorts Arr,Ind,Arr,Ind, to represent equality of stacks.

As mentioned in 4.7.2, the decompositions induced by language
~artitions seen in 4.3.2 can be extended to the many-sorted case. This will
_nable us to decompose such general many-sorted interpretations into
somewhat simpler variants, thereby decoupling the effect of each
generalisation. We shall successively consider relativisation (which we will
reduce to subsort introduction), translation of equality (reducible to
quotient sort) and sort tupling (replaceable by introduction of a product
sort). Then, we shall examine such general interpretations incorporating
the three features and indicate how they can be reduced to simple
interpretations into extensions by introduction of appropriate sorts.

4.9.1 Relativisation and subsort

“ave briefly examined unsorted translations/interpretations involving

.. .sation predicates in 4.5.4. Let us now consider their many-sorted
versions (Turski and Maibaum 1987, p. 265; Maibaum ef al. 1991, p. 14).
Our introductory example in 4.1 motivates their need: not every target
object represents a source object. We shall concentrate on the effects of
relativisation and then indicate how such interpretations can be reduced to
simple interpretations into subsorts.

Consider many-sorted languages L’ and L”; a translation I.L’—>L” with
relativisation predicates assigns to each sort se Srt(L’) both a sort
Is(s)=tse Srt(L”) (the translation of sort s) and a unary predicate symbol
I.(s)=r,e Prd(L”), over sort t; (called the relativisation predicate for sort s).
The idea is, as before, that r, represents within L” the universe of sort s of
L’. The effect of this in translating is felt only in the quantified formulae of
L’. A formula ¢e Frml(L’) is mapped to ¢'e Frml(L”) by relativising
quantifiers: with w=Ily(v), [(Vv:is)0]:i=(Vw:t))[rg(w)—>067] and
[(Av:s)0]:=(Tw:t,)[rs(w)A0']. Finally, we obtain the translation of a formula
by relativising its free variables: I((p):=[rsl(wl)/\.../\rsm(wm)—>(pr], where
ViiSy,...,Vyp:Sy are the free variables of ¢, and wy,...,w their respective
translations. Notice that our simple translations may be regarded as special
cases of translations with relativisation predicates: those with trivial
relativisation predicates w=w. In fact, relativisation for only.some sorts is
the special case of translation with relativisation predicates where the
remaining sorts have trivial relativisation predicates.

For the reasons mentioned in 4.5.4.A, some care is necessary for such
translations to exhibit proper behaviour. Let us assume for the moment

20

that L’ has no operation symbols: Opr(L’)=&. We then restrict such
translations with relativisation predicates as follows. Given a specification
pP*=<L”.G”>, we say that translation :L’—L”, assigning to each sort s of L’ a
sort t; and relativisation predicate g of L”, is an interpretation
I:<L’,@>—<L”,G”> with relativisation predicates iff the non-voidness
requirements (Iw:ty)rg(w) are in Cn[P”] for all se Srt(L’) (in case Opr(L’)=J).

With these requirements we achieve induction of structures: each model
M e Mod[P”] induces a structure ft I for language L°, with universe of sort
se Srt(L’) being the realisation of the relativisation predicate in the given
structure fi: ML I[s]=M[r;] (notice that M [r]=D).

Now, an assignment a” of values in #il to the variables of L” may assign to
a variable v over sort tg in L” an object in £ [s] outside #Mi[r,]. To single out
assignments for L” that can be induced by assignments for L’ we consider
the idea of conjugate assignments: assignments a’ in M I to the variables

L’ and a” in Ml to the variables of L” are called conjugate (denoted a’~a”
\if for each variable ve Var(L’) a’(v)=a”[ly(v)]. We then have a Translation
Connection: M [IF ¢ [a’] iff M= 1(9) [a”],' for each formula ¢e Frml(L’) and
conjugate assignments a’~a”.

Recall from 3.8.3 that the non-voidness requirement v(r) is what is
required for introducing a subsort. Thus, subsort introduction provides

both an illustrative example of interpretations with relativisation
predicates and a way of reducing them to simple interpretations with the
same effect.
First, consider a language L with sorts s and t, a unary predicate symbol
r over sort t. Now, consider the sub-languages of L: L:={s} and L”:={tr}. By
‘oning to sort s of L’ both sort t and predicate r of L”, we obtain an

_rpretation with relativisation predicate 1<, @>—=<L”,{@w:t)r(w)}>.

Consider now a specification P”=<L”,G”> such that P’ (Aw:t)r(w). We can
then introduce a new sort d as the subsort of t under relativisation
predicate r, obtaining a specification pc=SR_SBST[d\t:r,j](P”), with language
L*=L"u{d,j(d)—>t} and axiomatisation Ge=G u{c(d\vtr))}, which is an
expansive extension of P”. Now, given an interpretation I:<L’,0>—><L”,G”>,
assigning to sort s of L’ both sort t and relativisation predicate r of L”, we
can obtain a simple interpretation IS:<L’,&>—P< by mapping sort s directly
to the new subsort d. Conversely, given such a simple interpretation
Is:<L’.@>—> P<S, mapping sort s of L’ to the subsort d of t relativised to
predicate r in L”, we obtain from it an interpretation I.<L’,@>—P” with
relativisation predicate, by mapping sort s of L’ to sort t and relativisation

21

predicate r in L”. Moreover, in view of the properties of subsort under
connection in 3.8.3, specification P”=<L”,G”> and its expansive extension P<
= <L”u{d,j(d)—>1},G”u{c(d\t:ir,j)}> have the same expressive and deductive
powers, being thus interchangeable.

Now, let us examine the case where source language L’ has operation
symbols. We now place more stringent restrictions on such translations

with relativisation predicates, as follows. Given specifications P’=<L’,G’> and
P’=<L”.G”>, we say that translation :L’—L”, assigning to each sort s of L’ a
sort t; and relativisation predicate rg of L”, is an interpretation ILPP—P”
with relativisation predicate iff, in additon to the translation I(G’) of the
axioms of P’, the following requirements are in Cn[P”]:

« the non-voidness requirements v(rg): (3w:ty)r(w) for each source sort s;
« for each operation fe Opr(L’), from sorts sj,....s; to s, the closure
requirement x(Is,... .I's, — rolgl of rs,....Is, and ry with respect to g=I(f):

(leztl)...(an:tn)[(rs](wl)/\.../\rsn(wn))—ers(g(wl,...,wn))].
Notice that for a model #f € Mod[P”] and an operation symbol fe Opr(L’),
from sorts Sp,...,S, to s in L, lFx(rsIs, = r)[I(E)]. So, M[I(f)] maps
M [rs Ix...x M [rs] into £l [ri], thus inducing a function
MLIE): g LI Dx. . <t L ITs 1 —> ML s]

As above, if P”Ev(r,) for predicates r;over sortstg, we can extend
P”=<L”,G”> to PS, by introducing subsorts d; together with conversions
jg(dg)—>t,, axiomatised by c(d,\tgirg,js). Also, each operation ge Opr(L”),
from sorts ts ,...,ts to i, such that Pk y(rs,... .Is — ro){g] gives rise to an
operation gf, involvng the corresponding subsorts ds,,... ,ds, and d;,
introduced by the defining axiom

(Vxlzdsl)...(Vxn:dsn)(‘v’y:ds)[gr(xl,...,xn)zyeg(jsl(xl),...,jsn(xk)))zjs(y)].
Similarly, predicates involving sorts tj,....tp give rise to predicates over the
subsorts ds, ;... ,dsm. We thus have an extension P’ by definitions of P<,

where we can interpret P’ via a simple translation I", with the same effect.
Hence, such many-sorted interpretations with relativisation predicates -
and operation and predicate symbols - can be reduced to simple
interpretations into subsorts.

4.9.2 Translation of equality and quotient sorts

We shall now consider another variant of many-sorted
translations/interpretations, those involving translation of equality (Turski
and Maibaum 1987, p. 163), whose unsorted version was briefly examined
in 4.5.4. Our example in 4.1 gives the motivation for this: several target

22

objects may represent the same source object. We shall concentrate on the
effects of translation of equality and then indicate how such
interpretations can be reduced to simple interpretations into quotient
SOrts.

Consider many-sorted languages L’ and L”; a translation LL’—L” of
equality assigns to sort s both a sort Ig(s)=tse Srt(L”) (the translation of sort
s) and a binary predicate symbol I;(s)=qse Prd(L”), over sorts t.t (called the
translation of equality over sort s). The idea is that q, represents within L”
the identity over the universe of sort s of L’. This affects only the
translation of equality formulae: an atomic formula t=t’, with t and t’ terms
of sort s in L’, is translated to q(t,t’) (see, e. g. Turski and Maibaum 1987,
p. 163). Notice that our simple translations correspond to special cases of

inslations of equality - those with trivial translations of equality u=v.
Also, we can translate equalities only between terms of some sorts by
assigning to the remaining ones trivial translations of equality.

Some precautions are necessary, due to reasons similar to those
indicated in 4.5.4.B, for proper behaviour of such translations. In order to
examine them, let us assume for the moment that L’ has no operation or
predicate symbols, other than equality: Opr(L’)=0 and Prd(L’)=0. We are
then led to considering restrictions on such translations of equality as
follows. Given a specification P”=<L”,G”>, we say that translation of equality
I:1°— L, assigning to sort s of L’ sort t; and binary predicate g of L”, is an
interpretation I:<L’,@>— <L”,G”> with translation of equality iff the
equivalence requirement e(qg) are in Cn[P”] (in case Opr(L’)=&=Prd(L")).

With these requirements we achieve the desired proper behaviour. In
particular, each model file Mod[P”] induces a structure #{|I for language L’,
with M LI[s]=# [t)/M [q,]. This gives rise to a Translation Connection as

follows: M [I=o [a’] iff M F1(9) [a], for each formula ¢e Frml(L.’) and
assignment a of values in Ml to the variables of L”, inducing assignment a/
of values in M LIto the variables of L’ by a/(v) being the gs-class of a(v).

But, we know from 3.8.4 that in the presence of the equivalence
requirement we can introduce a nmew sort d as the quotient of sort t under
equivalence predicate q. Much as in the case of relativisation predicates,
such interpretations of equality are reducible to simple interpretations
into an extension by introduction of a quotient sort, because of the
properties of quotient sort under connection in 3.8.4.

Now, let us turn to the general case where source language L’ has
predicate and operation symbols. Then, it is wise ‘to place more stringent
restrictions on such translations of equality, as follows. Given specifications

23

P'=<L’,G’> and P’=<L”,G”>, we say that translation of equality I:.L’—>L",
assigning to each sort s of L’ a sort t; and a binary predicate gy of L”, is an
interpretation 1:P’—>P” with translations of equality iff, in additon to the
translation I(G’) of the axioms of P’, the following requirements are in

Cn[P”]:
« the equivalence requirements £(qg) (see 3.8.4); as well as
« the congruence requirements of gy with respect to
- the translation g=I(f) of each operation fe Opr(L’), say from sorts
S1,...,Sy to s in L’, i.e. the sentence x(gs,,.--,qs, —>qs)[8l:
(VU1,V12tsl)-.-(Vun,Vn'Itsn)[(qsl(m,V1)/\---/\CIsn(un,Vn))—>
—qs(guy,....uy),8(vVy,..., Vo l;
- the translation r=I(p) of each predicate pe Prd(L’), say over sorts
S1,...,Syp in L’, 1.e. the sentence K(qsl,...,qsm)[r]:
(‘v’ul,vlztsl)...(‘v’um,vm:tsm)[(qsl(ul,vl)/\...Aqsm(um,vm))—e
—(r(ay,...,up) (V... V)]
~otice that for a model fff e Mod[P”] and an operation symbol fe Opr(L’),
from sorts s;,....8, to s in L’, translated to g=I(f), MlF K(qsl,...,qsn—>qs)[g].
So, whenever <a1,b1>e;m[qsl],... ,<an,bn>eﬂ[[qsn], we also have
<g(ay,...,ay),g(by,... ,.by)>e M [q], which enables the induction of a function
ML LI[s Ix.. . xM L I[s;]—> M LI[s]. Similarly for predicate symbols, M[1(p)]
induces M JI[p] defined on equivalence classes.

When P”Ee(q,) for predicates gsover sorts tgt;, we can extend P’=<L”,G”>
to P/, by introducing quotient sorts d, together with projections pg(tg)— ds,
- axiomatised by /(d \ti/qs,ps), which is an expansive extemsion of P”. Also,
each predicate re Prd(L*), over sorts ts,...,ts , such that P’k K(qsx,...,qsm)[r]
gives rise to a predicate rd, over quotient sorts ds,...,ds , introduced by the
defining axiom

(le:dsl)...(Vwm:dsm){rq(wl,...,wm)H

<—>(Elu1:tsl)...(Sum:tsm)[psl(ul)zwlxx.../\psm(um)zwlx\r(wl,...,wm)]}.
Furthermore, each operation ge Opr(L“), from sorts ts,....ts to i, such that
P’k x(qs,»---,4s,—>qs)[g] induces an operation g4, involving the corresponding
quotient sorts dsl,...,dsn and d,, introduced by the axiom

(Vx:ds). (VXpids W(VYidg) {gU(X ..., Xp)=y &

<—>(Elzl:tsl)...(Hzn:tsn)[psl(zl)zx]/\...Apsn(zn)zxn/\yzp(g(xl,...,xn))].
We thus have an extension P9 by definitions of P/, where we can interpret

P’ via a simple translation [9 with the same effect. Hence, such many-
sorted interpretations with translation of equality - and operation and

24

predicate symbols - can be reduced to simple interpretations into quotient
sorts.

4.9.3 Sort tupling and product sort

Now, let us examine many-sorted translations/interpretations involving
sort tupling (Turski and Maibaum 1987, p. 265; Maibaum et al. 1991, p.
14). Our example of implementing stacks by arrays with indices serves as
motivation: a source sort is represented by a sequence of target sorts. We
shall concentrate on the effects of sort tupling and indicate how such
interpretations can be reduced to simple interpretations into product sorts.

Let us examine such translations mapping a sort to a sequence of sorts.
For the sake of simplicity we start with the case where the source
language L’ has no operation or predicate symbols, other than equality:
Opr(L’)=2 and Prd(L’)=4.

Consider many-sorted languages L’ and L7; a translation LL’—L” with
sort tupling assigns to each sort se Srt(L’) a non null sequence
L(s)=<sl,... ,sk> of sorts of L”, called the sort tupling of s. The idea is that the
k-tuple <sl,...,sk> represents within L” the universe of sort s of L’. Since we
wish to translate terms and formulae, sort tupling comes accompanied by a
variable tupling assigning to each variable ve Var(L’), ranging over sort 8
of L’, a distinct k-tuple Iy(v)=<vl,. . ,vk> of variables of L”, with vl,... vk
ranging over sl,...,sk respectively. We shall generally denote both maps I
and Iy simply by I. Notice that our simple translations may be viewed as
special cases of translations with sort tupling: those with trivial sort
tupling I (s)=<t>.

With these data we can translate terms and formulae of L’ to L” by
following the same idea as before: replacement of symbols of L’ by their
~nrresponding ones in L”. But a variable v of L’ gets translated to a

.uence <vl ... ,vk> of variables of L”; and this affects the translation of two
~inds of formulae of L’:

equalities between terms of sort s - an atomic formula v=w of L’ is

translated to the conjunction viswla.. Avk=wk;

formulae with quantification over sort s - (Qv:s)8 s translated to

(Qvl:sh)...(Qvk:sk)I(8);
where <v!,...,vk>=Iy(v) and <wl, .. wk>=Iy(w).

A structure i for L” induces a i |1 structure for L’ keeping the idea that
<sl,...,sk> represents within L” the universe of sort s of L’: M LI[s] is the
Cartesian product M [s1]x...xM [sk]. Similarly, an assignment a” to variables
of sorts s!,...,sk of L” into #fl and an assignment a’ to variables of sort s of L
into M I correspond to each other under a’(v)=<a”(vl),...,a”(vK)>. So, the

25

Translation Connection is formulated as: Ml lI=o [a’] iff M I(¢) [a”] for each
formula ¢e Frml(L’) and assignments such that a’ and a” correspond to each
other.

The above considerations are based on the idea of representing a sort as
a Cartesian product of sorts. This is exactly the idea of introducing a
product sort, as in 3.8.1. So, introduction of a product sort provides both an
illustrative example of translations with sort tupling and a way of reducing
them to simple interpretations with the same effect. We proceed to clarify
this connection, beginning with the case without operation or predicate
symbols, other than equality.

First, consider a language L with sorts s!,...,sk and s. Now, consider the
sub-languages of L: L :={s} and L":={sl,...,sk}. By assigning to sort s of L’ the
k-tuple <sl,...,sk> of sorts of L”, we obtain a translation with sort tupling by
providing an appropriate tupling of variables.

Consider a language L” with sorts s!,...,sk, and introduce a new sort t as
the n-fold product of these sorts with projections pi:t—si. This provides an
extended specification P*=SR_PROD[t\p!:sl,... pk:sk](<L,&>), with language
T x=Lu{t,pl:it—sl,... ,pk:it—>sk}. Recall that specification P*=<L*,G*> is an

sansive extension of <L”,> with eliminability under connection (see
5.8.1). Now, consider a translation I:L’—L” with sort tupling, assigning to
sort se Srt(L’) a k-tuple I,(s)=<sl,...,sk> of sorts of L”, accompanied by a
variable tupling Iy. We can redefine I to map sort s of L’ to the product
sort t, redefining appropriately the renaming of variables. This gives a
simple translation IX:L’—LX interpreting <L’,&> into <L*,G*>. Conversely,
given such a simple interpretation I*:<L’,@>-—<L*,G*>, we obtain from it a
translation I:L’—L” with sort tupling, assigning to sort se Srt(L’) the k-tuple
I,(s)=<sl,... ,sk> of sorts of L”, accompanied by a variable tupling Iy.
Moreover, in view of the eliminability of a product sort under connection

3.8.1, <L”,@> and its expansive extension <L*,G*> have the same
pressive and deductive powers, being thus interchangeable.

Let us now turn to the general case where source language L’ has
predicate and operation symbols. Since a sort s of L’ is mapped to a
sequence of sorts of L”, we must translate predicates and operations
involving sort s accordingly. So, a translation I:'L’—L” with sort tupling
supplements the sort tupling I; and injective variable tupling Iy with the
following renamings:

predicate renaming Iz:R’—R”, assigning to each predicate symbol

re Prd(L’), over sorts sy,...,Sy, in L’, a predicate symbol Ig(r)e Prd(L”),

26

k k .
over sorts Sl17---7511’-~-’sr]n~--’5m’“ in L”, where

k 1 k
<si,..., s, >=1i(81)s. < S s 5" >=I{(Sm)s

operation renaming Ig:F>—F”, assigning (o each operation symbol
fe Opr(L’), from sorts sy,....8 t0 S in L’, with I(s)=<sl,...,sk>, k operation
symbols f1,... fke F’=0Opr(L"), each fi being an operation from sorts

1 k 1

1

k "
Spseees Sy yeeesSpyeen Sy tO SOIT SY, of L”, where

<sl oS> (5)nn o< 8h oy SER >80

As before, we have translations: of terms and formulae:

- with a term te Trm(L’)[s] of L’ being translated to a k-tuple

I(t)=<tl,... tk>e Trm(L”)[sl]x...xTrm(L”)[sk] of terms of L”; and

- a formula ¢e Frml(L’) being translated to a formula I(¢)e Frml(L”).

We call such a translation IL’—L” with sort tupling an interpretation
with sort tupling from pP’=<L’,G’> into P"=<L”,G”> iff the translation of each
theorem of P’ is a theorem of P I(Cn[P’])cCn[P”].

We can now extend the previous argument to include predicates and
operations as follows. Consider language L” with sorts s'i,...,s]i(i and
introduce new sorts t; as the k;-fold product of these sorts with projections
p];i:ti—-e» s’i{i. This gives an expansive extension P* of P”, with eliminability
under connection. Now, each predicate re Prd(L”), over soOrts

k k 9 . . .
sf_,...,sll,...,s}n,...,sm’“ of L”, gives rise to a predicate ', over sorts t,...,ty Of

_. introduced by the defining axiom:
(‘v’vl:tl)...(VVm:qn)[r‘(vl,...,vm)Hr(pll(v]),...,pr}:‘“ V)l
Also, each each k-tuple g=<g!,....gk> of operation symbols gie Opr(L™), each
k 1

gi being an operation from sorts sll,...,sll-,...,sn,..‘,srlfn to sort si, induces an

operation g', from sorts t,....,t t0 & introduced by the axiom

(VXpit)ee.n (VX) (VYD { g (X s Xp)=Y €

o [pL ()= (B} (K1)rornr D™ (X)) APK(Y)=EK(RY™ (Xn)s-oos P5" (KD}

We thus have an extension P' by definitions of P, where we can interpret
<L’,@> via a simple translation It with the same effect. Hence, such general
many-sorted interpretations with sort tupling, as well as operation and
predicate symbols, can be reduced to simple interpretations into
extensions by product sorts.

4.9.4 General interpretations
At the beginning of 4.9 we mentioned that implementation needs suggest a

27

variant of translation/interpretation mapping a sort to a tuple of sorts

with relativisation predicate and translation of equality (Turski and

Maibaum 1987, p. 265: Maibaum es al. 1991, p. 14). The idea of such

general many-sorted interpretations is that a universe of the source

language is the quotient of a part of a Cartesian product of corresponding

“universes of the target language. We shall now examine such general

variants and see how they can be reduced to simple interpretations with

introduction of appropriate sorts.

Consider many-sorted languages L’ and L”; a general translation I.LL’—>L”
consists, as before, of appropriate renamings, which give information
concerning the underlying idea of representing a source sort as a quotient
of a part of a tuple of source sorts.

« Sort renaming Ig:S’— S” assigns to each sort se S’ of L’ a triple
<I(s),I(s),I4(s)>, with components (see figure 4.28):

.» I(s) being a non-null sequence <sl,...,sk> of sorts of L”, called the
sort-tupling of s;

 I.(s) being a predicate over sorts sl ...,sk of L”, called the
relativisation predicate of s;

+ I4(s) being a predicate over sorts si, sl ...,sk;sk of L”, called the
translatzon of equality over s.

e Variable renaming Iy:V’— V” assigns to each variable ve V’=Var(L’),
ranging over sort s of L’, a k-tuple Iy(v)=<vl,...,vk> of variables of L”,
with vl,...,vk ranging over, respectivley, sl,...,sk, when L(s)=<sl,...,sk>.

. Predicate renaming Ig:R’— R” assigns to each predicate symbol
e R’=Prd(L’), over sorts Sy,...,s,, of L’, a predicate symbol

b k 2
Ir(r’)e R”=Prd(L”), over sorts sisllsrlnsmk’“ of L”, where

k
<sl 8y 5= (8, <5 s S >=i(Sm)-

» Operation renaming Ip:F’— F” assigns to each operation symbol

f’e F’=Opr(L’), from sorts s;,...,s, to s of L’, with L(s)=<sl,...,sk>, k
operation symbols fl,....fke F’=Opr(L”), each fi being an operation from
1 k 1 Ky i ”
SOrts s,,... L TseeesSpoes Sy 1O sort si, of L”.
r
| |
S __IS__) Sl .. Sk
1
a

Fig. 4.28: General translation: sort renaming

28

These data enable translating terms and formulae form L’ to L”, with the
same ideas as before: replacing each symbol by its translation. Since
variables and operations are mapped to k-tuples, the translation of a term
te Trm(L’) is a sequence I(t)=<tl,... tk>e (T rm(L")t of terms of L. Translation
_of formulae follows a similar pattern: when I(s)=<sl,...,sk>, an equality t=u
between terms t and u of sort s in L’ is translated to q(tl,... gtkoul,...,uk), an
existential formula (3 v:is)H is translated to
(Evlzsl)...(Evk:sk)[r(vl,...,vk)AI(e)], and a universal formula (Vv:s)® is
translated to (Vvlzsl)...(Vvk:sk)[r(vl,...,vk)——>I(9)], where r=I.(s) and
<vl,.. . vk>=ly(v).

For reasons already seen, we impose some requirements for proper
behaviour. For each sort se Srt(L’) with It(s)=<s1,...,sk>e(Srt(L”))k,
I,(s)=re Prd(L”)[s!,... ,sk] and I,(s)=qe Prd(L”)[s!,...,sk,sl,... ,sk], these
requirements are as follows.

1. Relativisation requirements:
(v) non-voidness .requirement V(1) for relativisation predicates:
(Eivl:sl)...(Hvk:sk)r(vl,...,vk);)

(x) for each operation symbol fe Opr(L’), from sorts Sy,...,S tO S of L,

with Ip(f)=<fl,...,fk>, the closure requirement x(rl,...,rn——>r)[f1,...,fk]
(with implicit universal quantification):

[(rl(x;,...,xfl)A...Arn(x;,...,xin))—>

-—ér(fl(Xll,...,X:]L(l,.‘.,XL.,..,,Xr]?n),...,fk(Xll,...,Xfl,...,XL,...,XI}.E“))].
2. Equality requirements:

(¢) the translations I(p), I(c) and I(t) of the sentences expressing

reflexivity, symmetry and transitivity of equality =;

(f) for each operation symbol fe Opr(L), from sorts Si,...,Sp tO'S of L’, the

congruence requirements K(I)[f;sl,...,sn—%s], i.e. the translations

I((Vul,vlzsl)..‘(Vun,vn:sn)[(ulzle.../\unzvn)—>

—»f(ul,...,un‘)zf(vl,...,vn)]);

(r) for each predicate symbol re Prd(L’), over soOrts Sy,....5m of L’, the

congruence requirements k(D[r(ss-- »Sm)ls i.e. the translations

I((Vul,vl:tl)...(Vum,vm:tm)[(ulzle.../\umzvm)—»

——>(r(u1,...,um)—>r(v1,...,vm))]).

Given a specification pr=<L”,G”>, we say that general translation I is a

general interpretation <L’ @>—><L”,G”> iff the above requirements are in

Cn[P”]. The preceding interpretations can be considered as special cases of
general interpretations when one or more parts become trivial.

29

4.9.5 Reduction of general to simple interpretations

We can now put together the preceding considerations to reduce a general
interpretation I, :<L’.,0>— <L”,G”> to a simple interpretation with

introduction of sorts.
We shall use the sentence (Vv:s)(Iw:s)v=w as an illustrative example.

It can be translated by steps as follows:

(q) first to (Vv:s)(Tw:s)q ' (v,w);

(r) then to (Vv:s){r”(v)—>(3w:s)[r”(w)/\q”(v,w)]},
(t) and finally to

(vvl:sl).. (Vvkisk){r(vl, .. ,vK)—
—@vl:sh...@vkskr(wl,... ,wk)/_q(vl,wl,... vk wk)]}.

We then have (see figure 4.29):
(q) the first step may be regarded as a translation I, of equality;
/r) the second step can be considered as a translation I with
relativisaton predicate r’, translating q’ to q” and r’ to r”;
(t) the third step amounts to a translation I with sort tupling,

translating r” and q” to r and q, respectively.
By using these translations to introduce appropriate axiomatisations, we

can decompose I 4 as L rq=lg:IeIe and we have already argued that
these components are reducible to simple interpretations by properly
introducing new subsorts, quotient SOrts and products sorts.

r
| |
S __IS__> Sl .. Sk_
]
d
[
r
" I |
y
s L s & s NN S ... &
[w0
ql " _‘T

Fig. 4.29: Decomposition of general interpretation
To see an explicit reduction of a general interpretation to a simple one,
consider again our example sentence o: (Vv:s)(Iw:s)v=w, translated to
I rq(c). We are going to construct a simple interpretation I translating ¢ to
I(c): (Vv/:s))(Fw':s/)v/=w/, so that I, 4(c) and I(c) are equivalent in the

30

target specification.
The idea is as follows. If s/ is the quotient of sort s= by the (equivalence)
predicate q°, then (Vv v/:s/)(3Iw l:s"yv/=w ! is equivalent to
(VvE:sS)(AwE:isS)qT(vE,we); the latter, if s€ is the subsort of s* relativised to
predicate r', is equivalent to (va:sx){r‘(vx:)e(E!w":sx)[r‘(wx)/\q‘(vx,wx)]},
which, if s* is the k-fold product of s!,...,sk, becomes equivalent to L r,q(0):
(vvlish).. (VvksK){r(vl,...,vK)— ‘
——>(3v1:sl)...(Elvk:sk)[r(wl,...,Wk)/\q(vl,wl,...,vk,wk)]}.
Here, these predicates are inherited from q and r as before.

s —EfE 5 ¢ 2 s = g
pr f]\pk
t —_ t
s —— r* X T q
i .
a T]
o r
L p
= —— S/
I
/
S

Fig. 4.30: Reducing general to simple interpretations
In other words, we proceed as follows (see figure 4.30).
x) We first introduce s* as the k-fold product of s!,...,sk. Then, we have:
(t) predicates q' and r', involving the product sort s*, induced by q and
r, involving sorts sl,...,sk, as in 4.9.3, where both requirements v(rt)
and e(q') are guaranteed;
(r,q) a translation I ;4 with trivial sort tupling, translating ¢ to
(vazsx){r‘(vx)—a(ﬂwx:sx)[r‘(wx)/\q‘(vx,wx)]}, which is equivalent to
L r,q(0).
(c) Next, we introduce s= as the subsort of s* relativised to predicate r'.

Then, we have:
(r) predicate qf, over sorts s<,sS, gt, over sorts s¥,s%, as in 4.9.1, and the

equivalence requirement &(qF) holds;
(q) a translation I, with sort tupling and relativisation predicate both

trivial, translating o to I4(o): (VvE:sS)(AwS:sS)qf(vS,we), which is
equivalent to the above Ir‘q(c).

(/) Finally, we introduce s/ as the quotient of sort s< by the
(equivalence) predicate q". Then, we have a translation I with sort

31

tupling, relativisation predicate and translation of equality all trivial,

translating o to I(c): (Vv/:s/)(Iw’:s/)v/=w/, which is equivalent to the

above I;(0).

Thus, a general interpretation I, ., can be reduced to a simple
interpretation mapping source sort s to a quotient of a subsort of the
product of sl,....sk, where <sl,... ,sk>=I[(s).

4.9.6 Reduction of many-sorted logic to unsorted logic

Many-sorted languages and specifications are quite natural and useful.
But, they can - in principle - be replaced by unsorted versions without
much formal loss. The reason for this is the fact that, for first-order logic,
the many-sorted version can be reduced to the unsorted version (Enderton
1972, p. 279-281). We shall now examine this reduction in order to
illustrate the application of some of the concepts developed in this section,
mainly interpretation with relativisation.

The basic idea is very simple: given a many-sorted structure one can
obtain an unsorted version whose single universe is the (disjoint) union of
the universes for the sorts; given (relativisation) predicates corresponding
to the sorts, the original many-sorted structure can be recovered. Thus,
with (relativisation) predicates corresponding to the sorts there appears to
be no loss of (model-oriented) information.

Given a many-sorted language L, we are going to define an unsorted
language L, and a translation J:L+—-)L*. This translation - with relativisation
predicates - will have some conditions ﬂ(L+,L*) in order to ensure proprer
induction of structures. Under these conditions, J will interpret each many-
sorted specification P=,G> faithfully into its unsorted version
P, =<L, G, U(L L.)>.

Consider a many-sorted language L, with set of sorts Srt(L)=S,. We will
construct its unsorted version L,, and a translation J:L+—->L*, via a
mediating single-sorted language L, and intermediate translation J':L —Ly.

We construct the mediating single-sorted language Ly, with Srt(Ly)={t},
and define J':L ,—Ly,as follows:

- each sort se S+=Srt(LQ is translated to the single sort te Srt(Ly); T (s):=t,
- for each sort se S , L, has a unary predicate symbol s#, over sort t of Ly,

as the relativisation predicate for sort s;

- for each variable v'e V+=Var(LQ, over sort s of L, L# has a distinct
variable v#:=<v+,s>eV#=Var(L#), over sort t of L, and 7 (vh:=v;
- for each predicate symbol r+eR+=Prd(L+), over sorts sy,...,Sy of L, Ly has

32

an m-ary predicate symbol #eR¥=Prd(L,), over sort t of Ly, and I (r"):=r%;
- for each operation symbol feF*=Opr(L,), from sorts s,...,sy to s of L, L,

has an n-ary operation symbol ﬁ’*eF#=Opr(L#), over sort t of Ly, and

T (£H:=f*.

Now, language L, is an unsorted language, which has, for each symbol
l#eVar(L#)uAlph(L#), except sort t, of L, a corresponding symbol
"e Var(L,)UAlph(L,), of the same kind. This makes the two languages
virtually identical: the translation Jo:Ly—La assigning to each symbol
e Var(Ly,)UAlph(L,) its corresponding ['e Var(L,)UAlph(L,) is a bijective
renaming. Notice that equality symbol = of L, gets translated to the
unsorted equality symbol = of L.

We now define J:L+—->L*, from many-sorted L_ to unsorted L., as the
composite J’:L++—>L# followed by J°:L#—>L*. Notice that, except for sorts, this
translation J:L,—L. consists of bijective renamings of symbols. In
particular, each variable v', over sort s of L, is translated to a distinct
variable v :=<v's> of L.

- Since the intermediate translation J':L ,—Ly has relativisation predicates,

we impose some requirements for its proper behaviour (see 4.5.4.A and
4.9.1). We formulate them as their translations under J°:Ly—L.. These

requirements form the set B (L,,Ly) consisting of the following sentences of
|

e

- Jor each sort se Srt(L,), the non-voidness requirement v(s*) for its
relativisation predicate s": 3vs*(v);

- for each operation symbol fe Opr(L)), from sorts $y,...,S, t0 S of L,, the
closure requirement x(s*,,...,s*n——)s*)[fk'] of relativisation predicates

s¥1,...,s", and s* with respect to f:

Vxl...Vxn[(s*l(xl)/\...As*n(xn))—as*(f(xl,...,xn))].
By the unsorted reduction of many-sorted language L, we mean the
translation J:L+—->L* together with the set O(L,L) of requirements. Notice
that translation J:L,—L. maps each formula ¢ of L, into its translation with

relativisation J(¢*)e Frml(L,), as in 4.5.4.A and 4.9.1. We also have (see
422, 4.6.1, 454.A and 4.9.1) induction of structures and conjugate
assignments to variables. Given a many-sorted specification P =L, G>, we
can use J to translate its axiomatisation G, to (G, and construct its

unsorted reduction as the unsorted specification P,=<1,G:> with

33

axiomatisation G*:=J(G4)u1‘}(L+,L*). The next result shows that this reduction
behaves as it should: as a faithful interpretation.

Proposition Reduction of many-sorted to unsorted logic

Consider a many-sorted language L, with unsorted reduction J:L,—L, and
J(L+,L*):=<L*,19(L+,L*)>.

a) Each model m*eMod[J(LJr,L*)], with universe M,, induces a structure
#.lJ for many-sorted language L, with Translation Connection: for
each formula (p+eFrml(L4) and conjugate assignments a _~a, Wwith
a,:Var(L,)—M, and a_ to Var(L) in #il.lJ, M. I=o" [a,] iff m.E=Joh [as]

b) Given any structure #l for many-sorted language L, there exists a
structure i, for unsorted language L, which is a model of 9(L, L) and
with induced structure £ .JJ=#l

¢) For each many-sorted specification P =1,G> with unsorted reduction
P, =<, G, (L, L)>, translation J:L, —L.

(1) interprets P+ faithfull}f into its unsorted reduction P,;

(ii) induces a correspondence from Mod[P,] onto Mod[P_].

Proof
a) The requirements in ©®(L,L:) ensure that, for each sort se Srt(L,),
m+[s]:=m*[s*] is nonempty and closed under each operation m [f]. This

-~viding a structure £l lJ:=Ml, for L+ with .m+[s]:=m*[r*], and m+[f"] and
«, Pl being the respective restrictions of M ,[f*] and # .[p*] to the

relativisation predicates corresponding to their sorts. The Translation
Connection is as before.

b) Consider a structure #l for many-sorted language L, . We construct
structure M , for unsorted language L _as follows:

« its universe M, is the disjoint union of the universes ;L [s] for se Srt_(L_l);

« for each relativisation predicate se I(Srt(L)), m*[s*]:=m4ls];

« for every other predicate r‘e[Prd(L,)-I(Srt(L))], ﬂ‘l*[r*]::m_‘lr*'];

« for each n-ary operation fe Opr(L,), #L [f*] is an extension of m+[f"J to
(M,)".

By construction, we have a structure £l . for unsorted language L., such

that # .=9(L,,L) and with induced structure f.JJ=fL,.

34

c)Follows from (a) and (b).
OFD

4.10 Examples
We now provide some examples of specifications and interpretations to
illustrate some of the ideas in this section.

4.10.1 Example specifications

We first give two specifications to be used in the examples of specifications
and interpretations. These are unsorted strict partial ordering and many-
sorted sequences of data. :

Spec. 4.1. STR_PRT_ORD: Strict partial ordering

SPEC STR_PRT_ORD {Specification of Strict partial orderings}
DECLARATIONS
Sorts v {unsorted}
Operations {No operations}
Constants {No constants}
Predicates)
{ bef ? ' {< infix binary predicate}
AXIOMS
Vx—-xbefx {irreflexivity},
vx,y,z[(xbefyanybefz)—x befz} {transitivity}.
THEOREMS {Sample consequences}
vx,y(xbefy——ybefx}) {antisymmetry}.

END_SPEC STR_PRT_ORD
many-sorted: Seq[El]

. 4.2. SEQ[DATA]: Sequences of Data

-rizC SEQ[DATA] {Specification of Sequences of Data}
DECLARATIONS
Sorts
Seq, Dt {The sorts are Seq and Dt};
Operations
hd (Seq)—Dt (hd gives Dt from Seq},
tl (Seq)—Seq {tl gives Seq from Seq},
cons (Dt,Seq)—Seq {cons gives Seq from Dt & Seq},
Seq concat Seq—Seq (infix concat gives Seq from Seq & Seq};
Constants '
nil: Seq {nil is a constant of Seq};

35

Predicates

null? (Seq) {null? is over Seq};
Variables {Declaration of variables}
q;: Seq ‘ {Variables over sort Seq are qy,q;,..-,q;s--- }
dj: Dt {Variables over sort Dt are dy,d,...,d;,...}
AXIOMS
(Vqo:Seq) [null?(qg)«> qo=nil] {nil vs. null?},
(Vqo:Seq)(Vdg:Dt) —null?(cons(dg,qo)) {null? vs. cons},
tl(nil)=nil {tl of nil},

(Vqo:Seq)(Vdy:Dt) tl[cons(dg,qo)]=qo

(Vqq:Seq)(Vdy:Dt) hd[cons(dy,qp)]=dg

(Vq;:Seq) nilconcatq;=q,

(Vqp,91:Seq)(Vdy:Dt) cons(dy,qg)concatq,=cons(dg,(qoconcatq;)

Seq:Ind(null?(qg);{(3dg:Dt)cons(dg,q1)=qo}) {Seq inductive on null? & cons}
THEOREMS {Sample consequences}
COMMENTS {General remarks}

Specification of hd is underdetermined:
the value of hd(nil) is left open.

END_SPEC SEQ[DATA]

4.10.2 Example interpretations

We now give examples of translations and interpretations. We first present
unsorted examples and then illustrate many-sorted cases.

A. Unsorted interpretations

We use unsorted Strict partial ordering to illustrate simple translation and
formula translation for predicate.

A simple translation I from the language of Strict partial ordering (in
Spec. 4.1) to that Integers (see Spec 2.5 in 2.10) can be presented as

follows.

Transl. 4.1. From Strict partial ordering to Integers

TRNSL STR_PRT_ORD—INT {Translation from STR_PRT_ORD into INT}
Sorts {unsorted}
Operations : {No operations}
Constants {No constants}
Predicates

{ bef ? - ' < {bef translated to <}

END_TRNSL STR_PRT_ORD—INT
Notice that I is an injective, but not surjective, mapping.

36

The translations of the axioms of STR_PRT_ORD are: .
I(Vx—xbefx)=VX—X<X {a theorem of INT},
I(VX,y,Z[(XDﬂyAYQG_fZ)—)X befz])=Vx,y,z[(X<yAy<z)—X <z] {an axiom of INT}. .

Thus, the above translation I is an interpretation from STR_PRT_ORD to
iNT. It is not faithful, because the ordering of the integers is linear, which
the original partial ordering is not required to be: the sentence
vx,y[—xbefy—>(x =yvy befx)] 'is not a theorem of STR_PRT_ORD but its
translation is a theorem of INT.

A formula translation for predicate J from the language of Strict partial
ordering (in Spec. 4.1) to that of Integer Arithmetic (see Spec 2.6 in 2.10)
can be obtained by translating binary predicate bef of STR_PRT_ORD to the

formula —X=yAdw XxwW=y .

B. Many-sorted interpretations
We use many-sorted Sequences of Data, and some variants, to illustrate

simple translation as well as translation with relativisation and translation
of equality.

A translation I from the language of Sets of Elements (see Spec 2.4 in
2.10) to that Sequences of Data (in Spec 4.2) can be presented as follows.

Transl. 4.2. From Stacks of Elements to Sequences of Data
TRNSL STACK[ELEMENT]—SEQ [DATA]

Sorts {Translation of sorts}
Stk — Seq {Set translated to Seq}
Elm - Dt (Elm translated to Dt}

Operations {Translation of operations}
push - cons
pop - tl
top —> hd

Constants {Translation of constants}
crt - nil {crt:Stk translated to nil:Seq}

Predicates {Translation of predicates}
is_null? - null?

Variables {Translation "of variables}
S; 4 a; {s;:Stk translated to q;:Seq}
e; — d; {e;:Elm translated to d;:Dt}

j
END_TRNSL STACK[ELEMENT]—SEQ[DATA]
The translations of the non-schema axioms of STACK[ELEMENT] are (with
plicit universal quantification):
[[—crt=push(sg,eq)]=—nil=cons(dp,qo) {a theorem of SEQ[DATA]},

37

I[pop(push(so,eo))zso]=[t1(cons(d0,q0))zq0] {an axiom of SEQ[DATA]},
I[top(push(sg,eo))zso]=[hd(cons(do,qo))=d0] {an axiom of SEQ[DATA]},
I[is_null?(sg)<> sg=crt]=[null?(qg)<> qo=nil] {an axiom of SEQ[DATA]},
The inductive schema Ind(sozcrt;{(EeO:Elm)push(sl,eO)zso}) is equivalent to
'{(p(crt)/\(Vsl:Stk)[(p(sl)—>(VeO:Elm)(p(push(sl,eo))]}—>(‘v’so:Stk)(p(s0)] (see 2.5).
The translation of the latter, letting I(p (sg)):=w(qgp) I8
{w(nil)/\(Vql:Seq)[\u(ql)—>(Vd0:Dt)\y(cons(do,q1))]}—>(Vq0:Seq)\|1(qO)], which 1is
equivalent to the inductive schema Ind(null?(qg);{(3d¢:Dt)cons(dg,q1)=qo})-

Thus, the above translation I is an interpretation from STACK[ELEMENT] to
SEQ[DATA]. It is not faithful, because pop(crt) is left open in STACK[ELEMENT],
but this does not happen with tl(nil) in SEQ[DATA]: the sentence pop(crt)=crt
is not a theorem of STACK[{ELEMENT] but its translation is a theorem of
SEQ[DATA], in fact axiom tl(nil)=nil.

The next example involves a sub-language for sets. Given SET[ELEMENT] of
Sets of Elements (see Spec. 2.4 in 2.10), consider its sub-language
SMPL_ST[ELEMENT] obtained by removing operations ins and rem, and call
Trv(SMPL_ST[ELEMENT]) its trivial specification.

Consider again Spec 4.2 of Sequences of Data. We can extend it to a
specification SEQ[DATA]withIS_IN by introducing a binary predicate is_in
between sorts Dt and Seq as well as a new axiom
(Vdy:Dt)(Vqp:Seq) {dpis_ingo<> [(—null?(qo)Ahd(qg)=dg)vdois_intl(qg)]}.

For an example of translation with subsort, we extend
“=Q[DATA]withIS_IN further to SEQ[DATA]withNO_REPT by introducing unary

_edicate no_rept over sort Seq via the defining axiom '

(Vqo:Seq) {no_rept(qg)<>(Vqy,q92:5€eq) [qjconcatqs = qo =

= (Vdy:Dt) (dgis_ing;—>—dpis_ingy)].
The non-voidness requirement‘for no_rept is guaranteed by no_rept(nil).

We can then assign to sort Set both sort Seq and relativisation predicate
no_rept over sort Seq, and define an interpretation with relativisation
predicates of Trv(SMPL_ST[ELEMENT]) into SEQ[DATA]withNO_REPT as follows.

Transl. 4.3. From Simple Sets of Elements to Sequences of Data
INTRPRT_RELTV Trv(SMPL_ST[ELEMENT])—SEQ [DATA]withNO_REPT

Sorts {Translation of sort to sort;predicate}
Set - Seq;no_rept
Elm - Dt;dy=dy {trivial relatvisation}
Operations {Trénslation of operations}
sel - hd {sel translated to hd}
Constants {Translation of constants)}

38

void - nil

Predicates {Translation of predicates}
empty”? - null?
blng — is_in {prefix translated to infix}
Variables {Translation of variables}
t; - q; {t,:Set translated to q;:Seq}
e - dj {e;:Elm translated to d;:Dt}

END_INTRPRT_RELTV TRV(SMPL_ST [ELEMENT])—SEQ[DATA] withNO_REPT

Notice that sentence (VtO:Set)[ﬂempty?(to)—ablng(sel(to),to)] of language
SMPL_ST[ELEMENT] - which is an axiom of SET[ELEMENT] - is translated to
(Vqo:Seq) {no_rept(qg)— [—null?(qe)—hd(qe)is_inqgol}.

The next example involves the sub-language QRY_ST[ELEMENT] of the
language SMPL_ST[ELEMENT] obtained by further removing operation sel.
Call Trv(QRY_ST[ELEMENT]) its trivial specification.

For an example of translation of equality, we extend SEQ[DATA]withIS_IN
to SEQ[DATA]withSAME by defining binary predicate same over sort Seq via
the (Vqg.q1:5¢€q) [same(qq,q;)« (Vdo:Dt)(dpis_inq;«>dgis_inqy)].

The equivalence requirement for same is clearly guaranteed.

We can then assign to sort Set both sort Seq and equivalence predicate
same over sort Seq, and define an interpretation with translation of
equality of Trv(QRY_ST[ELEMENT]) into SEQ[DATA]withSAME as follows.

Transl. 4.4. From Simple Sets of Elements to Sequences of Data
INTRPRT_EQLT Trv(QRY_ST[ELEMENT])—SEQ[DATA]withSAME

Sorts {Translation of sort to sort/equivalence}
Set - Seq/same ,
Elm - - Dt/dy=d; {trivial equivalence};

Operations {no operations}

Constants {Translation of constants}
void — nil

Predicates {Translation of predicates}
empty? — null?
bing - is_in {prefix translated to infix}

Variables {Translation of variables}
t; — q; {t::Set translated to q;:Seq}
e - dj {e;:Elm translated to d;:Dt}

END_INTRPRT_EQLT TRV(QRY_ST[ELEMENT] y—>SEQ[DATA]withSAME

Now the sentence (Vto,t1:Set)[t0=t1<—->(VeO:Elm)(blng(eo,tO)Hblng(eo,tl))]
of language QRY_ST[ELEMENT] - which is an axiom of SET[ELEMENT] - is

39

translated to the axiom defining predicate same.

REFERENCES

Arbib, M. and Mannes, E. (1975) Arrows, Structures and Functors : the
Categorical Imperative. Academic Press, New York.

Barwise, J. ed. (1977) Handbook of Mathematical Logic. North-Holland,
Amsterdam.

Bauer, F., L. and Wossner, H. (1982) Algorithmic Language and Program
Development. Springer-Verlag, Berlin.

Broy, M. (1983) Program construction by transformatlons a family of
sorting programs. In Breuman, A. W. and Guiho, G. (eds) Automatic
Program Constructiom, Reidel, Dordrecht.

Broy, M., Pair, C. and Wirsing, M (1984) A systematic study of models of
abstract data types. Theor. Comp. Sci..,33 139-174. {Preliminary
version: Centre de Recherche en Informatique de Nancy Res. Rept.
81-R-042, Nancy.}

Broy, M. and Pepper, P. (1981) Program development as a formal activity.
IEEE Trans. Software Engin., SE-7 (1)14-22.

sroy, M. and Wirsing, M (1982) Partial abstract data types. Acta
Informatica, 18 (1) 47-64.

Byers, P. and Pitt, D. (1990) Conservative extensions: a cautionary note.
Bull. FATCS,41, 196-201.

Chang, C. C. and Keisler, H. J. (1973) Model Theory. North Holland,
Amsterdam.

Dahl, O., Dijkstra, E. and Hoare, C. (1972) Structured Programming.
Academic Press, New York.

Darlington, J. (1978) A synthesis of several sorting algorithms. Acta
Informatica, 11 (1), 1-30.

Ebbinghaus, H. D., Flum, J. and Thomas, W. (1984) Mathematical Logic.
Springer-Verlag, Berlin.

Enderton, H. B. (1972) A Mathematical Introduction to Logic. Academic
Press; New York.

Ehrich, H.-D. (1982) On the theory of specification, implementation and
parameterization of abstract data types. J. ACM, 29 (1), 206-227.

Ehrig, H. and Mahr, B. (1985) Fundamentals of Algebraic Specifications, 1:

40

Equations and Initial Semantics. Springer-Verlag, Berlin.

Gehani, N. and McGettrick, A., D. (1986) Software Specifications
Techniques. Addison-Wesley, Reading.

Ghezzi, C., Jazayeri, M. (1982) Programming Languages Concepts. Wiley,
New York.

Goguen, J. A. and Meseguer, J. (1981) Completeness of many-sorted
equational logic. ACM Sigplan Notices 16 (7) 24-32.

Goguen, J. A.; Thatcher, J. W. and Wagner, E. G. (1978) An initial algebra
approach to the specification, correctness and implementation of
abstract data types. In Yeh, R. T. (ed.) Current Trends in
Programming Methodology: Prentice Hall, Englewood Cliffs, . 81-149.

Guttag, J. V (1977) Abstract data types and the development of data
structures. Comm. Assoc. Comput. Mach., 20 (6), 396-404.

Guttag, J. V (1980) Notes on type abstraction. IEEE Trans. Software Engin.,

6 (D).

Guttag, J. V. and Horning, J. . (1978) The algebraic specification of
abstract data types. Acta Informatica, 10 (1), p. 27 - 52.

Hoare, C. A. R. (1972) Proof of correctness of data representations. Acta
Informatica, 4, 271-281.

Hoare, C. A. R. (1974) Notes on data structuring. In Dahl et al. 1(974); 83-
174.

Hoare, C. A. R. (1978) Data Structures.. In Yeh, R. (ed.) Current Trends in
Programming Methodology, Vol IV. Prentice Hall, Englewood Cliffs, 1-

11.
Jackson, M., A. (1980) Principles of Program Design. Academic Press,
London.

Ledgard, H. and Taylor, R. W. (1977) Two views on data abstraction.
Comm. Assoc. Comput. Mach., 20 (6), 382-384.

Maibaum, T. S. E. (1986) The role of abstraction in program development.
In Kugler, H.-J. ed. Information Processing '86. North-Holland,
Amsterdam, 135-142.

Maibaum, T. S. E., Sadler, M. R. and Veloso, P. A. S. (1984) Logical
specification and implementation. In Joseph, M. and Shyamasundar
‘R. eds. Foundations of Software Technology and Theoretical
Computer Science. Springer-Verlag, Berlin, 13-30.

Maibaum, T. S. E. and Turski, W. M. (1984) On what exactly is going on
when software is developed step-by-step. tProc. 7h Intern. Conf. on

41

Software Engin. JEEE Computer Society, Los Angeles, 528-533.

Maibaum, T. S. E, Veloso, P. A. S. and Sadler, M. R. (1985) A theory of
abstract data types for program development: bridging the gap?. In
Ehrig, H., Floyd, C., Nivat, M. and Thatcher, J. eds. Formal Methods and
Software Development; vol. 2: Colloquium on Software Engineering.
Springer-Verlag, Berlin, 214-230.

Maibaum, T. S. E, Veloso, P. A. S. and Sadler, M. R. (1991) A logical
approach to specification and implementation of abstract data types.
Imperial College of Science, Technology and Medicine, Dept. of
Computing Res. Rept. DoC 91/47, London.

Manna, Z. (1974) The Mathematical Theory of Computation. McGraw-Hill,
New York. '

Meré, M. C. ; Veloso, P. A. S. (1992) On extensions by sorts.. PUC - RJ, Dept.
Informatica, Res. Rept. MCC 38/92, Rio de Janeiro.

Meré, M. C. : Veloso, P. A. S. (1995) Definition-like extensions by sorts.
Bull. IGPL,5 (4), 579-595.

Pair, C. (1980) Sur les modeéles des types abstraites algébriques. Centre de
Recherche en Informatique de Nancy Res. Rept. 80-p-042, Namcy.

Parnas, D. L. (1979) Designing software for ease of extension and
contraction. IEEE Trans. Software Engin.,5 (2), 128-138.

Pequeno, T. H. C. and Veloso, P. A. S. (1978) Do not write more axioms
than you have to. Proc. Intern. Computing Symposium, Taipei, 487-
498.

Shoenfield, J. R. (1967) Mathematical Logic. Addison-Wesley, Reading.

Smirnov, V. A. (1986) .Logical relations between theories. Synthese, 66, p.
71 - 87.

Smith, D. R. (1985) The Design of Divide and Conquer Algorithms. Science
Computer Programming, 5 37-58.

Smith, D. R. (1990) Algorithm theories and design tactics. Science of
Computer Programming., 14, 305-321.

Smith, D. R. (1992) Constructing specification morphisms. Kestrel
Institute, Tech. Rept. KES.U.92.1, Palo Alto. :

Turski, W. M and Maibaum, T. S. E. (1987) The Specification of Computer
Programs. Addison-Wesley, Wokingham.

van Dalen, D. (1989) Logic and Structure (2nd edn, 3rd prt). Springer-
Verlag, Berlin. ‘

Veloso, P. A. S. (1984) Outlines of a mathematical theory of general

42

problems. Philosophia Naturalis, 21 (2/4), 354-362.

Veloso, P. A. S. (1985) On abstraction in programming and problem
solving. 2nd Intern. Conf. on Systems Research, Informatics and
Cybernetics. Baden-Baden.

Veloso, P. A. S. (1987) Verificagcdo e Estruturagdo de Programas com Tipos
de Dados. Edgard Bliicher, Sdo Paulo.

Veloso, P. A. S. (1987) On the concepts of problem and problem-solving
method. Decision Support Systems,3 (2), 133-139.
Veloso, P. A. S. (1988) Problem solving by interpretation of theories. In

Carnielli, W. A. ; Alcantara, L. P. eds. Methods and Applications of
Mathematical Logic. American Mathematical Society, Providence,

241-250.

Veloso, P. A. S. (1991) A computing-like example of conservative, non-
expansive, extension. Imperial College of Science, Technology and
Medicine, Dept. of Computing, Res. Rept. DoC 91/36, London.

Veloso, P. A. S. (1992) Yet another cautionary note on conservative
extensions: a simple example with a computing flavour. Bull. EATCS,
46, 188-192.

Veloso, P. A. S. (1992) On the modularisation theorem for logical
specifications: its role and proof. PUC - RJ, Dept. Informética Res.
Rept. MCC 17/92, Rio de Janeiro.

Veloso, P. A. S. (1992) Notes on interpretations of logical specifications.
COPPE-UFRJ Res. Rept. ES-277/93, Rio de Janeiro.

Veloso, P. A. S. (1993) The Modularization Theorem for unsorted and

" many-sorted specifications. COPPE-UFRJ Res. Rept. ES-284/93, Rio de
Janeiro.

Veloso, P. A. S. (1993) A new, simpler proof of the Modularisation
Theorem for logical specifications. Bull. IGPL1 (1), 1-11.

Veloso. P. A. S. and Maibaum, T. S. E. (1984) What is wrong with errors:
incomplete specifications for abstract data types. UFF, ILTC, Res.
Rept., Niteroi.

Veloso, P. A. S. and Maibaum, T. S. E. (1992) On the Modularisation

Theorem for logical specifications. Imperial College of Science,
Technology & Medicine, Dept. of Computing Res. Rept. DoC 92/35,

London.

Veloso, P. A. S., Maibaum, T. S. E. and Sadler, M. R. (1985) Program
development and theory manipulation. In Proc. 3rd Intern.
Workshop on Software Specification and Design. IEEE Computer

43

Society, Los Angeles, 228-232.

Veloso. P. A. S. and Pequeno , T. H. C. (1978) Interpretations between
many-sorted theories. 2nd Brazilian. Colloquium on Logic; Campinas.

Veloso, P. A. S. and Veloso. S. R. M. (1981) Problem decomposition and
reduction: applicability, soundness, completeness. In Trappl, R.; Klir,
J. . Pichler, F. eds. Progress in Cybernetics and Systems Research.
Hemisphere, Washington, DC, 199-203. '

Veloso, P. A. S. and Veloso. S. R. M. (1990) On extensions by function
symbols: conservativeness and comparison. COPPE-UFRJ Res. Rept.
ES-288/90, Rio de Janeiro.

Veloso, P. A. S. and Veloso, S. R. M. (1991) Some remarks on conservative
extensions: a Socratic dialogue. Bull. EATCS, 43, 189-198.

Veloso, P. A. S. and Veloso, S. R. M. (1991) On conservative and expansive
extensions. O que no faz pensar: Cadernos de Filosofia, 4, 87, 106.

Veloso, P. A. S. and Veloso, S. R. M. (1991) On conservative and expansive
extensions: why and how they differ. Imperial College of Science,
Technology & Medicine, Dept. of Computing Res. Rept. DoC 91/30,
London. ’

Wirsing, M., Pepper, P. and Broy, M. (1983) On hierarchies of abstract
data types. Acta Informatica 20 (1) 1-33.

Zilles, S. N. (1974) Algebraic specification of abstract data types.
Computation Structures Group Memo 119, Lab. for Computer Science,
MIT, Cambridge.

44

