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~ ON THE ALGEBRAIC STRUCTURE OF FORK ALGEBRAS

Paulo A. S. VELOSO

{e-mail: veloso@inf.puc-rio.br}
PUCRioInf MCC 04 /96

Abstract. A fork algebra is a relational algebra enriched with a new binary
- operation. They have been introduced because their equational calculus has
appl1cat1ons in program construction. In this paper, we present some simple results
concerning the ' algebraic structure of fork algebras and some of .their
metamathematical consequences. This paper stems from the crucial, though
simple, observation of the interdefinability of fork and projections in fork algebras.
We begin with some preliminaries about fork algebras and their reducts: relational
and Boolean algebras. We introduce a basic expansion construction and proceed to
‘examine its connections with homomorphisms and direct products. We establish
the closure of the class of fork algebras under some of its cases. Then, these results
are used to characterize the simple fork algebras as those with simple relational-
reducts and to decompose fork algebras into subdirect products of their simple
homomorphic images. We use these algebraic results to reduce equational (and
Horn-clause) properties of fork algebras to their simple components. These simple
results enable one to reduce some properties of fork algebras to correspondmg ones
about relational algebras. : :

Key words: Fork algebras, relational algebras, Boolean algebras, expansions, algebraic
structure, simple algebras, subdirect decomposition, equations, Horn clauses.

~Resumo. Uma algebra de fork é uma 4&lgebra relacional enriquecida com uma
nova operacdo binaria. Tais algebras foram introduzidas porque seu célculo
equacional tem aplicagbes em construgio de programas. Neste trabalho
apresentamos alguns resultados simples sobre a estrutura algébrica das algebras de
fork bem como algumas de suas conseqiiéncias metamatematicas. Este trabalho
deve sua origem & observagéo crucial, apesar de simples, da interdefinibilidade de
fork e projecGes em éalgebras de fork. Comegamos com alguns some preliminares
‘sobre algebras de fork e seus redutos: élgebras relacionais e de Boole. Introduzimos
uma construgdo bésica de expansdo e passamos a examinar suas conexdes com
homomorfismos e produtos diretos, para entdo estabelecer o fechamento da classe
das algebras de fork sob alguns de seus caso. A seguir, estes resultados sédo
empregados para caracterizar as 4lgebras de fork simples como aquelas com redutos
relacionais simples bem como para decompor algebras de fork em produtos
subdiretos de suas imagens homomorfas simples. Esses resultados algébricos sdo
aplicados para reduzir propriedades equacionais (e na forma de cldusulas de Horn)
das algebras de fork a suas componentes simples. Tais resultados permitem a
reducdo de algumas propnedades de dlgebras de fork a correspondentes sobre
dlgebras relacionais. '
Palavras chave: Algebras de fork, 4dlgebras relacionais, 4lgebras de Boole, expansoes,

estrutura algébrica, dlgebras simples, decomposu;ao subdireta , equagdes, clausulas de
Horn.
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|NTRODUCTION

A fork algebra (FA for short) is a relational algebra (RA, for short) enriched
with a new binary operation, called fork. They have been introduced
“because their equatlonal calculus has applications in program construction.
In this paper, we present some simple results concerning the algebraic
structure of FA’s and some of their metamathematical consequences.

This paper stems from the crucial, though simple, observation of the
_interdefinability of fork and pr01ect10ns in FA’s The structure of the paper
is as follows.

We begin in sectlon 2 with some preliminaries about fork algebras and
their reducts: relational and Boolean algebras. We then introduce in section
3 a basic expansion construction and proceed to examine its connections
~with homomorphisms and direct products. In section 4 we establish the
closure of the class of FA’s under some of its cases. Then, these results are
used to characterize the 31mple FA’s as those with simple RA-reducts and to
decompose FA’s into subdlrect products of their simple homomorphic
images, in section 5. We use these algebraic results in section 6 to reduce
equational (and Horn-clause) properties of FA’s to their simple components
Finally, section 7 presents some concluding remarks. ,

These results have quite simple proofs. For readability we present each
result with an outline of its proof. More detailed proofs are presented in the
appendix at the end of the paper. 5
An application of these results about the algebraic structure of FA’s is the
analysis of finite and infinite FA’s, which provides some interesting
comparison and contrasts between FA’s and RA’s. In a forthcoming paper

[Veloso '96], we examine the finite and infinite FA’s, contrasting them with -
the RA’s. The finite FA’s are described as finite direct powers of the two-
element FA, the only simple finite FA’s being those with one or two
elements. This shows that for each n>0 there exists exactly one, up to
isomorhism, FA of cardinality 27 This contrasts with the case of infinite
FA’s: we exhibit many (simple proper) RA’s of each infinite cardinality that
have many expansions to (proper) FA’s. Such RA’s demonstrate Qquite
clearly the dlver31ty of posmble fork operatlons -

2. PRELIMINARIES FORK ALGEBRAS AND THEIR REDUCTS

An abstract fork algebra (FA, for short) is a relational algebra enriched with
a new binary operation, called fork. A relational algebra (RA, for short) is
an expansion of a BA (short for Boolean algebra) with some Peircean
operations (conversion and composition) and constant (for identity).

We shall use B for the signature <2,1,2> (with 2 constants, 1 unary
operation and 2 binary operations) of the BA’s, A for the signature <3,2,2,>
of the RA’s, and ¢ for the signature <3,2,3> of the FA’s. Given algebraic
signature o, we use Alg(c) to denote the class of all algebras with this
signature. ' ' |



A Boolean algebra (BA, for short) is an algebra B=<B,0,0, je> with
signature B (so 0,eB, ":B—B, and +,2:BxB—B), satlsfymg well-known
equations [Bell & Slomson '71; Burris & Sankappanavar '81; Halmos '63]. We
shall use < for the Boolean orderlng (recall that aeb=a iff a<b iff a+b=b).
A relational algebra (RA, for short) is an algebra ﬂ(;<R,0,w,1,‘,T,+,o,;> with
signature A, satisfying familiar equations, to the effect that

- its BA-reduct RB=<R,0,oo,",+,o> is a BA with Boolean ordering s, 7

- the Peircean reduct <R,1;1,;> is a semigroup with identity teRand

involution "R—R, so 1i=1, (rf)i=r and (r;s) =(s);(r?);

- for all 1,seR: (rf);(r;s)7ss7, 1. e. (rh);(r;8)7+s7=s".

Consider an algebra £=<R,0,0,1,,;#,0,;> of 31gnature p. By adding a binary
operation V:RxR—R, we Obtaln an algebra X¥eAlg(¢), called its V- expansion.
Note that in any such expansion, we have elements m:=(1Veo)tand p =(coVI)T.
A fork algebra (FA, for.short) is an algebra F=<F, O,oo,l,‘,T,+,o,,,V> with
S1gnature ¢, such that

- its RA-reduct F,=<F,0,00,1, ,T,+ e;>is an RA w1th Boolean ordermg
= with :=(1Veo)Tand p —(ooVI)T as above - . : SR
for every r,s,p,qeF: (rvs);(pvq) =(r; pT)o(s qT) ' S '(V VS. e),
for every r,seF: rVs=(r;mi)e(s; pT) R G ’ : - (V-def),
nVps<l1 (ie. tVpH=1) S (Y proj).

Since the class of RA’s has a finite equattonal characterization [Chin &
Tarski '50, Theorem 2.2, p. 350; Jonsson & Tarski '52; Veloso '74, p 8], so
does the class of FA’s We use FA for the vanety of the FA’ '

3 BASIC EXPANSION CONSTRUCTION

The crucial, though 31mple, observation is thls in an FA fork is deﬁnable by ‘
an RA-term from the elements ni=1Veo and pl=eV1'in its carrier F. So,

preservation of the RA operat1ons as well as of n and p entalls preservatlon_
of fork. : : :

This observatlon is the motlvatlon “for the followmg ba31c constructlon ;
Consider an algebra ¥ of the FA-31gnature ¢, with relat10na1 reduct
FreAlg(L). We have the elements Tti=1Veo and pi=eoV1 in its carrier F. Given'
an algebra R of the RA-signature A and a function h:F—R, we have

h(n?),h(pNeR, and we define binary operation VPERxR—-R - by settlng

‘rVhs:= =[r;h(rnh)]e[s;h(ph] (notice that Ris closed under V1), This provides av-

expansion, which we call the expansion.of %, by h and denote by %M. '

Notice that this construction.of ®? from K and h:F—R relies only on the:
existence of elements nfand pfin F and the fact that R is closed under ;and
. The next two result relies on the preservatlon of and e by h. :
Lemma Homomorphism for expansion B RN
Consider an algebra # of FA-signature ¢ w1th reduct ﬂeAlg(x) IfF
satisfies axiom (V-def), then any A»-homomorphism h of ¥, into an algebra
ReAlg(A) is a homomorphism of ¥ into the expansion R of ® by h.

2



Proof outline

Since h preserves ; and e preservatlon of V by h follows from (V-def) and
the definition of Vh

‘When we have an RA-homomorphism into a direct product, there are two
natural ways to obtain fork expansions: expanding the direct product or
expanding its components. It is not difficult to see that the expansion
construction commutes with direct products, wh1ch is the content of the
next lemma. ‘ .
Lemma Expansmns and djrect prod uct ~ ' ‘ :
Consider a family of A-algebras ﬂ(leAlg(X), for leI yleldmg the d1rect
product X;.;®;, with projections p;. Given an algebra ¥ of FA-signature ¢
with reduct #,eAlg()), and a function h: F—x;.R;, consider the expansion
R®;hi of ®; by the composite h; i=p; h, for iel. Then, the direct product of the
expansmns and the expansmn of the dlrect product by h comc1de

IEI(KI 1) (XIEI‘RJ)
, Proof outline » _
To check that the d1rect-product fork v* and the mduced fork yh comcxde, ‘
we rely on the jointly injectivity of the direct-product projections, and .
show that p;(rv*s)=p;(rvhs), for r,seX;.;R; and iel. The latter follows from
the definjtions V5 and V>, and the facts thateach p; isa homomorphlsm
Note that the construction of ﬂ(h from R and h:F—>R, as well as the above
properties, hinge on the new operation(s) being definable by old term(s)
with parameters in F. So, they carry over to this more general case. '
, ‘A possible dual construction could expand an algebra ReAlg(i) to'a o-
algebra on the basis of A-homomorphism h of % into the reduct #, of an
algebra FeAlg(¢). M. Frias proposed a version of this dual construction in

connection with representability [Frias et al. '96]. Our basic construction -
. 'was suggested by an abstraction of this special dual construction. '

_ 4. CLOSURE UNDER EXPANSION CONSTRUCTI'ON

The following results use the equational character of the FA’s. We obtain
- some 31mple closure propertles of the variety FAcAlg(cp) of the FA’s.

The next result establishes the closure of FA under expansmns by
surjective RA-homomorphisms. It follows 1mmed1ately from the basm
lemma on homomorphism for expansion.

Proposition FA expansion of homomorphic image L
Consider an FA # with relational reduct Fre Given any sur)ectlve RA-

homomorphism h of #, ontov}RA R, the expansion ! of ® by h is an FA.



Proof outline

By the lemma on homomorphism for expan51on h 1s a surjective

homomorphism of ﬂ-’e FA onto ®h,

The next result follows easily from this proposition and the lemma on

expansions and direct product. It shows that the product mediator of

surjective RA-homomorphisms is an FA—homomorphlsm into the direct

product of their expansions. : '

Proposition Direct product of homomorphic images

Consider an FA ¥ with relational reduct #, and a family of surjective RA-

homomorphisms h;:F—R; of #, onto RA’s &;, for iel. Then the direct product
Xie1(R; M) of the expansmns is an FA and the mediator h: F—)X,EIR is an FA-

homomorphism of ¥ 1nto it. : S

Proof outline o ,

By the preceding proposmon X;j(R;h) is an FA. By the lemma on .
expansions and direct product X;;(R;")=(x;<R;). So, the assertion follows
from the lemma on homomorphlsm for expansion. :

D

5. SIMPLE FORK ALGEBHAS AND PRODUCT DECOMPOSITIONS

We now examine some results concerning the algebraic structure of the
FA’s. We shall characterize the simple FA’s and establish subdirect
decomposition of FA’s into them. : :
As usual, an algebra 4 is called s1mp1e iff it has no proper: homomorphlc :
image, i. e. whenever function h:A-B is a surjective homomorphlsm hofa
onto algebra B, h isa bljectlon or BeTriv (the carrier B is a singleton). . '
The next result characterlzes the 31mp1e FA’s as those w1th 51mple relatlonal
reducts. . : ,
‘Theorem Simple FA S

An FA 7 is simple iff 1ts relational reduct ¥, is 31mple

Proof outline ' A
(<) Any FA-homomorphlsm is an RA—homomorphlsm of thelr RA-reducts

(=) By the proposition on FA expansion of homomorphic image, any I RA-
homomorphism h of #, onto RA &, will be an FA homomorphism of #onto.

the FA-expansion &1 of R, So, either h:F—R is a b1]ect10n or Re Tr1v

The next result characterizes the non-simple FA’s as those with non-triv1al .
direct decompositions, just like RA’s. § v o o

Proposition Non-simple FA’s-
An FA ¥ is non-simple iff f~gx}[ for some non-tr1v1al FA’s g and .‘7{

Proof outline
(<) Clearly, such an algebra gxﬂ cannot be 51mple

4
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(=) If ¥ is not simple then its non-simple relational reduct #, has a

decomposition F,=PxQ for some proper homomorphic images of #, [Jonsson

& Tarski '52, Theorems 4.14 , p. 135]. Now, by the proposition on direct

product of homomorphic images, 2 and Q have V-expansions #¥ and QV in

FA such that F=P"xQ" with #" and Q" non- tr1v1a1 FA’s.

QD ‘

The next result prov1des subdlrect decomposmons for FA’s parallehng the

analogous result for RA’s. -

Theorem Subd1rect decomposition of FA’s into simple components

Every FA ¥ is 1somorph1c to some subdirect product of sunple homomorphic

~ images of #: there exist a set of simple homomorphlc images ¥;, iel, of ¥
and a ¢-embedd1ng of ¥ into the direct product X; ;.

- Proof outline

In view of the subdirect decomposmon of RA’s [Jonsson & Tarsk1 '52,
' Theorem 4.14, p. 135], we have we have surjective RA-homomorphisms h;
of the RA—reduct #, of ¥ onto simple RA &;, icl, and an RA-embedding e of
, into the direct product x;.;%;. By the propositions on FA expansion of
homomorphic image and on simple FA’s, each h; is an FA-homomorphism of
¥ onto the simple expansion ®;PieFA. Thus, by the proposition on direct
product of homomorphic 1mages injective e is an FA—homomorphlsm of f

into FA X;.1(®;M).
QD

6. SOME METAMATHEMATICAL CONSEQUENCES

‘We now consider some simple metamathematical consequences of the-
preceding results concerning the algebraic structure of the FA’s.

Corollary FA equations
An FA equation e holds in an FA algebra 7 iff equatlon € holds in all
(simple) homomorphic images of 7. ,

Proof outline

(=) An equation holding in an algebra must hold in 1ts (31mple)
homomorphic images

(<) By the preceding theorem, ¥ can be embedded into a dlrect product a
X;1F; of its simple homomorphlc images If equation ¢ to hold in all (sxmple)

homomorphic i images fl of }' then #;ke¢, for iel, whence fre.

(E) ) .

We shall use SFA to den'ote the class of simple FA’s. Recall that the simple
RA’s are those satisfying Tarski's rule 1: VX(—X=0—oo;X;00mc0) [JONsson &
Tarski '52, Theorem 4.10, p. 132, 133]. So, for FeFA, FeSFA iff p=1.

By a fork calculus FC we mean an equational axiomatization for the class of
FA’s, consisting of
- a (finite) set of equations characterlzmg BA’s;

5



- equations characterizing RA’s, say:
1R, v (XDIRX, VXY (Xy) (yT);(xT) and Xy (XT); (x,y) Y=Y
- fork equations corresponding to (V vs. ), (V-def) and (V proj):

VXY,V (XVy);(uVv)=(x;uf)e(y;vT) : (V;V1),
Vx,y XVy=[x;(1Veo)je[y;(coV1)] ‘ . (V=),
(1Vo0) 1V (coV 1) H+1=1 ' ‘ (RVp).

By a Horn clause (in the language of FA’s) we mean a sentence in prenex
form whose prefix consists only of universal quantifiers vx;...Vx, and
‘whose matrix is a conditional equation ejA...Ag,—€g where eq€1...£0 are.
equations between terms and n>0. Such Horn clauses are special universal
Horn sentences, which are known to be preserved under subdirect products
[Shoenfield '67, p. 94, 95; Burris & Sankappanavar '81, p. 204]
Proposition FA Horn clauses
For a Horn clause ¢ (in the language of FA’s) the following are equ;valent.
a) Horn clause ¢ holds in all simple FA’s: SFAEG. :
by Horn clause ¢ holds in all FA’s: FAFc.
c) Horn clause ¢ is derivable from an FA calculus FC: FC+o. : :
d) Horn clause o is derivable from an FA calculus FC together with Tarski’s
~ rulet:FCr1—>0.

Proof outline :
(a=b) Follows from the subdlrect decomposition theorem and the preceding
remark, since ¢ holds in all simple FA’s #;'s, we have FFo.
(b=c) & (c=d) Clear.
(d=a) Clear by the precedmg characterlzatlon of simple RA’s.
D

Now, equations are spec1al cases of Horn clauses. Thus, by completeness of

~ equational reasoning, we have the followmg property of FA equatlons
Theorem FA equations : :

For an equation ¢ the following are equivalent.

a) EQuation ¢ holds in all simple FA’s: SFAFe.

b) Equation ¢ holds in all FA’s: FAFe.

c) Equation ¢ is derivable from an FA equational calculus FC by equat10nal
reasoning. .

7. CONCLUSION C <

This paper originates from the crucial, albeit simple, observation of the
interdefinability of fork and projections in FA’s. We present some simple
results concerning the algebraic structure of FA’s and some of their
metamathematical consequences. These results have quite simple proofs,
whose outlines are presented in the body of the paper leavmg the details
for the appendix at the end of the paper.

We recall in section 2 some preliminaries about fork algebras and their
reducts: relational and Boolean algebras. We then introduce in section 3 a

-6



basic. expansion construction and examine its connections with
homomorphisms and direct products. In section 4 we establish the closure
of the variety of FA’s under some of its cases. Next, these results are used
to characterize the simple FA’s as those with simple RA-reducts and to
show that FA’s, like RA’s, can be decomposed as subdirect products of their
simple homomorphic images, in section 5. We use these algebraic results in
section 6 to reduce equational (and Horn-clause) properties of FA’s to their
simple components. Finally, section 7 presents some concluding remarks.

The results concerning the basic expansion construction and . their
properties enable one to reduce some properties of FA’s to correspondmg
ones about RA’s. The characterization of the simple FA’s as those with
- simple RA-reducts provides an example of such reduction. It shows that a
product decomposition of the RA-reduct of an FA into homomorphic images
yields a corresponding decomposition for the original FA.

The metamathematical consequences examined, though simple, have some
importance in connection with FA calculi. By reducmg equational properties
~of an FA to their simple components, it allows one to check such an
equational property in simple FA’s, which is much easier. Also, the
reduction of Horn-clause properties of FA’s to the simple FA’s has the
advantage of simplifying both proofs, where one can use Tarski’s rule, and
the search for possible counterexamples. Similar remarks apply to the
~ special case of equations, which is of importance in connection with

equational calculi for reasoning about programs, one of the original
' motivations for the mtroducuon of FA’s. ' :

These results about' the algebraxc structure of FA’s and thelr
metamathematical consequences are very similar to their analogs for RA’s.
‘This may give the impression of similarity in the behavior of RA’s and FA’s.
That they are not so similar can easﬂy be seen, for instance, by con31der1ngj
representability [Frias et al. '95, '96]. «

Another application of these results about the algebralc structure of FA’s is

the analysis of finite and infinite FA’s, which provides some mterestlng

comparison and contrasts between FA’s and RA’s. In a forthcoming paper
" [Veloso '96], we examine the finite and infinite FA’s, contrasting them with

the RA’s. We analyze the Boolean FA’s (those where fork is Boolean meet),
show that their reducts are Boolean RA’s, and characterize them as

subalgebras of direct powers of the two-element FA. Then, these results are

applied to finite FA’s: they are described as finite direct powers of the two-

element FA, and the only simple finite FA’s are those with one or two

elements. This shows that for each n>0 there exists exactly one, up to

isomorhism, FA of cardinality 2. This contrasts with the case of infinite

FA’s: we introduce a technique for the analysis of FA’s and use some set-

~ theoretical constructions to exhibit many (simple proper) RA’s of each

infinite cardinality that have many expansions to (proper) FA’s. Such RA’s
demonstrate quite clearly the diversity of possible fork operations.



APPENDIX: DETAILED PROOFS OF THE RESULTS

We present in this append1x detalled proofs of the results

Lemma Homomorphism for expansion ‘

Consider an algebra # of FA-signature ¢ with reduct ﬂeAl g\, If 7
satisfies axiom (V-def), then any A-homomorphism h of #, into an algebra
ReAlg()) isa homomorphlsm of ¥ into the expansmn ®h of ﬂ( by h.

Proof
We must show that h preserves V, i. e. h(Ng)—h(f)th(g)
First, since ¥ satisfies (V-def), we have fvg=(f; ni)e (g;p 7). i
Now, since h preserves ; and.e, h(fVg)=h[(f;nT)e(g;pT)] equals :
[Il(t);h(n’f)]o[h(g);h(p"f)], which is 'h(f)th(g), by definition of Vh,
D .
Lemma Expanswns and d1rect prod uct -
Consider a family of A-algebras f(leAlg(x), for iel, yleldmg the dlrect
product x;.;R;, with projections p;. Given an algebra ¥ of FA-signature ¢
with reduct #,eAlg()), and a function h:F—X;;R;, consider the expansion
®;bi of ®; by the composite h;=p;- h, for icl. Then, the direct product of the
expansions and the expansmn of the dlrect product by h coincide: -

IEI(RI 1) (xxelﬂa)
Proof: '
Letting V* denote the dlrect-product fork we must check Vx—Vh
Since the dn'ect-product projections are jointly injective, it suffices to show
that p,(ers) p; (rvhs), for r,sex;.(R; and iel. .
By definition of expansion, we have rvhs=[r; h(nT)] [s h(p’r)] in (><l‘E I:Ig) and
r; Vhis;=[r;;hy (h]e [s;hy (p 1] in ;M. | |
~ By definition of direct product, V*is deﬁned componentw1se and each p; is

a homomorphlsm of x;.1(®R;1) onto R;H. So, p; (rV*s)=p; (r)Vhl p,(s) :
Since p; preserves ; and e, we have the equality
pi([r;h(mh]e [s;h(pT)])= [pl(r),pl(h(n’f))] [pi(r); s (h(p 1))
Now, since p;- h=h;, p; (h(r%))=h; (n1) and p;(h(p)=h;(p1).
Thus, we have: p;(rv*s)= p,(r)Vhlpl(s) [p; (r);hy (eh] e [p; (s);hy (p D] =
= [ps(1);py(h(mh)]e [p; (r);pi (B(p )= pl([r,h(nf)]ols h(pf)]) =p; (thS)
Therefore, VX—V’“ and (x,e,ﬂ(,) -x,el(&hl) e
QD
Pro posxtlon FA expanszon of homomorphzc image : |
Consider an FA ¥ with relatlonal reduct %,. Given any sur)ectlve RA-.,
homomorphlsm hof 7, onto RA R, the expansmn ﬂ{h of K by h is an FA
Proof : : :
By the lemma on homomorphlsm for expansion, h F—>R will be a sur]ective
homomorphism of ¥ onto Rh. Smce _‘r is in the vanety FA, so is 1ts
homomorphic image %™. |



QD

Proposition Direct product of homomorphic images o

Consider an FA 7 with relational reduct #, and a family of surjective RA-

homomorphisms h;:F—R; of ¥, onto RA’s ®;, for iel. Then the direct product
X;1(R;P1) of the expansions is an FA and the medlator h: F—)XIEIR, is an FA-

homomorphlsm of F 1nto 1t

Proof - : :

By the precedmg proposmon each surjectlve h F—R; will be an FA- o

'homomorphism of ¥ onto &;". Thus X;;(%;") is an FA. RN

Letting p;:P—R; be the dlrect-product projections, we have p1 h—h So, by

the lemma on expansions and direct product, X;[(R;M)=(X;1®;)

Finally, since ¥ satisfies (V-def), the lemma on homomorphism for

expa_nSion yields that h is a homomorphism of ¥ into (X;<;%;)P.

‘Theorem S1mp1e EA’s &

An FA ¥ 1s simple 1ff 1ts relatlonal reduct ﬁ is snnple

Proof - -

(<) Assume that the RA-reduct ¥, is 31mple .

Given any FA-homomorphism h of # onto FA G, function h:F—G that isan
RA-homomorphism of #, onto the RA-reduct G,. OO

So, either h:F—G is a bijection or GeTriv.

(=) Assume that FA ¥ simple. o

Given any RA-homomorphlsm h of #, onto RA R, by the proposition on FA
expansion of homomorphic image, h:F—R will be an FA homomorphism of ¥
onto the FA-expansion Kb of R. So, either h:F—R is a bijection or ReTriv.

@ ; . IR :
Prop031tion Non-51mp1e FA S

An FA 7 is non-31mple iff F=GxH for some non—tr1v1a1 FA’s G and }[

Proof ,
(<) Clearly, such an algebra #=Gx has proper homomorphlc images G and
#, so it cannot be simple. ”
(=>) Assume ¥ non-simple. Then so is its relatlonal reduct fx L

By properties of RA’s [Jénsson & Tarski '52, Theorems 4.14 , p. 135], we
have a decomposition #,=PxQ for some proper homomor_phic images of 7,.

{ Non-simple RA #, has an ideal element feF distinct from 0 and o [Jonsson -
& Tars'ki '52, Theorems 4.10 and 4.13, p. 132-134], which gives rise to
proper homomorphic images =%, (f) and Q=%,(f") with £,=PxQ.}

By the proposition on direct product of homomorphic images, 2 and Q have
v-expansions PV and QV in FA such that #=2Q"xQY with ?" and QY non-trivial.



Theorem Subdirect decomposition of FA’s into simple components

Every FA ¥ is isomorphic to some subdirect product of simple homomorphic
images of 7: there exist a set of simple homomorphic images #;, icl, of ¥
and a ¢-embedding of ¥ into the direct product X;.;%;. :
Proof

Consider the RA-reduct #, of FA #. . :

In view of the subdirect decomposition of RA’s Uonsson & Tarski ' 52
Theorem 4.14, p. 135], there exist a set of simple homomorphic images &;,
icl, of #, and a subdirect product § of the RA’s ®; such that #, is isomorphic
to S. So, we have surjective RA—homomorphisms h;:F—R; of #, onto simple
RA R;, as well as an injective RA-homomorphism e of ¥, into the direct
product P=X;.;R; with projections p;:P—R, such that, for each 1eI h, is the
composite pj- e

By the proposmon on FA expans1on of homomorphlc image each h is an
FA-homomorphism of ¥ onto the expansion R®;hi, the latter being 51mple by

the preceding proposition on simple FA’s.
Thus, by the proposition on direct product of homomorphic images,
Xie1(R; hi) is an FA and injective e: F—-)XlelR is a homomorphism of Fintoit.

QD

Corollary FA equat10ns ' ,
An FA equation ¢ holds in an FA algebra ¥ iff equation ¢ holds in all
(simple) homomorphic images of ¥. o

Proof

(=) If equation ¢ holds in algebra ¥ then clearly it must hold in every

( sxmple) homomorphic image of .

(<) Assume equation ¢ to hold in all (31mple) homomorphlc images of 7.
By the preceding theorem, we can decompose ¥ into simple homomorphic
images ¥, iel, with ¥ embedded into chrect product G=Xic1 _fr, Since Fike, for

iel, we have g=e whence Fre.

QD

Proposmon FA Horn clauses

For a Horn clause ¢ (in the language of FA’s) the following are equlvalent
a) Horn clause ¢ holds in all simple FA’s: SFAEg. ‘

b) Horn clause ¢ holds in all FA’s: FAkc. ' »
_¢) Horn clause ¢ is derivable from an FA calculus FC: FCro.

d) Horn clause ¢ is derivable from an FA calculus FC together w1th Tarsk1’
rule t: FCFt—o0.

Proof

(a=b) Assume that o holds in all 31mple FA’s.
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By the subdirect decomposition theorem, we have simple FA’s #;, iel, such
that ¥ is isomorphic to a subdirect product of the #;'s. By the precedmg
remark, since ¢ holds in all simple FA’s #;'s, we have #=o.
(b=>c) Clear by the completeness of first-order 10g1c
(c=d) Clear.
(d=a) Clear by the precedmg characterlzatlon of simple RA’s.
0'; I |
Theorem FA equatlons
For an equation ¢ the followmg are equlvalent
a) Equation ¢ holds in all simple FA’s: SFAEze.
b) Equation € holds in all FA’s: FAFe. , o
¢) Equation ¢ is derivable from an FA equat10na1 calculus FC by equatlonal
reasoning. ~ .
Proof
(ae=b) By the preceding proposmon
(bec) Clear by soundness and completeness of equatlonal reasoning.

QD .
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