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ON FINITE AND INFINITE FORK ALGEBRAS

Paulo A. S. VELOSO

{e4mai1: | veloso@inf.puc-rio.br}'
PUCRioInf MCC 05/96

Abstract. A fork algebra is a relational algebra enriched with a new binary
operation. - They have been  introduced because their equational calculus has
applications in program construction, they also have some interesting connections
with algebraic logic. In this paper, which stems from the crucial, albeit simple,
observation of the interdefinability of fork and projections in fork algebras, we
examine the finite and infinite fork algebras and contrast them with relational
algebras. We show that the finite fork algebras are somewhat uninteresting, being
essentially Boolean algebras, uniquely characterized by their relational reducts. This
contrasts with the case of infinite fork algebras: we introduce a technique for the
analysis of fork algebras and use some set-theoretical constructions to exhibit many
relational algebras of each infinite cardinality with many expansions to fork algebras.
We begin ‘by providing some background about fork algebras and their reducts
(relation and Boolean algebras): - their abstract versions, some simple results
concernmg the algebraic structure of fork algebras, and their concrete, set-based,
versions (fields of sets and proper relational and fork: algebras)KWe then examine
the Boolean fork algebras (where fork is Boolean meet), show that their relational
-reducts are Boolean relational algebras, and characterize them as subalgebras of direct
powers of the two-element fork algebra. These results are then applied to finite fork
algebras: they are described as finite direct powers of the two-element fork algebra,
the only simple finite fork algebras being those with one or two elements. This
shows that a finite fork algebra is completely determined by its relational reduct
(which we call rigid), in contrast to the infinite fork algebras We examine fork-
expansions of relational algebras, with the purpose of comparing relational algebras
and fork algebras. Then, we introduce a technique for the analysis of fork algebras
and use some set-theoretical constructions to exhibit many (simple proper)
relational algebras of each infinite cardinality with many expansions to fork algebras.
Such (infinite) relational algebras demonstrate quite clearly the d1ver51ty of poss1b1e
fork operations. :

Key words: Fork algebras, relational algebras, Boolean algebras, expansions, proper set-based
algebras, simple algebras, finite fork algebras infinite fork algebras, fork expansions.

Resumo. Uma 4lgebra de fork é uma algebra relacional enriquecida com uma nova
operacdo bindria. Tais algebras foram introduzidas porque seu calculo equacional
tem aplicacGes em construgdo de programas, tendo também interessantes conexdes
com légica algébrica. Neste trabalho, que se origina da observagao crucial, se bem que
simples, da interdefinibilidade de fork e proje¢des em algebras de fork, examinamos
as algebras de fork finitas e infinitas, contrastando-as com as élgebras relacionais.
Mostramos que as algebras de fork finitas sdo de reduzido interesse, uma vez que séo
essencialmente 4&lgebras de Boole, unicamente caracterizadas por seus redutos
relacionais. Isto contrasta com o caso das algebras de fork infinitas: introduzimos
uma técnica para a anélise de dlgebras de fork e empregamos algumas construgdes
com conjuntos para exibir diversas dlgebras relacionais de cada cardinalidade infinita
possuindo varias expansoes a algebras-de fork. Comecamos recordando conceitos e
resultados relativos a algebras de fork e seus redutos (algebras relacionais e de Boole):



suas versdes abstratas, alguns resultados simples acerca da estrutura algébrica das
dlgebras de fork, e suas versdes concretas, baseadas em conjuntos (corpos de
conjuntos e algebras de relagdes e de fork préprias). Examinamos entéo as algebras de
fork Booleanas (em que fork é a conjuncdo Booleana), mostramos que seus redutos
relacionais sdo &lgebras relacionais Booleanas e as caracterizamos como subalgebras
de potenc1as diretas da édlgebra de fork com dois elementos. Estes resultados s&o entdo
aplicados as 4lgebras de fork finitas, as quais sdo descritas como poténcias diretas
finitas da algebra de fork com dois elementos, sendo as 4lgebra de fork com um ou
dois elementos as Gnicas algebras de fork finitas simples. Isto mostra que uma
algebra de fork finita fica completamente determinada por seu reduto relacional (que
denominamos de rigido), em contraste com as 4algebras de fork infinitas.
Examinamos as expansées por fork de dlgebras relacionais, a fim de comparar estas
algebras com élgebras de fork. Em seguida, introduzimos uma técnica para a analise
de algebras de fork e utilizamos algumas construcdes com conjuntos para exibir
d1versas dlgebras. relacionais de cada cardinalidade infinita possuindo vérias
expansdes a 4lgebras de fork. Tais algebras relacionais (infinitas) demonstram
claramente a diversidade de possiveis operagbes fork.

Palavras chave: Algebras de fork, dlgebras relacionais, dlgebras de Boole, expansdes, dlgebras

~ préprias baseadas em conjuntos, dlgebras simples, dlgebras de fork finitas, dlgebras de fork
infinitas, expansodes por fork.
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1. INTRODUCTION

A fork algebra (FA, for short) is a relational algebra (RA, for short) enriched
‘with ‘a new - binary operation, .called fork. They have been introduced
because their equational calculus has applications in program . construction.
- They also have some . interesting connections with algebraic logic.

In this paper, we examine the finite and - “infinite  FA’s and contrast them
with RA’s. We describe the finite FA’s as  the finite - direct - powers of the
two-element FA, the only simple finite FA’s being those ‘with one or two
elements. Thus, for each n>0 there exists exactly one, up to isomorhism, FA

of cardinality 2", which is essentially a Boolean algebra, rendering the finite
FA’s somewhat uninteresting. This contrasts with the case of infinite FA’s:
we introduce a technique for the' analysis of FA’s and use some set-
theoretlcal constructlons to exhibit ‘many infinite (simple proper) RA’s of
each infinite cardmahty with many expansmns to FA’s.

This paper stems from the crucial, though simple, - observation of the
interdefinability of fork and prOJectlons in FA’s. The structure of the paper
is as follows. - : : :

Section 2 provides some -back'ground “about fork algebras and -théir reducts
~(relation  and Boolean algebras), beginning with their abstract versions,
examining some simple results concerning the algebralc ‘structure of FA’s,

~and proceeding to their concrete, set-based, versions: fields of sets and
proper FA’s and RA’s. We then examine in section 3 the Boolean FA’s (those
~where fork is Boolean meet), show that their reducts are Boolean RA’s,and
characterize them as subalgebras of direct powers of the two-element FA.
In section 4, these results are applied to finite FA’s: they are described as
finite direct powers of the two-element FA, and the only simple finite FA’s
are those with one or two elements. This shows -that -a finite FA is
completely determined by its RA- reduct (which we call rigid), in contrast
with the case of infinite FA’s. In section 5 we examine fork-expansmns of
RA’s, with the purpose of comparing RA’s and FA’s. Then, in section 6, we
introduce a technique for the analysis of FA’s and use some set-theoretical
constructions to exhibit many infinite (simple proper) RA’s of each infinite
cardinality with many expansions to FA’s. Such (infinite) RA’s demonstrate
quite clearly the diversity of possible fork operations. Finally, section 7
‘presents some concluding remarks. : : '

’2.‘-PRELIMINARIES: FORK ALGEBRAS AND THEIR REDUCTS

An abstract fork algebra (FA, for short) is a relational algebra enriched with
a new binary operation, called fork. A relational algebra (RA, for short) is
an expansion of a BA (short for Boolean algebra) with some Peircean
operations and constant o E

We shall use B for the signature <2,1,2> (with 2 constants, 1 unary
operation and 2 binary operations) of the BA’s, A for the . signature <3,2,2,>

|



of the RA’s, and ¢ fot' the signature <3,2,3> of the FA’s. Given ‘algebraic
51gnature o, we use Alg(o) to denote the class of all algebras with this
signature. : k :
‘2.1 Abstract Boolean, Relation and Fork Algebras » _ ,

Let wus  briefly recall some concepts - pertaining - to (abstract) Boolean,
relational and. fork algebras. : ST RS ‘ P
A Boolean algebra (BA, for- short')' is' an algebra B=<B ,0,00,7,+.0> Wrth
signature B (so. 0,00€ B, B——)B “and +-B><B—>B),,satlsfy1ng well- known

equations [Bell & Slomson '71; Burrls & Sankappanavar '81; Halmos '63]. We
shall use < for the Boolean - ordermg (recall that aeb=a 1ff a<b iff a+b=b).

A relatzonal algebra (RA, for short) is an algebra R-<RO°°1, ,I,+.0,;> with
signature A, satisfying familiar equations, to the effect -that

- its BA-reduct RB=<R 0,00,7,+,0> ‘i’s a BA with Boolean ordering

- the Peircean reduct <R, 1,t,;> is a semlgroup with 1dent1ty leR and

~ involution :R—R, $o0 1t=1, (rT)T-—r and (1 s)T (sh;(ct);
- for all r,se R: (r1);(r;8)7<s™, i. €. (rT) (r s) +s7=s". S R TR T
Recall that the simple RA’s’ are those ‘satisfying Tarsk1 s rule |1:00;I;00=00
“whenever r=0 [Jonsson & Tarski:'52;; Theorem 4.10, p. 132, 133]..

A pair of (con]ugated) quas:prOJectzons for RA R=<R,0,%0,1; ,T,+,o,,> amounts
to elements T,peR such that: m‘ <1, pT,p<1 and mh;p=co. In fact, for a pair T
and p of quasrprOJectrons we have T; Tt—l pT,p (since 1<e0;00t=mt;p;pt;m<mt;1;m,

‘and s1m1lar1y for pp). A quaszprOJectwe RA (QRA for short) is an RA that
has a pair of quasiprojections [Tarskr & Grvant '87 p. 242].

Consider an algebra R=<R,0,%0,1,7,1,+,9,;> of signature p. By addlng a blnary
-operation v RxR—R, we obtain an algebra RVe Alg(q)) called its V-expansion.
Note that in any such expans1on ‘we have elements T:=(1Veo)t and p:: (oon)T
A fork algebra (FA, for short) is an algebra F=<F ,0,00,1,~ ,T,+,o,,,V> w1th
signature ¢, such that , = Tk SRR s :

- its RA-reduct F,=<F,0 oo,l, ,T,+,o,,> 1s an RA w1th Boolean ordenng

- with T:=(1Veo)t and p:=(eoV1)T as above

for every r,s,p, qu Vs); (qu)T (r,pT)o(s,qT) = (V Vs. o),.
for every r,se F: rVs=(r;wt)e(s;pT) B : - (V-def),
nVp<1 (i.e.mVp+i=1) . (V proj)..

Since the class of RA’s has an equational characterlzatlon [Chm & Tarski '50,

Theorem 2.2, p. 350; Jénsson ‘& Tarski '52; Veloso 74, p 8], so does the class -
of FA’s. We use FA for the varlety of the FA s.

It is not difficult to see vthat in any FA F the deflned elements n-(lVOO)T
and p:=(oV1)! form a pair of quasiprojections (such that (n nthe(p;ph<l)
[Frias et al. '95 '96] Thus, the RA reducts of FA’s are QRA’s. )



2.2 Algebraic Structure of Fork Algebras and some consequences

We now recall some simple results concerning the algebraic structure - of
FA’s and their. metamathematical consequences [Veloso '96]. They come
from the crucial, though simple, observation that in-an FA fork is definable
by an RA-term from ‘the elements Tf=1Veo and pT=coV1 in its carrier F. So,
preservation of the RA operatlons as well as of T and P entails preservation
of fork. . : A

The first result characterlzes the s1mp1e FA’ s as those with s1mple relational
‘reducts » :
Theorem Simple FA’s =

~An FA F is s1mple iff its relational reduct F; is simple.

The next result characterizes the non- s1rnp1e FA’s as those with non trivial
direct decompositions, just like RA’s. :

Proposxtlon Non-simple FA’s

"An FA'F is non-s1mple iff F=GxH for some non- tr1v1al FA’s G and H.

The next result provides subdirect decomposmons for FA’s parallehng the
analogous result for RA’s. : v

Theorem Subdirect decomposztzon of FA’s mto simple components

Every FA F is 1som0rph1c to some subd1rect product of simple homomorphic
images ofF L s . :

We now cons1der a simple metamathematlcal consequence of the preced1ng
results concerning the algebraic structure of the FA’s.

Corollary FA equatlons ' ST ~ :
An FA equation ¢ holds in an FA~ algebra F 1ff equat1on € holds in all |
(s1mple) homomorphlc 1mages of F. :

:23 Set—based Boolean, Relation and Fork Algebras

Now let ‘us briefly describe the concrete, or proper, versions of BA’s, RA’s_
and FA’s. Much as 'BA’s arise as -abstractions from f1elds of sets, RA’s (and
‘FA’s) are ‘abstractions ‘from their proper versions.

A ﬁeld of sets (over set U) is an algebra S_<S @U, ,u ~> of s1gnature B w1th ’
Sc# ). Its Boolean ordermg is set mclusmn . A field of sets over Uis a

Boolean algebra that can be embedded 1nto the d1rect power TU of the two-
element BA T (of truth values). R L

By Stone Representation Theorem every (abstract) BA is 1somorph1c to
some field of sets [Bell & Slomson '71; Burris & Sankappanavar '81; Halmos
'63], and so can be embedded into a direct power of the two-element BA.

A proper relation algebra (over set U) is an algebra P—<P@VI, - T.u,n, > of
srgnature A, where : P e T
- its BA-reduct Py=<P, @ U, ,U,N> is a fleld of sets over U2—UxU

- Ie_P is the identity (diagonal) relation over U I—de.—{<u,v>e UZ2/u=v};

- operation T:P—P is relation transposition, i. e. pT={<v,use U%/<u,v>ep};

3



- operation |:PxP-$P'is relation composition, i. e.

ris={<u,w>e U%3ve U [<u,v>er&<v,w>es]}.
The full PRA over set U is the proper RA P(U2):=< SO(UZ),Q,UZ,I,’“,T,U,KW,'b.
‘Recall that a PRA‘(’s‘hort"for proper relation algebra) P=<P@ VI~T.un,>
~over U with V=U?2 is simple [J6onsson & Tarski '52, Theorem 4.28, p. 142;
Veloso '74, p. 7, 12]. So, the full PRA P(UZ) and its subalgebras are srmple

In contrast with BA’s not every (abstract) RA can be represented ‘as some '
proper RA (see e. g. [Maddux '91; Veloso '74].

Now, consider a function *:V—TU, where VcU?2. It induces a binary operation
Z* on relatlons over U (into SO(V)) called fork induced by *:V—U, defined
by r«*s:={<u, v>e V/EIV Vv'eU [<v' ,v">e V&v'sv' =v&<u,v >er&<u,v">e s]} (so rz
*scV). v | ' o ’

Aproper fork algebra (over set U) is an algebra Q—<Q®V L~ ,T,um|4> of
signature 0, where '

- its RA- reduct Qx—<Q A% U, ,u m> is a proper relation algebra over set Us

- there ex1sts an underlymg codmg *: U2-—>U such that
* is injective on' VcU2 (i. e. the restriction *1y:V=U is one-to-one),
operation «: QxQ——)Q is induced by the restriction *y of * to V, e
rss: —rz*le-{<u v>e \YEES% v >eV [v *v '=v&<u,v'>er&<u,v'>e s]}

It is not difficult to see that every PFA (short for proper fork algebra) is
indeed a fork algebra [Frras et al. '96] ' :

Notice that each injective - funct1on *Uz—->U g1ves rise to a full PFA over set
U P*(U?): —<60(U2)®U2 I, ,T,umlz > as the £*-expansion of the full PRA
P(U2) by the fork «* induced by coding *:U?—U. Thus, the PFA’s with V-—U2
are the subalgebras of the full PFA’s, and ‘they are all simple. :
Also, for a (simple) ‘PFA Q—<Q®V I~ , ,uml4> with V=U2, its underlying
coding *U2-U is bijective iff V*V=V. (For, VEV£'V iff <uv>eVrV
‘whenever <u,v>e V=U?2 iff for each ve U, we have v,v'"e U with v*v"—v‘)

Moreover, like BA’s and contrasting ~with RA’s every (abstract) FA can he
represented as some proper FA [Fnas et al. '95 '96], but we shall not make
- use of this result here. . :

3. BOOLEAN FORK ALGEBRAS

Two very simple finite FA’s are those with one and two elements. We shall
‘presently show that these are the only finite simple FA’s.

The trivial one-element FA 1 has single element O=l=co. It is 1somorph1c to
the full PFA P*(@), with carrier £ (J)={QJ}, and underlying coding *=@. -



~The two-element FA 2 has two elements 0 and 1l=eo with ooVeo=oco It is
isomorphic to the full PFA P*({<u,u>}) over singleton {<u,u>}, with carrier
80({<1_1 u>={J, {<u u>}} and underlying coding * given by uxu=u. -
These FA’s 1 and 2 are simple. Also, the FA’s 1 and 2 are the only FA’s,up
to isomorhism, with respectively 1 and 2 elements (since 0V0=0 and 0<1<eo).
{ If 0=cc then 0= ]=co, and we have the one-element FA 1. Otherwise Osco, and
=oo (since 1, oo—oo;tO) also 710 (since nT,p—oo;tO) SO O¢1Vm<ooVoo and coVoeo=oo,
thus ‘we have the two-element FA 2.} ' :
The RA—reducts, of these simple FA’s are QRA’s, with l=eo as both
quasiprojections. They are Boolean RA’s as well. ‘
Recall that a Boolean RA is one where ;is e, Tis the identity function, and
l=co [J6nsson & Tarski '52, p. 151]. Thus, a Boolean RA is a somewhat
uninteresting - expansion of a Boolean algebra to an RA. Clearly, every
~Boolean RA is a QRA, with 1=cc as both quasiprojections.
By analogy with Boolean RA’s, let us call an FA F-<F ,0,00,1, 7,1, +,0,;, V> Boolean
iff its fork V is e, i. e. F satisfies the equation Vx,y xVy=xey.
So, the FA’s 1 and 2 are Boolean FA’s and Boolean RA’s. In fact, it is not
difficult to see that the relational reduct of a Boolean FA is a Boolean RA.
‘Lemma Boolean RA’s and FA’s |
The RA-reduct of a Boolean FA is a Boolean RA.
Proof : :
First, ntf= lV°°—1-°o-1 and pT—wVI—OOOI 1. So co=mt;p=1T;1= 1
Now (r;p")e(s;q1)=(rVs);(pVq)t=(res);(peq)t=(res);(pTeq), so with. t=q=se=] we
obtain s;pt=(coes);(ptecot)=(1;pT)e(s;11)=pTes=sepf. Thus s;p=sep. :
From rSoo—l ‘we get rt=r by [J6nsson & Tarski '52, Theorem 4.6, p. 130].f
oD o
Thus, an FA F is Boolean FA iff F=<F,0,00,00,7,id, +,o,o,o> So Boolean FA’s, llke
Boolean RA’s, are essentially Boolean algebras.
We can now characterize the Boolean FAs as the subalgebras of direct
powers of the two-element FA 2. '
PropOSItlon Characterization of Boolean FA’s _

A ¢-algebra F is a Boolean FA iff F can be embedded into some direct
power 2! of the two-element FA 2. '
Proof . S .
(<) Any subd1rect power of (two- element) Boolean FA s is a Boolean FA.
(=) Consider a Boolean FA F=<F,0,00,1,” ,T,+,-,,,V> Its BA-reduct Fg is a BA,
and can be embedded into a field of sets over some set I, so we have a BA-
embedding e of FF<R,O,°°,‘,+,0> .into the direct power (ZB)I of the two-
clement BA 2g4. By the lemma ; and V are e, i is the identity function, and



l=co. Thus, e is an" FA-embedding of Boolean FA F into the direct power 2! of
the two- element FA 2. |
OFD

4. FINITE FORK ALGEBRAS

'We shall now describe the f1n1te FA’s as the f1n1te dlrect powers of the
simple ones, the latter bemg those w1th one and two elements

By property of Boolean ‘algebras, a finite FA must have card1na11ty 21, for
some n>0. The direct power 2" provide an (umnteresung) example of a
(Boolean) FA card1nal1ty 2n for each n>0. Thus, the: f_m1te spectrum of the
FA’s is the set {27/ne N}. - g |

‘We now show ' that finite simple ‘QRA’s have at. “rnost' two elements.
(Notice that for a proper QRA P.over a finite set U we. must “have lUl<1
[Tarski & Givant '87, p. 96].) L ‘ » »
Lemma Upper bound on finite simple QRA’s.

‘There exists no f1n1te s1mple QRA with more than two elements

Proof : - . Cn

Consider a f1n1te QRA R_<R O oo 1, ,T,+,-,,> with n>0 elements -

Given any element re R, consider its iterates rk=r;...:r (k tlmes) r0 —1 and
rk+l:=r;rk. The 1terates o8 LIRS L cannot be all distinct.

In - particular, for quas1prolect1on peR for some i20 and _]>0 p‘—p“‘J.y

By applying pf;p=1 i times to pipi=pi, we obtain pi=p0=1.. .

Now, by applying j times T;p=ce to, pi= 1, we have (T1)i=co,

{ .From p;pk=pk+l<(mt)l we get pk<oo; pk—nT pipkemty(mh)l=(mh+l;

so pi=1 1=(n1)? yields p= =pl(mt)-1, whence co=t;p<mt;(mt)- 1—(1IT)J }

So, j applications of Tf;m=1 yield l1=co. L
Finally, since R is simple, by Tarski's rule for each r¢0 ©0=00;T; co=1 ;L5 1—r R
Hence Rc{Ooo} and thus |R|<2 s ' S
Since FA’s have (quas1)pr01ect1ons we can now see that, up to isomorphism,
1 and 2 are all the finite simple FA’s.

PropOSItlon Descrtptlon of fzmte szmple FA s

A ¢-algebra F is a finite simple FA iff either F 1 or F= 2

We can now see that the finite FA’s are not very - interesting.

‘Lemma Boolean finite FA’s

Every finite. FA is Boolean.

Proof _ .

By the subdirect decomposition theorem, FA F is isomorphic to a subdirect
product of simple homomorphic images F;; ieI.-Now, each homomorphic



1mage F;is a s1mple finite FA, so with at most two elements. Thus, every F;
s Boolean, and 5o is a subdirect product of them.

O

We now have a complete description of the finite FA’s as the. f1n1te direct
: powers of the two-element simple FA 2.

Theorem Descrzptzon of fzmte FA’s
A ¢-algebra F.i is a finite FA iff F is. 1somorph1c to some -finite d1rect power

21 of the two- element FA 2.

Proof : :
(=) Clearly any f1n1te d1rect power of (two- element) FA’s is a finite FA.

(=) Cons1der1ng a f1n1te ‘FA F with carrier F, we proceed by induction on IF.
" a) For IFl<2, we must have either F=1=20 or F=2=2!.

b) Now -consider the case |Fl>2

Then, by the prev1ous proposmon, F cannot be simple.
By the proposition on non—s1mp1e FA’s, we have a decomposition F GxH for

some proper homomorphic images G and H of F. In particular |GI<IF! and
IHI<IF!. The inductive hypothesis ylelds G 2P and H—Zq s0

F= GxH_2p><2q~2p+q

0D ~ | o S
Thus, the . finite FA’s are not very interesting FA’s because they are the
finite direct ‘powers of the two-element simple FA 2, so all are Boolean FA’s,
and essentially BA’s. Thus, there exists exactly one, up to 1somorph1sm, FA
-of “‘each finite cardmahty 2" for n>0 In part1cular “the RA- reduct of a f1n1te'
RA has exactly one, up to 1somorph1sm expansxon to an FA ' k

5. FORK- EXPANSIONS OF RELATIONAL ALGEBRAS

In the sequel we Wlll analyze infinite FA’s, comparing and contrastmg them
with the f1n1te ones. The finite FA’s are characterized by their RA-reducts,
~which does not happen with the infinite FA’s, as we will shortly see. So, this
contrast - between finite and infinite FA’s is connected to a compar1son
between RA’ s and FA 's. , : :

The results concerning the algebralc “structure of "FA’s and their
‘*'metamathemat_lcal consequences are very similar “to thelr analogs for RA’s.
“This may give the impression of similarity in the behavior of RA’s and FA’s.
But, representability, as mentioned ‘previously, is already a clear difference.
Further -distinctions, indicating that theyare quite different, will seen in the
‘next -section. et e R e UL I e e e e e
For the " purpose of comparing RA’s and FA’s, we ‘now examine some
considerations and‘ introduce' -some fterminology of a 'somewhat ad-hoc
nature. T . L »

What FA’s have more than RA’s is a fork operatlon This difference vanishes
in the Boolean FA’s, including the finite ones, whenv fork is e. A not so



extreme case is that where fork is-e for the element eo. Let us call special
those FA’s F=<F0,%0,1,7,+,,;,V> where ooVoo=oco (50 coVeozeoseo), but 1V1#l.
Notice that special FA’s are non- Boolean we shall have occasion to construct
- -many special FA’s. : , SR

Now, consider an RA R with carrier RCF. We naturally call RA R expandable
by binary operation V: FxF—)F iff R is closed under V: rVse R whenever r,seR.

The next result characterizes expandablhty of subalgebras of reducts

Lemma Expandability of s‘ubalgebras of reducts S . ‘
Consider an algebra F of FA-signature ¢, with defined elements T:=(1Voeo)T
and p:=(oV1)T, and a A-subalgebra R of its reduct F,e Alg(}). '

a)IfF satrsfles axiom (V-def), then subalgebra R of F, A 18 expandable by v
:FxF—F iff T and p are in R. :
b) If T and p are:in R and F is an FA, then so is the V expansmn RVe Alg(q))

Proof : o .
a) Since F ‘satisfies (V def) we have er (r; 7tT)- (s; pT) for every r,se Rc:F ‘
Thus, R is closed under V 1ff1t (1V°o)l and p= (°°V1)T are in R. :

b) Since R will be closed under V, the V-expansion RVe Alg(q)) of subalgebra
R of F, will be a ¢- subalgebra of FA FeFA, and thus RVeFA. - -
OFD , ‘ . i

A tool for our ~.comparisonv between 'RA’s and FA’s can use,.the (cardinal)
number = ‘of non-isomorphic - FA-expansions = of a  given RA R, its
expandability index e(R). Not surprisingly, some RA’s (for instance,. those
that are not QRA’s) have null expandability indices. ‘Let us call an RA R
rtgzd iff it has at most one, up to isomorphism, FA- expansron e(R)<1. As we
have seen, the RA-reducts of finite FA’s are all rigid, with ‘expandability
index 1. At the other extreme,, an, 'RA rnay, have many non-isomorphic‘; FA-
expansions. v : - v

Consider an RA R, with cardlnahty lRl—K S1nce a pos51b1e fork is a b1nary“
‘operation V:RXR—R, R may have at most k(%) FA-expansions: ' e(R)<K(K “)
Thus, an infinite RA R, with cardlnahty Rl= K>N0 has zﬂ:(R)<1c(K “)—ZK TR

Among the - non- r1g1d RA’S we shall con51der “two kinds w1th hrgh
expandability indices. Consider an RA R w1th cardmahty IRl=x; we shall call
RA R flexible (respectively explosive) iff it has expandability = index g(R)zx
(respectively - ¢(R)=2%). Such RA’s demonstrate ‘quite clearly the diversity of
_possible fork operations. In the next section we will construct examples .of
such RA’s with given infinite cardinality: a simple flexible. PRA P with at
least ¥k pairwise non-isomorphic special PFA-expansions, as well 'as «x
pairwise non-isomorphic - explosive RA’s, -each one of them with 2% non-
isomorphic special. FA-expansions. SR _ U _
The next result shows a simple case where homomorphlsms for reducts can
be guaranteed to preserve fork



Lemma Surjective factorization into ~homomorphism for reduct :

Consider algebras F,G,HeAlg(¢) and a surjective ¢-homomorphism h:F—H

of F onto H. Let h:F>H be a A-homomorphism of H, onto G, such that the
composite g=foh is a ¢-homomorphism  g:F—G of F into G. Then, fH—Gis a

- homomorphlsm of H into- G ; S —

Proof ' . :

‘Since h:F—H is surjectlve every teH is f(r) for some re F.

Now," for r,se H, we have f[h(r)VHh(s)] f[h(r)]VGf[h(s)]

~ { Indeed, since h is a o- homomorphlsm, f[h(r)VHh(s)]=f[h(xVFs)]; and since

- g=foh is a ¢- homomorphlsm f[h(rVFs)] g(rVFs)] g(r)VGg(s) foh(r)VGfoh(S) }
Therefore, f preserves fork. ‘ :

fAn'létpplication of the .‘preeeding lemma to direct products bisbgiven in the

- next corollary. We shall use it later in connection with simple components.

C(‘)rol'lary Homomorphism of reduct of direct-product component -

Consider a family of ¢-algebras F.e Alg(¢), for iel, with direct product
Xje1F;, with projections pj, and a ¢- -homomorphism  g:X;c;Fi—G of X;.[F; into

q)-algebra G. Then, every A-homomorphism f:F; —-)G of (F, ,);L into G, such that

fopi=g is a ¢ -homomorphism of F into G

6. |NFINITE ‘FORK ALGEBRAS

We shall now examine 1nf1n1te FA’s. We will see that there ex1st many
“(simple - proper) FA’s of each infinite - cardrnahty (even Wlth the same RA-
.reduct) ‘in sharp contrast W1th the finite case. ‘ '

For any infinite set ‘U, U and U2=UxU have the same cardlnahty So there"
exists an injective - ‘function *U?—U. Now each such injective functron
* U2—->U ‘gives rise to a full PFA P*(U%)= <66‘(U2)®U2 I~ ,T,umlz > over U.
Notice that P*(U2) is a srmple proper FA with cardinality 2¥, where x=IUl.

, ‘Thus by Downward Lowenheim-Skolem  Theorem, for each 1nf1n1te
“cardmahty K2R, there exists a simple FA with cardinality x. ‘

We shall eXhlblt some (simple proper) FA’s of given 1nf1n1te card1nahty
First, .consider an infinite algebra A. Given an infinite subset G with
cardinality IGl=y, let A[G] be the subalgebra of A generated by G.Note that

A[G] has cardinality |A[G]|—y X o=Y [Burrls & Sankappanavar '81, p. 32].
In partlcular for an infinite set U we have the infinite full PRA P(U?) over
set U. Given any infinite subset GCSO(UZ) the subalgebra PG—P(UZ)[G] of the
full PFA P(U?) generated by G is a simple PRA with cardinality IGI>& .

- Also, grven an infinite set U with cardinality x2Rg, let @m(Uz) be the set of
finite subsets of U2, and notice that le’m(Uz)I:K.NQ:K. Given an injective



function *:U2—U, the subalgebra P*(U?): =P*(U2)[© o(U?)] of the full PFA
- P*(U?%y generated by SO(,,(UZ) is a 51mple PFA with cardmahty K. ‘

Proposition Large szmple proper FA’s
For each infinite cardinal K>N0 there exists a 31mple PFA with cardmahty K.

We shall now construct some more such (simple proper) FA'’s.

First, we ‘generalize the precedmg construction. Each injective functlon
#:U2—U induces a fork operatxon £* on relations over U which gives rise to
induced projections p* —(IA*UZ)T and q* —(U24*I)T

Lemma Large simple PRA; with- PFA expansions ,

Consider an infinite set U with cardinality k=X, and an injective function
*:U2—U with induced projections p* and q*. Given an infinite set G with
{rp*,q*}gGg.SO(Uz), let P(;:P(Uz)[G] be the subalgebra of the full PRA_P(UZ)
generated by G. Then, Pgis a simple PRA with cardindlity |Gl that is
expandable by induced fork «* and the £*-expansion of Pgis a simple PFA.

Proof :

The RA-reduct of the full PFA P*(U?) is the full PRA P(U2) So, PG is a A-
subalgebra of P*(U?), with { *,q*}_c_GgPG. Thus, the first assertion follows
from the lemma on expandability of subalgebras of reducts. Pgand its 2*-
expansion are simple PFA, for they are subalgebras of full. proper algebras.
OFD | R |
We now introduce a tool for the  analysis of FA’s. Given an FA F, we
consider the set of its stable sub- -identities SsI(F):={fe F/f<1 & fVvisf}. :
Notice that any o¢- 1somorphlsm between algebras F and G in Alg(¢) gives a
bijection. between SsI(F) and SsI(G), so ISSI(F)I=ISsI(G)l.

We are going to construct infinite simple PFA’s whose sets of stable sub-
identities have smaller cardinalities. We shall control the set of stable sub-
identities by means of the set of fixpoints of the underlying coding.
Given a function #U2—-U, we consider the its set 'ofr' fixpoints
fxpt(*):={ue U/u*u=u}. This set can be con\?eniently' represented by its
 identity Idfx(+):={<u,u>e U?/u*u=u}. Notice that IIdfx(*)I Ifxpt(#)l. -

The next lemma shows a connection between the set of stable sub-
identities of a (simple) PFA and the set of f1xp01nts of 1ts underlylng codlng

Lemma Szmple PFA connection: Ssl vs. Idfx

Consider a simple PFA Q=<Q2,U? 1,~T,u,nl.2*> with fork «* 1nduced by
‘coding *: U2->U Then SsI(Q) JO(Idfx(*))mQ

Proof - .

For any rcU?2, with rcl, we have rz*rcr iff reldfx(*).
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{ If rz*rcr then, for any <u,u>ercl, <u,uxu>ers*rcrcl, thus u=u*rue fxpt(*).
I reldfx(*) then, for any <u,v>erz*r, .v=v'*v'7.for some <u,v'>er, <u,v">e I; SO
v'=u=v", and v=u*u with <u,u>ercldfx(*), whenc_:é u*u=u and <u,v>=<u,u>€r. }
Hence, since Idfx(*)cl, re SsI(Q) iff re Q and rcIdfx(*).

op | T R

To control the set of stable. sub-identities of a (simple) PFA we control the
set of f1xp01nts of its underlying coding. We do the latter by constructmg
specml codings with a given set of fixpoints.

The next results presents a set-theoretical construction for a spemal coding
on an infinite set U whose set of f1xpo1nts is a given subset ScU with

smaller cardmahty .

Proposition Special coding with given set of fzxpomts

Consider an infinite set U with cardinality x>X,. Given a subset ScU with
|S|<1< there exists a bl_]CCthe functlon *5:U2—U such that fxpt(*s) S. '

Proof
Let I:={<u,v>e U2/u—v} be the identity (dlagonal) relation over U and
_I~—{<u,v>e U?/uv}. Then, IU?l=x, lIl=k, and lI~=x. - '
Given a subset ScU with |Sl<k, consider its complement_with respect to U:
S":={ue U/ugs}. Since ISl<x, we have IS'l=k, and we can partition S' into
disjoint subsets A and B of U, both ‘with cardinality k. Now, since |I~l=x, we
have a bijection f:I~— A. Also, we have a bijection g:S' — B without fixpoints.
{ We can partition B into X, subsets B,, ne N, all with cardinality k=IBI. So,
“we have bijections ga:A— By, and g,:B,—B,;, ne N, with pairwise disjoint
domains and images. Their disjoint union gives a bijective g from S'=AUB
onto B=U . NB, Wwithout fixpoints, as required. } :

We now define *5:U2—>U as follows:

for ue S we set u*gu=u (notice that ug AuB),

for ue S' we set u*gu=g(u) (notice that g(u)e B);

for <v,w>e I~ we set vxgw=f(v,w) (notice that f(v,w)e A)
So, *5:U2—U is a bijection, from U?=idguidgUI~ onto U=SUBUA, because it is -
the disjoint union of bijections with pairwise disjoint domains and images.
Also, u*su=u iff ue S, because for ug S u*su=g(u)#u. Thus fxpt(¥g)= S. .
By a (special) coding on (infinite) set U controlled by subset ScU (with
ISI<IUl) we mean a bijective function #*g:U2—U with fxpt(*s)=S proVided by
the preceding proposition. It induces fork «3 and projections pS and qs.

We now construct some SImple infinite PFA’s with sets of stable sub-
identities of smaller cardinality, by putting together the preceding
constructions. ’ '

11



Given an infinite $et 'U with cardinality x, consider the set of its relations
with smaller cardinality: @ ((U2):={rcU%Irl<k}. Notice that | (U2)l2x.
Proposition Large simple PRA’s with controlled fork expansions
‘Let U be an infinite set with cardinality k=R,. For each subset ScU with
ISi<k consider a coding *5:U?—U on U controlled by S, inducing fork S and-
projections pS and qS. Given a set K with {pS,q5}u#® (U2)cKcP(U2), consider
the snbalgebra' PKS:=P(U2)[K_] of the full PRA P(U?) generated by K. Then, PKS
is a simple non-Boolean PRA with cardinality IKl that is expandable by fork
£S. Moreover, the zS-expansion QgSof P8 is a simple special PFA W1th set. of
stable sub- 1dent1t1es SsI(QKS)  (idg), Where idg={<u, u>eU2/ueS} ’
Proof S ._ |
1. By the lemma on large s1mp1e PRA’s with PFA' expans1ons we have the -
- first assert1on about PKS and the fact that AS-expansmn QK is a s1mp1e
. 2. By the: remark ‘on s1mple PFA’s with bljectlve underlying codmg, ASV V.
~ 3. Now I=idguidg, so L/SI= (1d5451ds)u(1dszs1ds Yu(idg: zslds)u(1ds 451ds) S1nce
fxpt(*s)=S, (idg£Sidg )RI=D. Thus 151zl s e
- { Indeed, if <u, v>e idg éslds ‘we have v=v *v" with <u,v'>,<u,v">e 1ds- so '
v'=u=v"eS' and v=uxu=u, whence <u,v>¢l. }
_4 ‘By the lemma on simple PFA connection between SsI and Idfx, we have
SsIQd)= lO(Idfx(*s))nQ(S But, for any rcldfx(*s), |rl<|Idfx(*s)l-y<1< $O "

re SOK(UZ)CKCQ<S Thus SsI(K ) 60(1ds)mq<s—@(1ds) | i

5. By the lemma on Boolean RA’ s and FA’s, RA P, cannot- be a Boolean RA.
Let us call a PFA Q size- controlled by cardmal Y 1ff its set SsI(Q) of stable
sub-identities has cardmahty |SsI(Q)| =27, ‘ , o

For a denumerably infinite set U, we have |£0m(U2)| NO |U| For an 1nf1n1te_'
set U with cardinality x¥=2%, we have 10 «(U?)l=x [Sigler '66, p 62, 132]..

~ We can now construct a simple PRA ‘of given infinite cardlnahty w1th_“f

(special) PFA-expansions size-controlled by smaller cardinals.
Lemma Large simple PRA’s with smaller sxze controlled PFA expanszons
‘For each infinite cardinal k=8, or x=2% with oc>No, there  exists ‘a simple
non-Boolean PRA P of cardinality x, “such that, for each smaller: cardmal y<1c
P has a PFA- expans1on Qr that is specral ‘and size- controlled by o'

Proof _ : ; :
1. Given such a cardmal K, the set of smaller cardlnals Y<K has cardmahty X.
For each smaller cardinal y<x, consider a subset S,cU of cardinality IS =y

12



‘and let *yt::Uz—‘-‘).U“:be a corresponding coding on U controlled by S,, with
fxpt(*y)=S,, which induces fork £ and »projections pY and qv.
~ Set H:= SOK(UZ)U[UY«{pY q'}] and note that it has cardinality |Hl=x.
2 By the proposition ‘on large simple PRA’s with controlled fork expans1ons
P:=P(U?)[H] is a simple PRA with cardinality IQl=IHl=x. Also, for each
~cardinal y<x, since {pY,q¥}u @ «(U2)cH, PRA P is expandable by induced fork

Z7 to simple spec1a1 PFA QY with set SsI(Q, ) of cardinality |SsI(QY)| 27,

{ By the lemma on,Boolean RA s-and FA’s, RA P cannot be a Boolean RA. }
OD I | | ‘
We can now show a simple PRA of given infinite cardinality that is flexible,
expanding to many  non-isomorphic special size-controlled PFA’s.

Theorem Large simple :flexible PRA’s: with many PFA-expansions

For each infinite 'c'a'rdir‘lal k=R, or k=2% with o>, there exists a non-
Boolean 51mple flexible ‘PRA P of cardlnahty k: PRA P has at least pa1rw1se
non- 1somorph1c PFA expanswns Q. (which are special). -

~ Proof : L ‘ .
Given such a cardmal Ky the set of smaller cardmals Y<K has cardmahty K
By the previous lemrna, ‘we have a simple PRA P of cardinality x, which has
a special . PFA-expansioh' Q, size-controlled by each smaller cardinal y<x.
Now, consider distinct cardinalities m,8<x.

Then PFA . Q, has SsI(Qn) with cardinality 2" and Qg has SsI(Qa) w1th
f‘ardmahty 2%, Hence they cannot be isomorphic. ~

Therefore there are; K -non-isomorphic simple special PFA S Qv w1th 'y<1< B
We can now  construct many explos1ve RA’s of given 1nf1n1te cardxnahty,
each one of them expanding to really many non-1somorph1c FA’s.
‘Theorem Many large explosive RA’s: each one with many FA-expansions
For each “infinite cardinal k=R, or k=2% with =R, there exist at least x
| pairwise non- 1somorphlc non-Boolean exploswe RA’s of cardlnahty «, each
one of them havmg 2K pairwise non- 1somorphlc (spe01al) FA- expansxons
Proof _ o S

1.-Let P be the simple non- -Boolean PRA of cardmahty x of the lemma on
large simple PRA’s with smaller size-controlled- PFA-expansions Consider a:
subset with Oe Ick, so O<ltl<lkl=x. Then, ‘since each yeIck is a cardinal V<K,
PRA P has a simple special PFA expansion Q. whose set SSI(QY) has
cardmahty 2Y. The direct power PIIS 2 'non- Boolean RA with cardmahty
IP)=l1l.x=x. Set I=I-{0}. -

2. Consider a subset HcI‘ and set H':=I-H. This decomposes I into the union of
disjoint subsets H and H'=(I'-H)u{0}. ‘Now, for each yel, let F —QY for ye H,
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and F.;=Q,for ye H'. The. direct product F =X 1Fy is a special FA, with

carrier Fp=X,F, =P! , and having {Qy/meH}U{Qp} as its set of simple ,
components. Moreover, since each F, is an FA- expans1on of P, the direct
product_ F =X 1Fy is an FA- expansmn of the direct power P1L '

3. Given two distinct subsets M,Ncl’, the correspondmg FA-expansions Fy,
and Fy of P! are not isomorphic. :

{ For def1mteness say McNclI' and consider an element ve (N M);&@

Then, F,=Q, is a simple component of Fy with [SsI(F V)‘l 2v,

The simple components F of Fy; have ISsI(F)le {2*/pe M}u{29}.

Thus, since vg¢ MU{0}, F, .cannot be a simple component of Fy;.

But, for the RA-reduc’ts P=(F,), is a sirnple component of P'—(FM),»’

'So, by the corollary on homomorphism of reduct of direct- product
component, FA’s Fy; and Fy of P! cannot be isomorphic. } - P

4. Hence, for M,Ncl, FM and FN are 1somorphlc iff M=N.

,Thus Plhas 2“ non 1somorph1c FA- expansxons FM Wlth Me JO(I)

5. We now examine the structure of the direct power 'RA PL Let |Il—y LR
First, since P is a simple (infinite) PRA, it has no proper ideal elementst‘ o
'Thus ‘the direct power RA Plhas exactly 2V ideal elements (see Appendix).
6. Now, consider two subsets T,Acl w1th 0eI'mA with distinct cardmahtles
Then, the direct powers PTand PA cannot be isomorphic. :
{Wlth II“l—y;tS =lAl, PT has 27 1deal elements, while PAhas 27 ideal elements. }

7. Hence,_for subsets T,Acl with 0e ’'A, PTand PA are ‘isomorphic iff ITl= lAl
Thus, there are x pa1rw1se non- 1somorph1c RA’s Plwith l1l=1Tle (x-{0}).~

OFD

7. CONCLUSION

A fork algebra (FA, for short) is a relational algebra (RA, for short) enriched
with a new - binary operation, called fork. They have been introduced

because “their equational calculus ‘has’ apphcatmns in program constructlon o
in addltlon to some mterestmg connecuons with algebralc log1c

In this _paper, ‘which ‘stems from the cruc1al though 81mple observatlon of ,
the interdefinability of fork and projections in FA’s, we examine the finite
and infinite FA’s and contrast them with RA’s. We show that the finite FA’s
are - 'somewhat  uninteresting, = being  essentially Boolean ~algebras, by
‘describing the finite FA’s as the finite 'direct powers of ‘the two-element  FA.
This contrasts with the case of infinite FA’s: we ‘introduce a technique ' for
the analysis of FA’s and use some set- theoretical constructlons' to exhibit
many infinite (simple proper) RA’S of each infinite cardmahty w1th many.
“expansions to FA’s. . L St

Some background about” fork'algebras and their reducts (rela‘tionf‘anyd
Boolean algebras) is provided in section 2 ‘their ~ abstract versions, some



simple results concerning -the algebraic structure of FA’s, and their concrete,
set-based, versions (fields of sets and proper FA’s and RA’s).

In section 3 we examine the Boolean FA’s (those where fork is. Boolean
‘meet). We. first show that their reducts are Boolean RA’s, and thus
essentially Boolean algebras. Then we characterize the Boolean FA’s as the
~ subalgebras of direct powers of the two-element FA. .

These results are applied to finite FA’s in section 4, . By showing that no
finite simple QRA can have. more than two elements, we can conclude that
the only simple f1n1te FA’s are those with one or two elements. We then
show that every finite FA is Boolean and describe the finite FA’s as the
finite direct powers of the two-element FA. This ‘makes -the finite FA’s
somewhat uninteresting: - for each n>0 there exists exactly one, up to
isomorhism, FA of cardinality 27, which is essentially a BA, and each finite
FA is completely . determined by its RA reduct. This contrasts sharply with
‘the case of infinite FA’s. |

In section 5 we examine fork-expans1ons of RAs aiming at comparmg RAs
and FA’s. As a tool for this purpose we introduce the expandability index
e¢(R) of an RA R as the (cardinal) number of its non- isomofphic FA-
expansions -and consider three kinds of RA’s. At one extreme, we have the
rigid ones, with e(R)<1 which include the RA-reducts of finite FA’s as well
as those that are not QRA’s. ‘At the other extreme, we have RA’s with many
-FA-expansions .vis-a-vis their cardinalities: flexible and explosive RA’s R
with expandability index e(R)2k (respectively e(R)=2K%), where  x=IRIl. Such
(infinite) RA’s demonstrate qu1te clearly the diversity of possible fork
operatlons .

Then, in section 6, we examine mflmte FAs and eXhlblt ‘many ‘infinite
- (simple proper). RA’s of each infinite cardmahty with many expansions to
FA’s. The existence of simple FA’s of each given infinite cardinality  is clear
in view of the Downward Lowenheim-Skolem Theorem. To obtain simple
proper - RA’s, and FA-expansions, we consider subalgebras —of a full PFA
generated by sets including 0 ,(U2)= {rcU%lrl<y} with y<lU2l. The basic idea is
quite stralghtforward an infinite set U has (many) injective functions
*U2—-U to- be used as underlymg codings, each such function inducing a

fork operation «* on relations over U as well as prOJectmns p*:=(I1£*U2)T and
- q*:=(U22*DT, by including the latter among the generators we guarantee
fork-expandability. We then introduce a technique - set {fe F/f<1 & fV{<f} of
stable ‘sub-identities - for the analysis of FA’s and show that, in simple
PFA’s, it is connected to the .set of fixpoints of the underlying coding. Some
set-theoretical constructions, based on cardinality considerations, provide
(bijective) codings with given sets of fixpoints. These considerations and
constructions provide the tools for conmstructing many flexible and explosive
non-Boolean RA’s of given infinite cardinality x: we exhibit a simple flexible
PRA P of cardinality x (with at least x pairwise non-isomorphic PFA-
expansions) as well as x pairwise non-isomorphic explosive RA’s of
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cardinality «, each’ one of them havm0 2% pairwise non-isomorphic FA-
expansions. _

Two remarks should be made concerning our constructions of infinite RA’s
with many -expansions to FA’s. First, as a by-product of our constructions,
‘the FA-expansions obtained turn out to be special (they have ooVeo=os, but
1V1#1), so the RA’s are non-Boolean. Second, as an alternative, and perhaps
simpler, tool for the analysis of FA’s one may considér the set of
subrelations of (1V1)ei=rttelept. This suggests investigating 'descriptions of
the FA-expansions of a given RA in terms of its possible projection pairs.
APPENDIX: IDEAL ELEMENTS OF DIRECT PRODUCTS OF (SIMPLE) RA’S

Our construction in the theorem on many large explosive RA’s (each one
with many FA-expansions) uses a result about ideal elements of direct
powers of simple relational algebras. For completeness, we state and prove
its -direct-product version .in this appendix. ? ' :

Consider an RA R=<R.,0,00,1,".1,+.e,:>. Recall that an element reR of R is called
“ideal iff eojrjeo=r [JOnsson & Tarski '52, p. 130, 131, Definition 4.5 (iv)]. We
use IdI(R) to denote the set {re R/oo;r;00= oo } of ideal elements of RA R

Lemma Ideal elements of direct products of RA’s . ; _

Given a set of RA’s R;, iel, consider their direct product X;.;R;eAlg(}d).

Then, 1d1(X;c{R;))=X;c IdI(R);), i. e. an element re X;.;R;is an ideal element of
X;c R iff for each ie I projection p,(r) is an ideal element of R

Proof

Since the prOJecnon homomorphisms  are Jomtly injective, we have

oo;r;oo=r iff for each iel pj(oo;r;co=r)=p;(r) i. €. oo;;p;(r);o°;=p;i(r).

Thus, for (1;)ic Ie ><,e IRy, ()i 1€ 1d1(X; (R iff for each iel rje Idl(Ri). :

Now recall that a simple RA R has no: proper ideal elements Idl(R) {0,00}

[J6nsson ‘& Tarski '52, p. 132, 133 (Theorem 4.10)]. '

Corollary Ideal elements of direct products of simple RA s ,

Consider a set of simple non-trivial RA’s R; (IR [>2), ie I, with cardinality

lIl=y. Then, their direct product ><le iR; has 27 ideal elements IIdl(xleIR,)l 27

Proof
For each simple non-trivial RA R;, IdI(R;)={0;,00;} with 0;#ee;, s0 lIdl(Ri)|=2.'
Thus, we have [Id1(X;.;R))I=IX;c (IAI(R;)I=1X; 1{ 05,00} =27,

oD
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