ISSN 0103-9741
Monografias em Ciéncia da Computagéo

- n° 08/96

The Semiotic Engineering of Concreteness and
Abstractness: from User Interface Languages to
End User Programming Languages

A Clarisse Sieckenius de Souza

Departamento de Informética

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22453-900
\ RIO DE JANEIRO - BRASIL

PUC RIO - DEPARTAMENTO DE INFORMATICA ISSN 0103-9741

Monografias em Ciéncia da Computagéo, N° 08/96
Editor: Carlos J. P. Lucena March, 1996

‘The Semiotic Engineering of Concreteness and
Abstractness: from User interface Languages to
End User Programming Languages *

Clarisse Sieckenius de Souza

* This work has been sponsored by the Ministério de Ciéncia e Tecnologia da
Presidéncia da Republica Federativa do Brasil.

Also presented at the Dagstuhl Seminar on Informatics and Semiotics, Schloss
Dagstuhl, February 10-23, 1996.

In charge of publications:

Rosane Teles Lins Castilho | |

Assessoria de Biblioteca, Documentagdo e Informacdo

PUC Rio — Departamento de Informatica

Rua Marqués de Sao Vicente, 225 — Gavea

22453-900 — Rio de Janeiro, RJ

Brasil

Tel. +55-21-529 9386 Telex +55-21-31048 =~ Fax +55-21-511 5645
E-mail: rosane@inf.puc-rio.br

- The §emiotic Engineering of Concreteness and Abstractness:

From User l_nterféce Lang‘Uages To End User Prgq_r_a_tmmig; Languages

Clarisse Sieckenius de Souza
Departamento de Informética — PUC-Rio
R. Marqués de S&o Vicente 225
22453-900.Rio.de Janeiro, RJ - Brazil . .

" email: clarisse@inf.puc-rio.br

PUC-Rio0.Inf MCC08/96 March. 1996
Abstract ’

Most successful User Interface Languages have been designed observing two
important guiding principles: task specificity and direct manipulation of graphic
objects. Programming Languages, in their turn, have often been pursuing such
goals as general purposeness and efficient symbolic manipulation of linguistic
objects. When it comes to End User Programming Languages, features that are
apparently in conflict with each other must be combined to allow non-programmers
to write extensions to existing applications and to design and implement
completely novel applications and programs.

In view of increasingly strong evidence for the need of engaging end users in the
programming of software -tools, some researchers ‘advocate that the interface
language should become a programming - language, whereas others remain
skeptical about this possibility. We propose that an integrated interface
environment shouid be designed within a unified semiotic framework that accounts
for interaction with and specmcatnon of computer applications. A brief case study
about a successful text editor and its extension language reveals some of the
features this unified semiotic framework should have and provides important topics
for empirical and theoretical research agendas in the field. Integration of
interactive and programming profiles in interface systems design is the object of
the Semiotic Engineering of concreteness and abstractness in computer-mediated
interpersonal communication through software applications.

Keywords

Semuotlc Engmeermg, User Interface Language Des1gn End User Programmmg
Language Design, Computer Semiotics

" C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p.2

1. Introduction

User Interfaces are metacommunications artifacts. They are designed to convey a
message from system designer to system user whose meaning is the answer to
two fundamental questions: (1) "What kinds of problems is this application
prepared to solve?" and (2) "How can these problems be solved?". This message,
however, should not be confused with lower-level messages such as "copy [this]",
"delete [that]", or "Save large Clipboard?”, that are exchanged between users and
systems. The higher-level message from designer to user is the most dominant
piece of communication in human-computer interaction (HCI) because it provides
the common background against which all lower-level interaction is going to take
place. In Figure 1 we try to show four essential aspects of such
metacommunications artifacts:

1. The Interface Message is a One-Shot Communicative Act from Designer to
' User;
2. The Designer's Intended Meaning for the Interface Message and the User's

Assigned Meaning for the Interface Message are not the same, though they
should be obviously consistent with each other;

3. The Designer's Intended Meaning is an abstraction of the Application's
Model;

4. The User's Assigned Meaning is a model of the Application's Usability1

Model.
——-" Interface Message I-/g’ .

Abstracted Conceptual
| ___|Conceptual Model ‘ Usability Model of
of the Application the Application

: Application's Model

Figure 1: Meanings of the User Interface Message

In a Semiotic Engineering framework [de Souza'93], HCI proper is a kind of "zoom-
in" on the arrow that reaches the user in Figure 1, whereas computer-mediated
interpersonal communication (CMIC) encompasses all the interactions suggested
in Figure 2. The whole interpretation process resuiting in a Conceptual Usability
Model of the Application is triggered and determined by the interactions supported
by the system's messages to users and its corresponding reactions to mouse
clicks, keyboard and voice input, data-glove motions, and other device signals.

! Usability in this context is taken in Adler & Winograd's sense: the perceived spectrum of possibilities of use
associated to a given application as a result of a user's learning and creativity. [Adler & Winograd'92]

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p.3

From the signs exchanged through 1/O screens, users build a cascade of
interpretants [Peirce'31] that eventually crystallize into the user's assigned
meaning for the interface message — the Application's Usability Model.

]

C: I've done this.

H: Now do this.
C: This way or
Input/Output - that way? Execution/
Based H: That way. Evaluation -
Computer C: OK. I've done it. Based
Partner :Undo it. Human
: | have undone it. Partner

H
C
H: Do that.
C:l've doneit.

Figure 2: Human-Computer Interaction in a Semiotic Engineering Framework

In this paper we explore a wider spectrum of user interface design issues and
extend our Semiotic Engineering approach to the limits of en-user programming
languages. As some researchers advocate [Myers, Smith and Horn'92; Nardi'93;
Cypher and Canfield Smith'95; Eisenberg'95], users must to be empowered to the
point of configuring and writing their own interfaces and applications by means of
"a new breed of languages" [Dertouzos'92]. In this updated scenario, User
Interfaces must provide users not only with the ability of taking the best out of
applications, but also that of customizing, extending, and/or integrating them into
novel working environments.

The Final Report of the End-User Programming Working Group of SIGCHI'90's
Workshop on Languages for Designing User Interfaces [Myers, Smith and
Horn'92] starts with projections made in the beginning of this century about the
future of telephony in the USA. Predictions were that if growth rates remained
stable throughout the years, today mile-long switchboards would be operated in
telephone companies by virtually ail the female labor of that country. What
predictors failed to foresee was a maijor turning point in the evolution of
telecommunications: that users would themselves become operators.

Reporters notice that a similar situation is currently faced by the software industry.
Uniless users become software generators themselves, wild predictions such as
the above will pop up everywhere. Having learned with the history of telephony,
software engineers are now starting to look ahead and work on the design of
software artifacts that somehow behave as meta-applications, since they allow
users to generate-other applications by using them.

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p.4

However, all the mathematical and logic constructs that lie hidden inside software
artifacts are unfortunately just a motion away from the friendly surface of user
interfaces. One step into the world of programming, and users are overloaded with
terminology and concepts that are quite foreign to the average software consumer.
As a result, a deep guif opens between user needs and software affordances — a
gulf researchers are starting to try and bridge [Lieberman & Fry'95].

The top level challenge for the "new breed of programming languages" is that
users understand what computing is and write programs that help them soive
problems or that just let them have a good time [Dertouzos'92]. These new
languages shouid make people move their focus from the value of applications to
the value of computing. Thus, computer semioticians have a highly challenging
task at hand. They must help software engineers build novel metacommunications
artifacts whose message not only contains information about special-purpose
domain-dependent computer applications, but also information about computers,
computing, and computational worlds in general. ’

We expect this new scenario to transform drastically our current user interface
design process. For instance, consider the model world metaphor [Hutchins,
Hollan & Norman'86] behind most direct manipulation interfaces. The very
definition of the "world" to be modeled — up to now the application's domain world
— will change. The computer world will have to be modeled as well. So, our
intended contribution to the debate of such hot issues. is only an account of how
the ideas we have been working on in recent years can fit into the overall picture.
As will be shown in sections ahead, designing user interfaces without an explicit
end-user programming perspective in mind may result in major discontinuities
within the global environment. Alternatively, a new extended perspective in design
may result in quite different segmentation and classification of interface objects
and signs, which instead of promoting only the mastery of interactive and task-
related skills will also tend to promote computer literacy as a whole.

In order to explore the possibilities of a Semiotic Engineering of integrated User
Interface and End-User Programming Languages, we briefly examine the interface
profile of a former version of a popular application in personal computing:
Microsoft's Word for Windows 2.0 ™, and its extension language, Word Basic™.
Selected features of both semiotic systems are analyzed and shown to cause
problems for a global unified understanding of how to extend the application for
novel needs.

We discuss the reach of our previous approach to designing interfaces within the
new boundaries of computer-mediated interpersonal communication, and conclude
that extensions in the framework are needed. We also evaluate in very general
terms the costs and benefits of a semiotic perspective upon this novel scenario,
and propose the addition of some topics in the current research agenda of the
field.

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p. §

2. The Semiotic Engineering of Concreteness and Abstractness: A Case
Study

In order to demonstrate some of the relevant issues involved in the integration of
User Interface Languages (UlL's) with End-User Programming Languages
(EUPL's), we have selected a real-world situation which involves a new kind of
"Save As" function in MS Word-for-Windows 2.0™ (WFW). Here is the scenario:

T T e “—*—'Mlcrcrsoft Word“Dagms doc

§pelling

Grammar...
Thesaurus... Shift+F7 =
Hyphenation...

Bullets and Numbering...
Create Envelope...

Revision Marks...
Compare Versions...
Soriing...

Calculate
Repaginate Now

Macro...

Options...

Figure 3: WFW's End User Programming with the RECORD MACRO Tool

This user has a Macintosh computer at her office and a PC at home. She
must often bring home texts she has started to edit on her Mac, and do part
of the job on the PC. WFW and Word for Macintosh 5.0 (WFM) file formats
can be automatically converted info each other, which is perfect as long as no
graphic editing is involved. If, for example, she has created a drawing on the
Macintosh, she cannot open it for editing on the PC, and vice-versa.
However, many times this sort of editing is needed and the work becomes
difficult to do.

Of course there is a way around the problem. She can Save WFM files AS
WFW, Open these on the PC, Save WFW files AS WFM, Open these on the
Mac, and so on. But there is a lot of version control invoived, and the
process may become quite laborious. For instance, WFW can save files as
WFM but it is the user's responsibility to control file names and extensions, so
that the conversion can take piace. Neither WFW nor WFM automatically

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p.

change file extensions, and the user must step through the whole process of
specifying file paths, names and extensions, tediously and repetitively.

As we can see, this is a typical opportunity to use Macros to save time and
effort. We will not go into the WFM bit (which behaves differently from WFW),
but will take up from the part where the user is working at home and wishing
to automate her customized Save_As function. She triggers the Recorder
Tool and generate a script for a new Macro called SaveMac, as is seen in
Figure 3. The corresponding code automatically generated by this interaction
is seen in the first portion of the code (Sub MAIN-Recorded) included in
Figure 4.

What the Word Basic code suggests is that SaveMac, upon call, will always
save files in drive B under the name of "dagms.doc”, which is not what the
user wants. Being a programmer, she realizes that the Recorder Tool has
treated input data as CONSTANTS, rather than VARIABLES, and picked up
the current file’s name. She decides to edit the macro code and introduce
variables in what she thinks are the appropriate places. The resulting routine
is also included in Figure 4 (Sub MAIN-Coded-1).

Microsoft Word Global: new

[Sub MAIN - Recorded
ChDir "B\
FileSaveAs .Name ="dagms.doc*, .Format = 108, .LockAnnot = 0, Password ="
End Sub

Sub MAIN - Coded - 1
Dim a$

FileSaveAs .Name = a$, Format = 108, Lockannot = 0, Password ="'
End Sub

a$ =FileName$('Suppose FileNamne does not include the file's path
bE ="b:"+ af '‘Compose path with drive b: concatenated with FileName
FileSaveAs Name =b$, Format = 108, .LockAnnot =0, Password ="
End Sub
™
Sub MAIN - Coded - 2 =
Dim a$ =
a$ = InputBox$("Save this file in MacIntosh format As'®, "SaveMac", FileName$Q) ‘Prompt user i
=

ol uh

Figure 4: WFW's End Use Programing with Word Basic

However, the trial is unsuccessful because function FileName$() returns not
only the "name” of the file, but also its complete path from the root directory.
(Notice the apparent inconsistency with what was the file’'s name in the
recorded macro.) As a result, the user realizes an interactive input box will be

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p. 7

needed to capture the appropriate file name. Her Word Basic code then looks
like the last portion of code in Figure 4 (Sub MAIN-Coded-2).

Our user proceeds to include direct access to the new macro in the File
Menu. She also assigns an accelerator key to this option, so that the final
execution path takes a minimum of three interactive steps. She is not quite
satisfied, though, because she knows one step might have been enough to
execute the whole process, if only she had found a function that returned a
file name without its complete path.

The point of this long story is to demonstrate that end user programming in Word
Basic is still some mileage away for non-programmers. The consequences of this
gap for software usability are self evident. The story illustrates most of the issues
mentioned in this paper's introduction, and from here we will proceed to a semiotic
overview of WFW's graphical user interface and Word Basic's programming
environment.

2.1 Word for Windows 2.0 — A Semiotic Overview of the User Interface

A customized configuration of WFW's interface is shown in Figure 3. In it, we can
see that the default tool bar has been changed compared to what it looks like
when the software is first installed. 1t now includes some other icons (like the
footprints and the pair of glasses) whose meaning only the creator of the
customized interface can be expected to know. This peculiar setting is the result of
WFW's configuration facilities that allow users to select a set of tools that are
tailored to their specific needs. The programming of such new interactions on the
tool bar is easily achieved by parameter setting.

The interface is a typical Windows™ style GUI [Microsoft'95], with pulidown menus
and lists, buttons, icons, pointers, sliders, a status bar, scroll bars, and a canvas
where direct manipulations on text and other objects can be performed. In spite of
interference caused by the user's customization of the environment (which is
nevertheless part of the interface), we can see that the nature of interface signs is
heterogeneous.

A possible high-level interpretant that a user can derive from this WFW's interface
message is that text editing is achieved by triggering ACTIONS upon OBJECTS.
With the feedback from the global Windows environment, the distinctive status of
objects is expressed by numerous pictures (called "icons" in HCI literature) on the
tool bar and by such English words as "tools", "table" and "window" on the main
menu bar.

Actions upon objects are expressed in the main menu by such words as Edit or
Insert, and by tiny oriented arrows on some of the tool bar buttons. Many pulldown

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p. 8

menu options also evoke actions through words and phrasings like Copy, Save
As, Arrange All, Exit, and others.

Whereas Object-Action relations are quite clear in the implied syntax of some
menu options like "Create Envelope" and "Insert Table", the same is not true when
it comes to interpreting some of the graphical signs on the tool bar. A couple of
examples should suffice to put this point across.

|nsert Table

The action triggered by a click on this "icon" is the insertion of a table. Further
manipulations allow users to specify the dimensions of the table they want to
insert. Therefore, the complete meaning of this widget is "Insert Table"
("syntagmatic" level), a compound sign of button+drawing. The button accounts for
the "action" part ("morphemic" level), and the drawing accounts for the "table" part
("lexical" level). But, the notion of "insert" ("lexical" level for the action involved)
must be guessed by the user.

Such guessing is not as easy as it first appears. The generalization about the
mutual relationships between the widget's nature (button), its image (drawing of a
table), and effect (insert) doesn't work (e.g. printers are not inserted when you
click on the printer's button, and neither are folders or diskettes), which means that
syntagmatic connections between the meaningful parts of a widget are not the
same throughout the interface language. Too many ad hoc inferences about such
connections end up by costing an expensive price in terms of cognitive loads upon
users. The "insert Table" widget is a complex graphical sign in which some
metonymical process of expression seems to have taken place: the object "table"
(graphic expression) stands for the process of "inserting a specific table in text".
That is, the expression privileges the result of a whole series of steps (trigger tool,
specify object, close interaction) which constitutes the achieved meaning of the
widget.

Wl Save File

The action triggered by a click on this "icon" is saving the current file to its current
address in memory. Once again, this is a compound sign of button+drawing. The
button accounts for the "action" part, but the drawing doesn't seem to directly
account for any part of the semantic notion associated to this widget. Taken as an
icon, in Peircean terms, the most unequivocal of this drawing's interpretants is a
floppy disk. Now, what does a floppy disk have to do with Save the current file?

This image, although depicting a totally familiar object to all of computer users,
resorts to quite specialized knowledge about operating systems. Correct
associations between a floppy disk and saving a file can only be established if the
user kKnows:

« files are data objects

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p. 9

» data objects are stored in specific memory locations

» disks are memory locations

» file memory locations are expressed as compound strings (path+file name)
» the floppy disk is representing all storage devices

Thus, if a user has this knowledge, the graphical sign connects form to content by
a rather tortuous trail. The 3'2 floppy disk stands for any existing storage device
(CD, cartridge, floppy or hard disk). Besides, the fact that the current file name
stands for memory location coordinates that are implied in all "saves" after the
file's creation is again something that is often not quite clear to average users, and
not consistently signaled in some of the working window components. For
instance, as seen in Figure 3 and 4, file names on the window title bar omit the
path (memory location) segment.

A user's failure in grasping the right connections deprives the graphical sign from
all of its iconic or indexical features. It becomes almost a graphic symbol, with an
arbitrary connection between its form and content, something which runs against
the tide of much graphical interface design guidelines [Appie'92;, Marcus'92,
Microsoft'95; Mullet & Sano'95].

3 Edit Drawing

The action triggered by a click on this "icon" is the opening of a graphical editor. In
fact, a call is made to another application (MS Draw™) which the users wield to
create drawings and insert them in the current text. The button accounts for a
number of actions which combine and result in the widget's meaning.

By examining the image on this button we realize a most complex semiotic
process has occurred. What do the geometric objects stand for? They certainly
are drawings, but the irony behind it is that none of these geometric shapes
appear in MS Draw's tool bar (i.e. they are not drawing tools). Triangles, in
particular, can only be drawn and filled with colors or patterns if we use a

o e

somewhat strange looking tool: the polyline ==

Consequently, the form/content association for the Edit Drawing widget, as was
the case with the Save File widget, is not quite straight forward. The geometric
objects stand for potential referents very widely distinct from their appearance. To
illustrate how wide is the spectrum of graphical objects referred by the circle-
square-triangle group it suffices to say that all screen dump images on this paper
have been created by the Edit Drawing tool. This is a self-reference feature in the
widget. In a way, the expression (graphics) is the content (graphics), an example
of what Eco in his Theory of Sign Production [Eco'76] has called ratio difficilis
between the expression system type and token. Except for deictic utterances,
whenever contents are raised to the level of their own expression, interpreters may
have difficulties in segmenting their global perception into the correct meaningful
units intended by the utterer.

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p. 10

In Sum...

The few examples above suggest that a considerable amount of arbitrary
connections between graphical elements takes place in the design of WFW's
interface widgets. Some important syntagmatic relations between verbs and nouns
present in pulldown menus, which all contribute to reinforce the overall interactive
paradigm of actions upon objects, have no systematic correspondence in the
visual part of the interface.

Of course, in the long run, users have no difficulty to memorize the idiosyncrasies
of visual widgets and certainly become experts in using the expressive code of the
application's interface. The price to pay is affordable for most interface designers
and explains why some quite cryptic tool bars do not prevent the commercial
success of some popular (though difficult to use) software products.

The problem arises, as we shall see later, when the leap is made from a closed,
merely customizable, application to an open, extensible, one. There, where end
user programming is possible and EUPL design becomes a crucial interface issue,
~ consistent generalizations, systematic patterns of articulation, and careful

segmentation and classification of interface objects play a decisive role in the
usability of programming facilities provided to non-programmers. Thus, the price to
pay for arbitrariness may become too expensive for interface designers and
software developers, themselves. ’

2.2 Word Basic — A Semiotic Overview of WFW's Extension Language

When we switch from the WFW's text editing screen to the end-user programming
screen in Word Basic, a major change in the interface paradigm occurs, although
the user may not be immediately aware of it. As can be seen in Figure 4, the
general look-and-feel of WFW is still there, with the same menu bar and tool bar.
New widgets are shown, however: basically 5 labeled buttons and a message field
next to them. A couple of tentative commands show that most menu bar options
are disabled, as well as most of the tool bar buttons. The user is in a quite
different interface environment.

We will concentrate our analysis on matters the (dis)continuity of signs as the user
goes from the editing to programming environment. As pointed out by Nardi, end
user programming languages should be task-specific and capitalize on a user's
interest and motivation to master the complexities of embedded programming in an
effort to extend the usability of a given application [Nardi'93]. Task specificity in
our example has a lot to do with semiotic continuity, since WFW users should not
be asked to learn a totally new communicative jargon in order to create macros.
The objects they want to operate upon, the kinds of operations they conceive of,
and all relationships among objects and operations should be expressed within the
same semiotic continuum.

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p. |}

For instance, if "files" are expressed in WFM by the word File or by a drawing like
B, and "save" is expressed by the word Save or by a drawing like &, we should be
able to write programs in which these signs are used to mean what they mean.
Word Basic programs do include words such as File and Save, as can be found in
the following instruction: :

FileSaveAs .Name = a$, .Format = 108, .LockAnnot = 0, .Password =""

However, users cannot include their pictorial counterparts, the 8 and & signs, in
Word Basic statements. Although the Recorder tool (see Figure 3) generates
Word Basic code through manipulations of the WFW interface both in the text
editing ("Record Macro") and in the macro editing ("Record Next Command")
environments, type-objects like a generic file, a generic paragraph, or a generic
character string, cannot be referred to by such icons.

WFW's extension language thus presents serious continuity problems that
challenge computer semioticians. As stated by Nardi, "the problem with
programming is not programming; it is the languages in which people are asked to
program" [Nardi'93, p.40]. She argues that unlike some of the assumptions behind
current attempts at stating the problem with extension languages in interactive
terms (whose solution is to have users manipulate diagrams and pictures to build
programs [Shu'88, Chang'90], or fill out forms which will be input to automatic
program generators [Zloof'81]), what is really called for in this area is a "semantic"
approach to language design. We will push Nardi's point a little farther and
suggest that what is really called for is a "semiotic" approach to language design,
integrating semantic and interactive aspects within the same framework. The story
at the beginning of this section shows some of the reasons why this might be so:

1. The user realized that the Recorder tool generates code with constants instead
of variables;

2. The user could not find how to isolate and manipulate a field (the file
extension) of what she thought was WFW's "file" data structure;

3. The user was not totally happy with her final macro because it involved more
interactive steps (and quite a lot more of trial and error in Word Basic) than she
had wished.

Firstly, the Recorder tool, which alleviates the burden of having to learn a
programming language (even if customized to WFW), falls short of dealing with
variables in a general and consistent way. Although variables are implicit in
macros that, for instance, (1) pick up selected text spans, (2) turn them into
boldface characters, (3) render them in green, and then (4) change their character
fonts to Times New Roman (see Word Basic Macro in Figure 5), they are not
implicitly assumed if the object we want to operate upon is not "selectable". A
selected span is an implicit variable whose name is internal to the application.

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p. 12

However, in the absence of previously selected objects, explicit variables must be
created and controlied by the programmer (user), as was the case in our story.

Sub MAIN

Bold 1

FormatCharacter .Font = "Arial", .Points = "12", .Bold = 1, .Italic = 0, .Strikeout = 0, \
.Hidden = 0, .SmallCaps = 0, .AllCaps = 0, .Underline = 0, .Color = 4, .Position =\

"0 pt", .Spacing = "0 pt"

Font "Times New Roman", 12

End Sub

Figure 5: Macro with an implicit Variable

Notice that the user should not be misled by the button "Vars..." in the
programming environment. it is usually disabled when the user is writing a macro
and, in spite of its caption, it is not meant to help users create variables in their
programs: it is actually a debugging tool that can be used to help them watch the
values variables take on as execution proceeds.

Secondly, the level of articulation in the File data structure presents an
unfortunate discontinuity, this time not with the WFW editing interface but with the
operating system on which it runs. Although files do have "names" (see that Word
Basic has a field called ".Name" for file objects), these are unarticulated
compounds of "path+name+extension" which cannot be broken into morphemes
and manipulated independently by specific string functions. In our more global
perspective upon software extensibility, this minor detail turns out to present a
serious problem for the user. Her misunderstanding was aggravated by the false
inferences she drew from her ability to change freely the file extension string in
WFW's dialogue box for the "Save_As" tool. Once again, this is another facet of
discontinuity in the example: not with the "outside" operating system, however, but
with WFW's interactive patterns themselves.

Thirdly, the user's dissatisfaction with the lengthy interaction needed to perform
her new function and with the time it took her to figure out how to program it is
precisely the gist of our point about a semiotic approach to concreteness and
abstraction in an integrated language design. She has been induced into thinking
she could wish for short interactions because of communicative patterns present in
WFW's. Tool bars provide the best example of the application's designers careful
attention to the readiness of functions. Smooth interaction flows quickly from
mouse clicks and drag-drops that capitalize on indications about which is the focal
object of the action being commanded.

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p.]13

SaveMac

Save this file in Macintosh format As:

{C:ADAGSTUHL\DAGMS_C.DOCI

Press Shift+Enter to starnt a new line \

v

B:DAGMS_C.MCW
Figure 6: Default name proposed by the interface must be changed

However, as soon as the focal object cannot be identified by application, the
interaction gets longer and default values hardly usable. The degradation in the
quality of interaction is an important one, as can be seen in Figure 6. The default
value (the current compiete file path and name) is obviously not the correct one,
and the amount of editing required for getting the desired new name is
considerable.

A full-length programming language can be characterized by: data values and
structures; command decisions, repetitions and recursions; procedure
abstractions and parametrizations [Cordy'92]. End-user programming languages,
in their turn, should include at least loops, conditionals and variables [Myers'92].
If we are to empower WFW's users with the ability to write interesting and useful
extensions to their text editor, we have to find a way to convey such
programming entities in a task-specific language that will be easy and fun to use
[Dertouzos'92, Nardi'93].

Chearacler

Font: Paoints:
| [
~Stylg—

[JBata
[itanc
ﬂﬁtnknhmuqh
LjLiidden

LI Small Caps
CJanceps

Underline: .
N {'___ Arnal -
[onc E

Figure 7: internal Attributive Articulation of Character Data Objects

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p.14

Paragraph
; = rSpacin
Alignment: E B" . reg -
efore: —u-
Indentation g
From Right: Line Spacing: At
EvetLine: o @[B
rPagination ~Sample
[l Page Break Before —_—
1
[Keep With Next =
[TIkeep Lines Together
~Line Numbers
D Suppress

Figure 8: Internal Attributive Articulation of Paragraph Data Objects

Save As

File Name: 7 Directories:
Fagstuhl\dagms_d.doc c\

add
{aldus

£ ani
arity
classic.ge
(jcomposer

Drives:

‘Word Document

Document Template (*.dot)
Text Only {*.txt)
Text Only w/line breaks (*.txt)
[10) axi be)

Figure 9: Internal Attributive Articulation of File Data Objects

WFW's data objects, for example, reveal their internal articulation (their
attributive "morphology") through dialogue boxes that pop up during routine
interaction. Characters, and strings (arrays of characters), have a number of
attributes as suggested by the "Format Character" dialogue box (see Figure 7).
The same is true for paragraphs, which aiso reveal their internal data fields
through a dialogue box that follows a "Format" command (see Figure 8). Files,
however, aiso have formats, but because they are at the top of the data object
hierarchy of this application, they can only be manipulated by operations that
involve the operating system itself. There is not "Format File" command in the

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p. | 5

menu bar, although what the user is really doing with a "Save-as" is file formatting
(see Figure 9).

Data structures in WFW's extension language, therefore, could be organized into
records whose fields correspond to the attributes users can set through the
interface. In an object-oriented framework, suggested by some of the Word Basic
macro code, these record fields could eventually include procedures that apply to
the data objects in specialized ways ("FileSaveAs.Name" is precisely an example
of a procedure infixed between an object and its attribute). This approach has
been extensively discussed in [Andersen’93].

As a result, objects, methods and attributes, appearing in WFW's interface would
become complex data structures that the users should easily recognize. in order to
illustrate our point, let us take the three objects exemplified above: character-
string, paragraph and file. Table 1 shows the kind of articulations they might have.

Object Methods Attributes

character-string format font, style, color,
super/subscript,

spacing, points

delete, copy, paste, —_
select, find, replace

paragraph format alignment, indentation,
pagination, line
numbers, spacing, line
spacing, tabulation

delete, copy, paste, —
select, find, replace

file format type/extension
write, read type/extension, name,
(sub)directory, drive,
sharing
close —

Table 1: Examples of Data Objects, their Methods and Attributes

Table 1 presents examples that we don't claim to be either exhaustive or correct.
They are expected to give the reader a flavor of the correspondences that exist
and should be maintained between WFW and Word Basic code. The object-
oriented paradigm, moreover, has an inheritance mechanism that is not shown in
Table 1, but that the user intuitively grasps: for instance, formatting operations on
a paragraph affect all of the characters in it.

- A noteworthy issue in this framework is that, since the above data object structures
are supposed to-serve both for text editing and extension programming, the way in
which they are expressed in one interface must be consistent with the

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p. |6

way they are presented in the other. What Draper called inter-referential 1/0,
within the sole limits of a non-extensible application's interface [Draper'86], now
becomes a critical feature of a matrix of /O communication systems. For instance,
if files are data objects similar to paragraphs and character-strings, this should be
shown in WFW. In its current version, we see that character-strings and
paragraphs are grouped together in the interface menu, but files are not. However,
as soon as a file is saved as "text with line breaks", all formatting vanishes. Are
users expected to understand why this happens in such a way that they can write
useful programs involving interactions between paragraph and file formatting
methods?

With data structures and methods such as suggested above, the user can write
programs equivalent to the ones generated by the Recorded tool. Instructions can
be written by recording text editing operations. Variables and constants can be
associated to each data structure by special widgets of the programming interface,
as is proposed in Figure 10. Control Structures, in their turn, include Myers's small
set of conditionals and loops.

Continuity with WFW is achieved by a number of features:

« WFW's commands may be introduced in the user's program by demonstration,
through operations performed in a child-window within a global end-user
programming environment, in addition to direct typing of statements in Word
Basic (or other alternative EUPL);

« Data objects, along with elements of their internal structure, may be created
and manipulated by clicking on buttons with icons which are adapted or simply
copied from WFW's tool bar icons. Variables to store such objects may be
automatically created by direct interface actions such as clicks;

» General control structures such as conditionals and iterations can be
introduced in programs by special programming tools in the toolbar. Users may
program "if-then-else" and "case" structures, as well as "for" and do-while"
structures. Prompts for conditions and actions, as well as for the number of
iterations or their escape state may guide novices through programming steps.

A snapshot of the kind of integrated semiotic system that might be devised for both
the UIL and the EUPL in a Word for Windows environment is shown in Figure 10.
The images used for the Control Structure tools are geometric forms associated to
the meaning of conditionals and iterations [de Souza and Ferreira'94]. An "if"
statement is a two-fold decision structure we have chosen to represent as a
bifurcation of a linear path; a "case" statement is a manifold decision structure
represented as a splitting into many optional paths. "For" and "Do-while"
statements are represented by a circle (an image that evokes loops, as in
expressions like "merry-go-round" or "round-trip"): the latter has a vertical line
preceding the loop to represent the test for the condition before the loop, and an
alternative path beneath the circle to represent the escape condition.

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... -p. |7

WFW's End User Programming Environment gﬁ;
Execution Data Structures Control Structures Help i

¥
1piteer

ion="mcw"

Dim fileB1$ | " "
file01s-FileNjiiq_Filey, Edit View

If file01$.Exte} W IR

End

Figure 10: An outline for the End User Programming Interface of WFW
In Sum...

Extension languages associated to computer applications must be carefully
designed to meet users needs and allow them to write useful new programs and
procedures within the application's environment. Their interest and motivation for
doing so is probably in direct proportion to their inclination to play games by the
rules [Nardi'93], their talent to learn and use coded languages, and the positive
impact of the kinds of extensions the user may program upon hisfher work or
leisure activities.

Careful end user programming language design involves the conception of an
integrated semiotic system that goes as seamlessly as possible from the
applications user interface ianguage to its embedded programming environment.
Task-specific objects and actions should ideally be accessible through the same
code (words and/or images), whereas programming-specific elements (such as
variables, conditionals, loops and the like) should be coded in a small, simple and
generic system of lexical items and syntactic rules (textual and pictorial) that allow
users to grasp the basics of computation.

C.S. de Souza (1996) - The Semictic Engineering of Concreteness and Abstractness... - p.18

3. Discussion

Our first attempt at setting the guidelines for Semiotic Engineering [de Souza'93]
has approached the issues involved in HCI within the limits of the application's
interface. Our major concern was then to contribute to the design of user interface
languages (UlIL's) from a more static point of view. Applications were considered
as achieved artifacts that users could wield to solve novel problems in unpredicted
situations, without any changes to the underlying program. However, as HCI
moves towards more dynamic settings in which users should be able to become
programmers of high-level extensions and adaptations to existing systems and
programs, Semiotic Engineering must be revised to accommodate this feature.

The brief analysis reported in the preceding section serves to show that the end
user programming language (EUPL) must be harmonized with the UIL.
Discontinuities between both languages severely impact the usability of the
application's programming facilities, and above everything else prevent designers
from getting their full message across. However, the challenge behind an
integrated design of UIL and EUPL (UIL&EUPL) is that whereas UIL draws upon a
wealth of task-specific signs (words and images) that an engaged user easily
recognizes as long as they are selected from a consistent set of culturally
established communication codes, EUPL goes into computer-specific jargon and
knowledge. As mentioned before, EUPL draws upon a kind of folk-theory of
computer, which is something HCI research has not explicitly tackled to date.

Semiotic Engineering guidelines shortly stated that:

1. Designers should avoid using invented interface signs;

2. Designers should select interface token sign systems from culturally
established type systems of communication;

3. Designers shouid use heteromaterial signs to refer to domain-dependent
entities and, as much as possible, use homomaterial signs to refer to and
reinforce the expression of computer interface devices (such as mouse
pointers, windows, menus, and the like);

4. Designers should always build highly articulated user interface communicative
systems.

Nevertheless, as we see, UIL&EUPL is a much more complex system. The above
guidelines apparently do not apply to EUPL as well as they seem to UIL. For
instance, the cuiturally established code for any programming language is a
textual type system of which C, Pascal, Smalltalk, Prolog, LISP or Linda may be
taken as representative tokens [Gelernter & Jaggannathan’90]. Of course this
system is too diverse from the usual GUI type system we find in most current
applications interfaces [Marcus'92, Apple'92, Mullet & Sano'95, Microsoft'95].
Integrating both systems is a difficult semiotic problem which has not even been
stated to its full extent.

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p.19

One of the points our guidelines fully fail to address, and that is central to
UIL&EUPL, is that of self-referring signs. Some kind of self-reference is aiways
involved in the new integrated language environment we are dealing with
inasmuch as users are using some application facility to change the application
itself. Decisions about the kind. of sign we must use to convey this idea have to
face problems like the ones we have mentioned about the Edit Graphic tool in 2.1,
above.

One of the complexities of the sign is precisely self-reference. The tool bar
where the widget stands is a series of button+drawing interface signs. All are
graphical interface signs, created by some sort of graphical editor. But, one of
these creatures stands for its "creator": the graphical editor. The collapsing
hierarchy of interpretants in this case contributes to blur the distinctions between
expression and content, which according to Semiotic Engineering is in principle
undesirable rhetoric for one-shot messages.

Our guideline in this case is that application domain-dependent interface signs
should be heteromaterial, whereas computer(software)-related signs shouid be
homomaterial (and not be expressed by analogies with outside world notions and
objects). Apparently, although the guideline has been followed in this case, the
resuiting sign doesn't seem to be as easily interpretable as another one produced

under the same conditions: the - sign. The reason for the greater complexity of
the Edit Graphic widget may lie in the level of abstraction it requires compared to
the virtually nonexistent level of abstraction in the Mouse Cursor widget. The
geometric objects in the former are raised to the condition of type-objects, whereas
in the latter we can find a replica of a uniquely identifiable token-object.

Within the limits of UIL, the Edit Graphic widget defies our guideline about the
selection of homomaterial signs because, by necessity, such signs end up by
standing for themselves (expression collapses with content) which is a clear case
of ratio difficilis (explicitly exemplified by Eco in [Eco'76]) — no established
expression system is created by having referents being raised to the position of
their own sign, uniess we are prepared to go into natural systems where things
"mean" what they are.

The problem with UILQEUPL is that programs do generate other programs, tools
do create other tools — software does produce software. It is not a straight
forward replicant structure, because although Graphic Editors can and do produce
the UIL signs used as their own expression, they can and do produce many other
signs. The issue seems to be one of finding which signs should be used to
express the notion of a variable, for instance. The low-level association with a
fixed storage location for transient values in a program is too far away from task-
specific jargon any user can understand. Much better is the notion of a universally

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p.20

quantified type-like entity (as in the case of Prolog variables, for example)
borrowed from the application's domain: character strings, paragraphs, or files.
However, such type-like entities are (1) heteromaterial signs (i.e. they contradict
our first approach to Semiotic Engineering) and (2) metonymical or metaphorical
expressions of their true referents.

The problem with (1) can be easily solved by revising an incipient theoretical
approach. The problem with (2), however, has been sensed by other researchers
in the field of end-user programming and does not seem to have any promising
solution in view. Successful EUPL's like spreadsheet languages, for example, treat
cells as variables: but, just how far does the metaphor go? [Myers'92, Nardi'93]
The real "message" from designer (in this case the extension language designer)
to user is that programming is achieved by manipulating values across space and
time in a computing machine [Gelernter & Jaggannathan'S0].

Real programming capacity is not a local skill that users should gain unknowingly.
Rather, it is a new kind of knowledge and talent any user should consciously
acquire, like that of operating telephone sets, VCR's, microwave ovens, cars, and
everyday technology in general. Therefore, the first step towards a solution is to
pose the guestion of what knowledge (thus, what message) we want our users to
get. The second is how to teach (thus, tell) them what they should learn. And it
does seem to be the case that we want to have our users know something quite
abstract, although not necessarily difficult, about computation.

Here is one of the hot issues involved in UILO&EUPL.: is there a semiotic system
that can blend concreteness (of applications domains) and abstractness (of
computing theory) into one "language"? Can this language be easily learned and
used? Can this language be useful?

Our brief sketch of a more integrated EUP environment for WFW in 2.2 suggests
that data structures of the EUPL should be borrowed from the application domain
expressive system used in the UIL. However, such data objects should not be
encapsulated entities because users would then be unable to write interesting
extensions to software (as shown in our example). Data objects should be
articulated structures, in accordance with the attributes and behavior such objects
are shown to have in the UIL (the primary designer's message to users). For
example, as users choose to format characters in WFW, they discover that this
kind of objects have a number of attributes (see Figure 8). Of course, because
they can operate upon such attributes in the UIL, they should be able to operate
upon them in the EUPL as well. Thus, the data object should be structured in such
a way that each attribute is some sort of "field" that the user can access and
modify.

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p.21

In a typically task-oriented UIL like WFW's, similar data structures are scattered
throughout different access points. File formats are not found under the Format

menu, but rather under the File (Save, Save_as) menu (see Figure 10). Although it
is a good solution for the UIL alone, it is not as good for integrated UIL&EUPL
since important generalizations are totally lost, like the fact that certain data can
be interpreted as '[" or as "®" depending on its "font" attribute, just like certain
other data can be interpreted as ASCII characters or realistic rendering of images
depending on its "file format" attribute. This particular generalization is perhaps
one of the most important pieces of knowledge about computation — that the
same finite collection of symbols may take on indefinitely many meanings
depending on how we program the machine to react to its presence [Eco'88].

Thus, there is apparently a clash of important dimensions between task-oriented
UIL design and what seems to be a use-oriented UIL® EUPL design. Classification
principles that organize signs into encapsulated vs. articulated systems of
expression in UIL do not function equally well in the corresponding EUPL. The
lines of similarities and contrasts behind user interface language grammars are
drawn based on task-related situations, whereas with end user programming
languages they are drawn based on reference and discourse situations. The
natural consequence is that an integrated language design is exponentially more
difficult to achieve.

in face of such design costs, we should ask ourselves about the benefits and
gauge the cost/benefit ratio. Although end user programming is undeniably
desirable, it is an open question whether an Extended Semiotic Engineering
approach to UIL@EUPL will lead users faster or farther to successful computing
compared to competing visual programming, object-oriented programming or logic
programming approaches. Whereas Semiotic Engineering has the onus of being
an incipient approach which has provided as yet no corpus of fully designed and
implemented UlL's, EUPL's, or UIL&EUPL's, other approaches have the onus of
being born within a community that has hardly, if ever, seriously considered
communicative problems with programming languages for non-expert end users
[Dertouzos'92). Post-hoc integration with UIL's is as difficult as Word Basic has
illustrated in our example.

5. Concluding Remarks

Our conclusions at this point are more a matter of speculation and sense than of
thorough testing and analysis. Firstly, the new scenario for end user programming
and human-computer interaction as a whole reinforces our belief in that user
interfaces are, indeed, metacommunication artifacts that require careful semioctic
design. The price to pay for even linguistically correct approaches, in which syntax

C.5. de.Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p.22

and semantics of interface languages are simple and efficient per se, seems to be
high. The lack of communicative integration imposes large cognitive loads on
users, who have to learn a host of novei constructs and notions as they move from
one environment to the other, and eventually threatens software designers with
the ghost of unusable (or underutilized) code along with the commercial risks
associated with it.

Secondly, because of such semiotic requirements, human-computer interaction
does seem to move into the realm of computer-aided interpersonal
communication. This idea goes far beyond the most popular views of multimedia
and networking systems being a new kind of environment for people to interact
with each other, and brings forth the original connections between computing and
semiotics perceived by Peirce himself [Peirce’31] and tracked by other
researchers over the years [Zemanek'66, Kammersgaard'88, Nadin'88, Eco'88,
Andersen'90]. A major change in HCI can be expected if designers realize that
they, and not the system they write, are talking to users over the interface and if
users, in their turn, realize they are not getting the machine's or the system's
message, but the designer's.

-——’ Interface Message |3

Abstracted
Conceptual Model
of the Application

 ———————a— l Application's Model |

Figure11: The Semiotic Engineering Framework for UIL@EUPL

-

@terface Message)

ended Usability
Model of the
Application

Extended,
Customized, and/or
Integrated

Application's Madel

Thirdly, if users realize that systems are messages (discourse) somebody has
written and sent to them, they may be encouraged to use the same resource to
write their own messages (to themselves and/or to others, in a collaborative
environment [Nardi'93]), as is suggested in Figure 11. This leap could certainly
represent a turning point in computing, as pointed out by the SIGCHI'90 Working
Group Report we have mentioned in Section 1. However, the leap can only take
place if user interface design reflects a new stand in HCI.

Fourthly, the balance between concrete and abstract message elements in an
integrated UIL@EUPL environment requires some gradual progression of task-
specific domain-dependent interactive languages to more general models of
computational solutions to everyday problems. Oberlander and Stenning have
provided a most interesting framework in which representation systems can be
classified and shown to function as a resource for mastering abstract reasoning

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p.23

[Oberlander & Stenning'95]. According to these authors, limited-abstraction
representation systems, in which people can take certain symbols to stand for
higher-order type objects, with undefined features, help them manage the

difficulties of reasoning in highly abstract terms. Along this line, end user
programming may well evolve from a limited-abstraction programming language
that does not fully implement the idea of Turing Machines, but still lead users to
the practical benefits of everyday computing. Among the important features
included in this language is efficient typeftoken distinction and expressibility in
program texts, and powerful self-reference mechanisms, which together
encourage and facilitate some of the relevant abstractions.

Finally, there are some points that can be added to a research agenda in Semiotic
Engineering regarding the integration of user interface languages to end user
programming environments. These are the following:

1. Find out if there is a global design orientation that can organize both the UIL
and the EUPL semiotic systems into one UIL& EUPL communicative setting

2. Select minimal data and control structures for EUPL's

3. Identify a general procedure to reuse UIL signs as articulated type-signs that
can function as variables

4. Embed the UIL within the EUPL environment, in an apparent reversion of
what is commonly believed to happen (embed the EUPL within the UIL)

5. Carry out a host of empirical studies to understand more deeply the semiotic
nature of interacting with computers and writing programs, and the
hypotheses that emerge from such understanding.

As with the topics included in other research agendas in this area [Myers'92,
Nardi'93, Eisenberg'95], the above are expected to contribute to further our
understanding about the nature of computing and the kind of quality it may bring to
individuals, communities and societies in the future.

Acknowledgements

| would like to thank all my graduate students who volunteered to participate in a work group on
Semiotic Engineering last winter and spring. | am especially thankful to Isa Haro Martins, Jair
Cavalcanti Leite and Deller James Ferreira for their patient listening and helpful questioning during
the first presentation of the ideas contained in this paper. Very special thanks go to Ana Cristina
Bicharra Garcia for her enthusiastic support, constant understanding, and immense tolerance to
recent changes in our projects priorities due to my total involvement with the issues presented in
this paper. | am also grateful to CNPq, the agency which has given me a grant to do research
about Semiotic Engineering and to participate in the Dagstuhl Seminar on informatics and
Semiotics. Last, but not least, I'd like to thank Luiz Fernando Gomes Soares for his friendship and
help with the high- and low-tech problems of text editing and pretty printing.

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p.24

6. References

[Adler & Winograd’92] Adler,P. and Winograd,T. (1992) Usability : Turning Technologies into Tools.
New York. Oxford University Press.

[Andersen’90] Andersen,P.B. (1990) A Theory of Computer Semiotics. Cambridge. Cambridge
University Press. '

[Andersen'93] Andersen,P.B. (1993) A Semiotic Approach to programming. in Andersen, Holmqvist
and Jensen (Eds.) Computers as Media. Cambridge. Cambridge University Press.

[Apple’92] Apple Computer, Inc. (1992) Macintosh Human Interface Guidelines. Reading,Ma.
Addison Wesley.

[Chang'90] Chang,S. (1990) Visual Languages and Visual Programming. New York. Plenum Press.

[Cordy’92] Cordy,J. (1992) Why the User Interface is NOT the programming language : and how it
can be. in Meyers,B. (Ed.) Languages for Developing User Interfaces. Boston. Jones and

Bartlett. pp. 91-100

[Cypher & Canfield Smith'95] Cypher,A. and Canfield Smith,D. (1995) KidSim: End User
Programming of Simulations. Proceedings of CHI'95. ACM Press. pp.27-34

[de Souza & Ferreira’94] de Souza,C.S. and Ferreira,D.J. (1994) Especificagdes Formais para
Linguagens Visuais de Programagio. Anais do VIl SIBGRAPI. Curitiba,Pr. SBC/UFPTr.

pp.181-188

[de Souza’93] de Souza,C.S. (1993) The Semiotic Engineering of user interface languages.
International Journal of Man-Machine Studies. No.39. pp. 753-773

[Dertouzos'92] Dertouzos,M. (1992) The user interface is the language. in Meyers,B. (Ed.)
Languages for Developing User Interfaces. Boston. Jones and Bartlett. pp. 21-30

[Draper'86] Draper,S.W. (1986) Display managers as the basis for user machine communication. in
Norman and Draper (Eds.) User Centered System Design. Hillsdale. Lawrence Erlbaum
and Associates. pp. 339-352

[Eco'76] Eco,U. (1976) A Theory of Semiotics. Indiana University Press

[Eco'88] Eco,U. (1998) On truth: a fiction. in Eco, Santambrogio and Violi (Eds.) Meaning and
Mental Representations. Bloomington. Indiana University Press

[Eisenberg’95] Eisenberg,M. (1995) Programmable Applications: interpreter meets Interface.
SIGCHI Bulletin. Vol.27, no.2. pp.68-93

[Gelemter & Jagannathan'90] Gelernter,D. and Jagannathan,S. (1990) Programming Linguistics.
Cambridge,Ma. MIT Press.

[Hutchins, Hollan & Norman’86] Hutchins,E.L.; Hollan,J.D.; and Norman,D.A. (1986) Direct
Manipulation Interfaces. in Norman and Draper (Eds.) User Centered System Design.
Hillsdale. Lawrence Erlbaum and Associates. pp.87-124

[Kammersgaard'88] Kammersgaard,J. (1988) Four different perspectives on human-computer
interaction. International Journal of Man-Machine Studies. No.28. pp.343-362

[Lieberman & Fry’95] Lieberman,H. and Fry,C. (1995) Bridging the Gulf between Code and
Behavior in Programming. Proceedings of CHI'95. ACM Press. pp.480-486

[Marcus'92] Marcus,A. (1992) Graphic Design for Electronic Documents and User Interfaces. New
York. ACM Press.

[Microsoft’95] Microsoft Corporation (1995) The Windows Interface Guidelines for Software Design.
Redmond. Microsoft Press.

C.S. de Souza (1996) - The Semiotic Engineering of Concreteness and Abstractness... - p.25

[Mullet & Sano’85] Mullet,K. and Sano, D. (1995) Designing Visual Interfaces. Menlo Park. SunSoft
Press.

[Myers'92] Meyers,B. (1992) Languages for Developing User Interfaces. Boston. Jones and
Bartiett.

[Myers, Smith & Horn’92] Myers,B.; Canfield Smith,D.; and Horn,B. (1992) Report of the End User
Programming Working Group. in Meyers,B. (Ed.) Languages for Developing User
Interfaces. Boston. Jones and Bartlett. pp. 343-366

[Nadin'88] Nadin,M. (1988) Interface design: A semiotic paradigm. Semiotica. Vo0l.69. Nos. 3/4.
pp. 269-302

[Nardi’93] Nardi,B. (1993) A Small Matter of Programming. Cambridge, Ma. MIT Press \

{Obertander & Stenning’95] Stenning,K. and Oberlander,J. (1995) A Cognitive Theory of Graphical
and Linguistic Reasoning: Logic and Implementation. Cognitive Science Vol.19. No.1.
pp.97-140

[Peirce’31] Peirce,C.S. (1931) Collected Papers. Cambridge,Ma. Harvard University Press.
[Shu’88] Shu,N. (1988) Visual Programming. New York. van Nostrand Reinhold.

[Zemanek’66] Zemanek,H. (1966) Semiotics and Programming Languages. Communications of
the ACM. Vol.9. No.3. pp. 139-143.

[Zloof'81] Zloof,M. (1981) QBE/OBE: A language for office and business automation. IEEE
Computer. May-1981. pp. 13-22

