/7,

=2

N AN

HIt

ISSN 0103-9741

Monografias em Ciéncia da Computagéo
n° 20/96

On Infinite Fork Algebras and their
Relational Reducts

Paulo A. S. Veloso

Departamento de Informatica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEiRO
RUA MARQUES DE SAO 'VICENTE, 225 - CEP 22453-900
RIO DE JANEIRO - BRASIL



PUC RIO - DEPARTAMENTO DE INFORMATICA ISSN 0103-9741

Monograﬁas‘ em Ciéncia da Computacao, N° 20/96
Editor: Carlos J. P. Lucena June, 1996

On Infinite Fork Algebras and their
Relational Reducts *

Paulo A.‘ S. Veloso >

* This work has been sponsored by the Ministério de Ciéncia e Tecnologla da
Presidéncia da Repubhca Federativa do Brasil.

** On leave at Instituto de Matematica, Universidade Federal do Rio de Janeiro.



In charge of publications:

Rosane Teles Lins Castilho

Assessoria de Blbllofecc Documenfcq:oo e Informag@o

PUC Rio — Depcrfcmen’ro de Informdtica .

Rua Marqués de Sdo Vicente, 225 — Gavea

22453 900 — Rio de Janeiro, RJ

Brasil

Tel. +55-21-529 9386 | Telex +55-21-31048 Fax +55-21-511 5645
E-mail rosane@inf.puc-rio.br
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Abstract. A fork algebra is a relational algebra enriched with a new binary operation. They have
been introduced because their equational calculus has applications in program construction, they
also have some interesting connections with algebraic logic. In this paper, we concentrate on the
infinite fork algebras, with the purpose of contrasting them with relational algebras and with the
finite fork algebras. For this purpose, we introduce some concepts for the analysis of fork algebras
and construct some special infinite relational algebras and fork algebras. We try to correct a
somewhat embarrassing mistake (and simplify some constructions) that occurred in a previous
report. The finite:fork algebras are somewhat uninteresting, being essentially Boolean algebras,
uniquely characterized by their relational reducts. This contrasts with the case of infinite fork
algebras: we introduce concepts and methods for the analysis of fork algebras and use some set-
theoretical constructions to exhibit many relational algebras of each infinite cardinality with many
expansions to fork algebras. We begin by providing some background about fork algebras and their
reducts (relation and Boolean algebras): their abstract versions, some simple results concerning the
algebraic structure of fork algebras, and their concrete, set-based, versions (fields of sets and
proper relational and fork algebras). We then recall some results concerning the Boolean fork -
algebras (where fork is Boolean meet) and the finite fork algebras (they are completely determined
by their relational reducts, which we call rigid, in contrast to the infinite fork algebras). We examine
fork-expansions of relational algebras, with the purpose of comparing relational algebras and fork
algebras. Then, we introduce methods for the analysis and construction of fork algebras and,
finally, use some set-theoretical constructions to exhibit many (simple, proper) relational algebras
of each infinite cardinality with many expansions to fork algebras. Such (infinite) relational algebras

demonstrate quite clearly the diversity of possible fork operations. -

Key words: Fork algebras, relational algebras, Boolean algebras, expansions, simple algebras,
infinite fork algebras, fork expansions, proper relational algebras, proper fork algebras.

Resumo. Uma algebra de fork é uma édlgebra relacional enriquecida com uma nova operagdo
binéria. Tais 4dlgebras foram introduzidas porque seu célculo equacional tem aplicagGes em
construcdo de programas, tendo também interessantes conexdes com Iégica algébrica. Este trabalho
se concentra em algebras de fork infinitas, contrastando-as com as dlgebras relacionais e com as
4lgebras de fork finitas. Com este objetivo, sdo introduzidos alguns conceitos para a analise de
dlgebras de fork bem como construgdes de algumas dlgebras de fork infinitas especiais. Também
tentamos corrigir um embaracoso engano (e simplificar algumas constru¢des) em um trablaho
anterior. As dlgebras de fork finitas sdo de reduzido interesse, uma vez que sdo essencialmente
algebras de Boole, unicamente caracterizadas por seus redutos relacionais. Isto contrasta com 0
caso das dlgebras de fork infinitas: introduzimos conceitos e métodos para a andlise de dlgebras de
fork e empregamos algumas construgdes com conjuntos para exibir diversas dlgebras relacionais de
cada cardinalidade infinita possuindo varias expansdes a dlgebras de fork. Comegamos recordando
conceitos e resultados relativos a dlgebras de fork e seus redutos (dlgebras relacionais e de Boole):
suas versdes abstratas, alguns resultados simples acerca da estrutura algébrica das dlgebras de fork,
e suas versdes concretas, baseadas em conjuntos (corpos de conjuntos e dlgebras de relagbes e de
fork préprias). A seguir, sdo recordadso alguns resultados referentes as dlgebras de fork Booleanas
(em que fork é a conjungdio Booleana) e as dlgebras de fork finitas (estas ficam completamente
determinadas por seus reduto relacionais, que denominamos de rigido, em contraste com as
dlgebras de fork infinitas). Examinamos as expansdes por fork de dlgebras relacionais, a fim de
comparar estas dlgebras com élgebras de fork. Em seguida, introduzimos métodos para a andlise de
dlgebras de fork e utilizamos algumas construgdes com conjuntos para exibir diversas dlgebras
relacionais (simples e préprias) de cada cardinalidade infinita possuindo vérias expansoes a dlgebras
de fork. Tais dlgebras relacionais (infinitas) demonstram claramente a diversidade de possiveis
operagdes fork. : :

Palavras chave: Algebras de fork, 4lgebras relacionais, 4lgebras de Boole, 4lgebras simples,

dlgebras de fork infinitas, expansées por fork, dlgebras relacionais proprias, dlgebras de fork
proprias.
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1. INTRODUCTION

A fork algebra (FA for short) is a relational algebra (RA, for short)
enriched with a new binary operation, called fork. Such algebras have
been introduced because their equational calculus has applications in
program construction. They also have some 1nterest1ng connections with
algebraic logic.

In this report, we concentrate on the 1nf1n1te FA’s, aiming at contras_ting
them with RA’s and with the finite FA's. For this purpose, we introduce
some concepts for the analysis of fork -algebras and construct some special
infinite RA’s and FA's. We also try to correct a somewhat embarrassing .
mistake (and simplify some constructlons) that appeared 1n a prev1ous
‘report [Veloso '96b]. : ‘

The finite FA’s, bemg essenttally Boolean algebras, are somewhat
uninteresting. Also, a finite FA is completely characterised by ‘its RA
reduct. This contrasts with the richness of the infinite FA’s: we introduce
some methods for the analysis of FA’s and use some set-theoretical
constructions to exhibit many infinite (simple proper) RA’s of each infinite
cardinality with many expansions to FA’s.

We employ the following main ideas. We control the size of RAs by -
controlling the sizes of their sets of generators. We guarantee that an RA
has an FA expansion by putting the defined projections of the latter in its
carrier. We force simple proper (set-based) FA's to be non-isomorphic by
controlhng the sizes of the set of fixpoints of their underlying codings.
Finally, we construct non-isomorphic (non-simple) RA's by controlling the
sizes ‘of their sets ‘of ideal elements or by controlhng thelr prime  (simple
and non-trivial) direct-product factors. ‘ :

For readability we present each result with an outline of its proof. More
detailed proofs are presented in the appendix at the end of the paper. The
structure of this report is as follows (Sections 2 and 3 are mainly
background and review of known results [Veloso '96a,b]. The main body
~consists of sections 4, 5 and 6, which cover mainly infinite FA’s and RA’s.)

Section 2 provides some preliminary background about fork algebras and
their reducts (relation and Boolean algebras), beginning with their
abstract versions, examining some simple results concerning the algebraic
structure of FA’s, and proceeding to their more concrete, set-based,
versions: fields of sets and proper FA’s and RA’s. We then review in
section ‘3 some results concerning the Boolean FA’s (those where fork is
Boolean meet) and the finite: FA’s: the Boolean FA’s (whose reducts turn
out to be Boolean -RA’s) are characterised as subalgebras of direct powers
of the two-element FA; the finite FA’s are described as finite direct
powers of the two-element FA, and the only simple finite FA’s are those
with one or two elements. This shows that a finite FA is completely
determined by its RA reduct (which we call rigid);-in .contrast with the
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case of infinite FA’s.*'In section 4 we establish the existence of simple non-
Boolean (proper) FA’s of each infinite cardinality. Then, in section 5, we
suggest some concepts and methods for the analysis of FA's and their RA
reducts, with the purpose of comparing RA’s and FA’s. We examine fork
expansions of RA’s, introduce some -indices for the fork-expandability of
RA’s, and examine the direct-product factors of FA’s. Then we consider
some concepts for the analysis of (proper) FA's, examine how they can be
controlled by means of the underlying coding, and consider also some
methods for constructing (infinite, simple) proper FA's. In section 6, we
apply these ideas to fork expansions of infinite RA's: we use 'some set-
theoretical constructions to exhibit many infinite (simple, proper) non-
‘Boolean RA’s with many expansions to FA’s. Such (infinite) RA’s
demonstrate quite clearly the diversity of possible fork operat1ons
Finally, section 7 presents some concluding remarks.

2. PRELIMINARIES: FORK ALGEBRAS AND THEIR REDUCTS

An abstract fork algebra (FA, for short) is a relational algebra enriched
with a new binary operation, called fork. A relational algebra (RA, for
short) is an expansion of a BA (short for Boolean algebra) with -some
Peircean operations and constant. '

We shall use B for the signature <2,1,2> (with 2 constants, 1 unary
operation and 2 binary operations) of the BA s, A for the signature <3,2, 2>
of the RA’s, and ¢ for the signature <3,2,3> of the FA’s.

We shall call an algebra trivial when its carrier has more than one
element. As usual, an algebra is simple iff it has no proper homomorphic
images. We shall call an algebra prime iff it is simple and non-trivial (its
carrier has more than one element) :

W1th1n the context of a fixed class of algebras we shall use v(x) for the
(cardinal) number of isomorphism classes of algebras with cardinality «,
and similarly, o(x) for the (cardinal) number of isomorphism classes of
51mp1e algebras with cardmahty k. { Clearly o(k)sv(K). } :

2.1 Abstract Boolean, Relational and Fork Algebras

We now br1ef1y recall some concepts pertammg to (abstract) Boolean

relational and fork algebras. ; ,

A Boolean algebra (BA, for short) is an algebra B=<B,0,00,7,+,0> w1th

signature B=<2,1,2> (so 0, coeB, ":B—B, and +,0:BxB—B), satlsfymg well-

known equations [Bell & Slomson '71; Burris & Sankappanavar '81; Halmos

'63]. We shall use < for the Boolean ordering (aeb=a iff a<b iff a+b=b).

A relational algebra (RA, for short) is an algebra R=<R,0,%0,1,7,7,+,0,;> with

signature A=<3,2,2>, satisfying familiar equations, to the effect that

- its BA reduct Rg:=<R,0,%0,7,+,0> is a BA with Boolean ordering <;

- the Peircean reduct <R,1,7,;> is a semigroup with identity 1€ R and
involution :R—R, so 17=1, (rf)T=r and (r;s)T=(st);(r?),

- for all r,se R: (rf);(r;s)7<s™, i. e. (rt);(r;s) +s™=s".



Recall that the simple RA’s are those satisfying Tarski's rule: oco;r;co=oo
whenever r#0 [Jonsson & Tarski '52, Theorem 4.10, p. 132, 133].

A pair of (conjugated) quasiprojections for RA R=<R,0,%0,1,7,%,+,¢,;> amounts
to elements 7,pe R such that: wt;n<l, p¥;p<1, and w;p=co. {In fact, for such a
pair T and p of quasiprojections we have mT;n=1=p%;p}. A quasiprojective
RA (QRA, for short) is an RA that has a pair of quasiprojections [Tarski &
Givant '87, p. 242]. ' - L
Consider an algebra R= <R O W1, ,T,+,-,,> of s1gnature A=<3, 2 2>. By adding a
binary operation V:RxR— R, we obtain an algebra XY of 31gnature
0=<3,2,3>, called its V-expansion. Note that in any such expansmn we
have elements 7:=(1Veo)T and p:: (°°V1) - :
Afork algebra (FA, for short) is an algebra F=<F,0,00,1,7,1,+, ,,,V> with
s1gnature ¢=<3,2,3>, such that =~ :

- its RA reduct ﬂ'=<F 0,00,1,” ,T,+,o,,> is an RA w1th Boolean orderlng

- w1th T —(lVoo)T and p:=(=2V1)! as above ‘ .
" for every r,s,p,qe F: (er) (pVq)t=(r; pT)-(s,qT) . (V vs. ),

for every r,se F: rVs=(r, nT)o(s p) , (V-def),
TVp<1 (1. e. TVP+1= 1) ;o ' ' (V proj).

Since the class of RA’s has an equat10na1 characterisation [Chm & Tarski
'50, Theorem 2.2, p. 350; Jénsson & Tarski '52; Veloso '74, p. 8], so does
the class of FA’s. We use FA for the variety of the FA’s.

It is not difficult to see that, in any FA ¥ the defined elements 7:=(1Voo)f
and p:=(coV1)T form a pair of quasiprojections (such that (T;7t)e (p pT)<1)
,[Fnas et al. '95, '96]. Thus, the RA reducts of FA s are QRA S. _

2.2 Algebraic Structure of Fork Algebras

We now recall some 51mp1e results concerning the algebraic structure of
FA’s [Veloso '96a]. They come from the crucial, though simple, observation
that in an FA fork is definable by an RA-term from the elements TT=1Veo
and pt=eoV1 in its carrier F. So, preservation of the RA operations as well
~as of T and p entails preservation of fork.

The first result characterises the simple FA’s as those with simple
relational reducts. o RRRR ‘

Theorem Simple FA’s
An FA 7 is simple iff its relational reduct %, is 51mple

The next result characterises the non-simple FA’s as those with non tr1v1a1
direct decomposmons just like RA S. :

Proposntlon Non- -simple FA’s S i
An FA ¥ is non-simple iff F= gx}[ for some non-trivial FA’s G and 5{
The next result provides subdirect decomposmons for FA’s into simple

components - (their simple homomorphic . images), paralleling the analogous
result for RA’s.



Theorem Subdirect décomposition of FA’s into simple components

Every FA 7 is isomorphic to a subdirect product of simple homomorphic
images of 7. L '

We also mention a simple metamathematical consequence of the
preceding results concerning the algebraic structure of the FA’s.

Corollary FA equanons
An FA equation ¢ holds in an FA algebra ¥ iff equatlon ¢ holds in all

(simple) homomorphic images of 7.

2.3 Set-based Boolean, Relation and Fork Algebras

Now, let us briefly describe the proper, set-based, versions of BA’s, RA’s
and FA’s. Much as BA’s arise as abstractions from fields of sets, RA’s (and
FA’s) are abstractions from their set-based versions.

A field of sets (over set U) is an algebra §=<S§,0,U,~,u,n> of signature
B=<2,1,2>, with S #.(U). Its Boolean ordering is set inclusion <. A field of
sets over U is a Boolean algebra that can be embedded into the direct

power 7Y of the two-element BA 7 (of truth values).
By Stone Representation Theorem every (abstract) BA ‘is isomorphic to

some field of sets [Bell & Slomson '71; Burris & Sankappanavar '81;
Halmos '63], and so can be embedded intc‘)‘a direct power of the two-

element BA. : -
A proper relation algebra (over set U) is an algebra 1’=<P,@,V,1U,~,T,u,n,l>
of signature A=<3,2,2>, where

- its BA reduct P3=<P,0J,V,~,u,n> is a field of sets over U2—UxU

- 1yeP is the identity (diagonal) relation over U: 1y:={<u,v>e U2/u=v};

- operation T:P—P is relation transposition, i. e. pT={<v,u>e U%/<u,v>ep};

- operation [:PxP—P is relation composition, i. e. :
ris={<u,w>e U%/3ve U [<u,v>er&<v,w>es]}.

The full PRA over set U is the proper RA P(U?):=< @ (U?),2,U%,1y,~,T,u,n,I>.

- Recall that a PRA (short for proper relation algebra) P=< P,@,V,IU,“,,T,u,m,I>
over U with V=U? is simple [Jénsson & Tarski '52, Theorem "‘4.28, p- 142;
Veloso '74, p. 7, 12]. So, the full PRA P(U?) and its subalgebras are simple.
In contrast with BA’s, not every (abstract) RA can be represented as some
proper RA (see e. g. [Maddux '91; Veloso '74]).
Now,_ a function *:V— U, where _V;Uz, induces a binary operation' Z* on
relations over U (into § (V)), called fork induced by *:V—U, defined by
re*si={<u,v>e V/av' v'e U [V, v'>e V& V'*v"=v&<u,v'>er&<u,v'>e s]} ‘
A proper fork algebra (over set U) is an algebra Q—<Q gV, 1y, T.u,n,l,z> of
signature ¢=<3,2,3>, where :

- its RA reduct Q;=<Q,d,V,1y,~, T u,N,I> is a proper relation algebra over U

- there exists an underlying coding *: :U2—> U such that

* 1§ injective on VgU2 (i. e. the restriction *IV V—U is one-to-one),,

4



- operation £:QxQ—Q is induced by the restriction *;y of * to V, i. e.
r£s:=rs*vs={<u,v>e V/A<v',v">e V [v'*v"=v&<u,v'>er&<u,v">e s]}.
It is not difficult to see that every PFA (short for proper fork algebra) is
indeed a fork algebra [Frias et al. '96].
Notice that each injective function *: U2—>U gives rise to a full PFA over set
U P (U2):=< # (U2),3,U2, lU,~,T,u N,l,2*> as the £*-expansion of the full PRA
P(U2) by the fork «* induced by coding #:U?—U. Thus, the PFA’s with V=U?
are the subalgebras of the full PFA’s, and they are all simple. '
Also, for a simple PFA Q=<Q,2,V, 1y,~,T,u,Nl,«> with V=U?, its underlying
injective coding *:U2—U is surjective iff V£*V=V.
{For, V£*VcV and VeV £*V iff <u,v>e V£*V whenever <u, v>e V= U2 iff
for each ve U, we have v',v"e U with v'*v"=v.}

Moreover, like BA’s and contrasting with RA’s, every (abstract) FA can be
represented as some proper FA [Frias et al. '95, '96], but we shall not
make ‘use of this result here. : : :

3. BOOLEAN AND FINITE FORK ALGEBRAS

We now briefly recall some simplev results concerning the Boolean FA’s
(where fork is Boolean meet) and the finite FA’s [Veloso '96b].

Two very simple finite FA’s are those with one and two elements. It is not
- difficult to show that these are the only finite simple FA’s (see 3.2).

The trivial one-element FA I has single element O=1=co. It is isomorphic to
~ the full PFA P*(J), with carrier # (J)={J}, and underlying coding *=@.

The two-element FA 2 has two elements 0 and 1=o0 with coVoeo=0co, It is
isomorphic to the full PFA P*({<u,u>}) over singleton {<u,u>}, with carrier
# ({<u,u>})={D,{<u,u>}}, and underlying coding * given by uxu=u.

These FA’s 1 and 2 are simple. Also, FA’s 1 and 2 are the only FA’s, up to
isomorhism, \\w1th respectively 1 and 2 elements (since 0V0=0 and 0<1<oo).

3.1 Boolean Relational and Fork Algebras

The RA reducts of the simple FA’s I and 2 are QRA’s, with 1=c0 as both
quasiprojections. They are Boolean RA’s as well.

Recall that a Boolean RA is one where ; is o, T is the identity function, and
l=co [J6nsson & Tarski '52, p. 151], i. e. one satisfying the equations l=eco,
Vx xt=x and VX,y x;y=xey, . Thus, a Boolean RA is a somewhat
uninteresting expansion of a Boolean algebra to an RA. '

Clearly, every Boolean RA is a QRA, with 1=o0 as both quasiprojections.
Also, a direct product X;c;%; of RA's is Boolean iff every %;, iel, is Boolean.

By analogy with Boolean RA’s, let us call an FA #=<F,0,00,1,7 ,T,+,o,,,V>
Boolean iff its fork V is e, i. e. F satisfies the equation VX,y xVy=xey.

By 'the remark in 2.3, a simple PFA whose underlying coding *: U2—>U is
not surjective cannot be Boolean (since V£*VeV)., o

The FA’s 1 and 2 are Boolean FA’s and Boolean RA’s. In.fact, it is not



difficult to séé' that'the relational reduct of a Boolean FA is a Boolean RA.

Lemma Boolean FA’s and RA reducts

The RA reduct of a Boolean FA is a Boolean RA.

Thus, an FA ¥ is a Boolean FA iff =<F,0,00,00,7,1p,+,0,0,0>.

So, Boolean FA’s, like Boolean RA’s, are essentially Boolean algebras.

We can characterise the Boolean FA’s as the ‘subalgebras of d1rect powers
~ of the two-element FA 2. -

Proposition Characterisation of ‘Boolean FA s
A ¢-algebra ¥ is a Boolean FA 1ff F can be embedded into some direct
power 2! of the two-element FA 2. | :

3.2 Finite Fork Algebras

We now describe the f1n1te FA’s as the finite drrect powers of the simple
ones, the latter being those with one and two elements. : |

By a property of Boolean algebras, a.finite FA must have vca‘ﬂrdinality 2n,
for some n>0. The direct power 2" provide an (uninteresting) example of a
(Boolean) FA cardinality 2" for each n>0. Thus, the finite spectrum of the
FA’s is the set {2"/ne N}. ' | S
We now recall that finite simple QRA’s have at most two elements'
(Notice that for a proper QRA P over a finite set U, we must have |U|<l
[Tarski & Givant '87, p. 96].) '

Lemma Upper bound on finite simple QRA’s

There exists no finite simple QRA with more than two elements.

Since FA’s have (quasi)projections, we can see that, up to isomorphism,
I and 2 are all the finite srmple FA’s.

Proposrtlon Description of finite szmple FA s
A ¢-algebra ¥ is a finite simple FA iff either #=1 or ,‘T~

We can now see that the finite FA’s are not very mterestmg.

Lemma Boolean finite FA’s
Every f1n1te FA is Boolean.

We now have a complete description of- the finite FA’s as the f1n1te d1rect
powers of the two-element simple FA 2.

Theorem Description of finite FA’'s _
A ¢-algebra 7 is a finite FA iff ¥ is 1somorphlc to some finite direct power

2" of the two-element FA 2.

Thus, the finite FA’s are not very 1nterest1ng FA S because ‘they are the
finite direct powers of the two-element simple FA -2, so all are Boolean
FA’s, and essentially BA’s. Thus, there exists exactly one, up to
isomorphism, FA of each finite cardinality 2" for n20. In particular, the RA
reduct of a finite RA has .exactly one, up to isomorphism, expansmn to a
fork algebra.



© This description of the finite FA’s is. summarised in the following table:

n=0 1 {trivial} . c(2%=1 v(29)=1
n=1 - 2 {prime}. B | c(2hH=1 v(2hH)=1
n>1 2" {non-simple} L c(2m=0 .= v(2M=1

4 |NF|NITE FORK ALGEBRAS

We now examine infinite FA’s. We shall later see that there exist many
(simple proper) FA’s of each infinite cardinality (even with the same RA -
reduct), in sharp contrast with the finite case.

Each BA can be expanded to a (Boolean) FA. Thus, there exists an FA of
each infinite ;cardinality. We shall now establish the existence of simple
non-Boolean (proper) FA's of each infinite cardinality.

For any infinite set U, U and U2=UxU have the same"cardinality. So, there
exists an injective function *:U2—U. Now, each such injection *:U2—U gives
rise to a full PFA T*(.U2)=< #(U?),2,U2,1,~,T,u,n,l,£*> over U. Notice that
P“(U?) is a simple PFA with cardinality 2%, where x=lUl. Also, P*(U2) will be
non-Boolean if *:U%2—U is not surjective. -

Since removal of an element from an infinite set does not alter its
cardinality, it is easy to obtain injective, non-surjective codings.

Lemma Non-surjective codings for infinite sets ‘

For each infinite set U, there eXists an injective, non-surjective coding
function *:U%—U. '

Thus, an application of the Downward ‘Lowenheim-Skolem Theorem ylelds
the existence of a simple non-Boolean FA of each infinite cardinality.
Proposntlon Large simple non-Boolean FA’s | :

For each infinite cardinal x>X there exists a simple non-Boolean FA w1th
cardinality x.

Proof outline v

Consider an injective, non-surjective coding function *:U2—U, where [Ul=x.
The full PFA P*(U2) is a model, with cardinality 2¥>x, of set Z, consisting of
the FA equations together with Tarski's rule VX(—X=0-—>oc0;Xx;c0=c0) and the
sentence 3x,y — xVy=xey. Thus, set T is consistent; and the Downward
Lowenheim-Skolem Theorem yields the existence: of a ‘simple non- -Boolean
FA # of infinite cardinality 1<<2K ‘

OFD ~ . , . o

We. shall now ;exhibit some simple proper FA’s of given infinite cardinality.
Given an algebra A and a subset G of its carrier, let A[G] be the subalgebra
of 4 generated by G. Note that, if G is infinite with cardinality |Gl=y, then
A[G] has cardinality IA[G]l=y.Ry=y [Burris & Sankappanavar '81, p. 32].

In particular, for an infinite set U we have the infinite full PRA P(U2) over
set U. Given any infinite subset Gc £ (U?2), the subalgebra Pg:=P(U?)[G] of the



full PFA P(U?) generated by G is a simple PRA with cardinality IGI>x .

| Also, ‘given an infinite set U with cardinality K2R, let £ ,(U?) be the set of

finite subsets of U2, and notice that [# ,(U?)l=x.X¢=x. Given an injective

function *:U2— U, the subalgebra P (U2):=P*(U2)[# ,(U2)] of the full PFA

P*(U2). generated by & ,(U?) is a simple PFA with cardinality x. Again,

?(U?) will be non-Boolean if *:U2—U is not surjective. -

~ Proposition Large simple non-Boolean PFA’s

For each infinite cardindl x>X, there exists a s1mple non-Boolean PFA
P (U?) with cardinality x.

Proof outline : B

Consider an injective, non-surjective coding function *:U2— U, where U] ‘K
and the full PFA P*(U2). Then the subalgebra P (U?) of the full PFA ZP*(UZ)-
generated by # ,(U?) is a simple non-Boolean PFA with cardinality x.

~i

OFD ,
The information, so far, on the infinite (proper) FA’s is summarised below:
K2R PU?) {non-Boolean} 1g6(x)Sv(K)

5. RELATIONAL ALGEBRAS AND FORK EXPANSIONS

As mentioned, we wish to analyse the infinite FA’s, comparing and
contrasting them with the finite ones. The finite FA’s are characterised by
their RA reducts, which does not happen with the infinite FA’s, as we will
shortly see. So, this contrast between finite and infinite FA’s is connected
to a comparison between RA’s and FA’s. _

The results concerning the algebraic structure of FA’s and their
metamathematical consequences are very similar to their analogues for
RA’s. This may give the impression of similarity in the behaviour of RA’s
and FA’s. But, representability, as mentioned previously, is already a clear
difference. Further distinctions, indicating that they are quite different,
will seen in the next section. :

‘For the purpose of comparing (mainly 1nf1n1te) RA S and FA S, W& now
examine some considerations and introduce some terminology of a
somewhat ad-hoc nature. ‘ ' : :

5.1 Fork Expansions of Relational Algebras

What FA’s have more than RA’s is a fork operation. This difference
vanishes in the Boolean FA’s, when fork is e. A not so extreme case is that
where fork is e for some elements, say oo. Let us call special those FA’s
J=<F,0,00,1,7,T,+,9,;, V> where coVeo=co (50 coVoo=ocoeco), but 1V1#1. :
Notice that special FA’s. are non-Boolean (since 1V1zle1). We shall have
occasion to examin}e and construct a few special FA’s.

A non-trivial direct product X;.{f%; of special FA's R;, iel, is a special FA.
Now, consider an RA 2R with carrier RcF. We naturally call RA &
expandable by binary operation V:FxF—F iff R is closed under V: rVse R
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whenever r,se R. In such case we use KV'—(K,VJ to denote its V-expansion.
The next result characterises expandability of subalgebras of reducts.
Lemma Expandability of subalgebras of reducts

Consider an algebra ¥ of FA-signature ¢, with defined elements T —(lVoo)’f
and p:=(eV1)T, and a A-subalgebra R of its A-reduct %,.

a) If F satisfies axiom (V-def), then A-subalgebra R of %, 1s expandab]e by
V:FxF—F iff T and p are inR.

b) If ® and p are in R and 7 is an FA, then so is the V -expansion RY.

Proof outline

a) Since ¥ satisfies (V def) R is closed under V iff both ® and p are in R.

b) The V-expansion RV=(R,V) is a ¢-subalgebra of FA ¥, and thus ®Ve FA.

‘As a tool for comparing RA’s and FA’s, we can consider using the (cardinal)
number of non-isomorphic’ FA expansions of an RA: its fork index.

More precisely, given an RA R, consider the set FRK(R):={ Fe FA//=R)} of FA
expansions of RA R. We have the equivalence relation = of being ¢-
isomorphic between ¢-algebras, which gives rise to the quotient FRK(ZX)/=.

The fork index of RA ZRis the cardinality o(R):=IFRK(R)/=l

Not surprisingly, some RA’s (for instance, those that are mot QRA’s) have
null fork indices. Let us call an RA R rigid iff it has at most one, up to
isomorphism, FA expansion: ¢(K)<1. As we have seen, the finite RA's are
all rigid (the RA reducts of finite FA’s having fork index 1). At the other
extreme, an RA may have many non-isomorphic FA expansions.

Consider an RA R, with cardinality IR|=x. Since a possible fork is a binary
operation V:RXxR—R, RA ® may have at most x(¥¥) FA expansions (R,V):
IFRK(R)|<x(¥-X), Thus, an infinite RA R, with cardmahty IRI=x= X, has
w(K)<K(KK)4(KK) 2K, _

A sharper upper bound can be obtained by means of the preceding
lemma.

Proposition Upper bound on fork indices of RA's

An RA R with cardinality [Rl=x has fork index (p(.‘R)<1<2

Proof outline : '

We have a function P:FRK(®)—R2 by assigning to FA expansion ¥ of RA R,
‘its defined projections T £=(1V go0)t and P s=(coV fl)’f (in R, by the lemma).
This function P:FRK(R)—R? is injective, in view of axiom '(V-def). =

Thus, IFRK(R)I<IR2I=IR[2=x2, and ¢(R)<IFRK(R)!; so o(R)<k>2.

OED | | AR S

Corollary Upper bound on fork indices of infinite RA's ‘

An infinite RA &, with cardinality IRI=x2X( has fork index @(R)<k. -
Among the non-rigid RA’s we shall consider those ‘with high fork indices.
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Since our constructions will produce special FA's, we may as well
relativise the preceding considerations to this class of FA's, and consider
the (cardinal) number of non-isomorphic special FA expansions of an RA
R, its special index 9(9{) Given an RA X, we consider the set SPC(R) of
spec1al FA expansions of RA R , and use as the special index of RA R the

cardinality 0(%):=ISPc(R)/zl. { Note that 8(R)<0(R). )

We shall call RA Kelaétic' iff it has special index 8(R)= IRI2. Such RA’s (with
B8(R)=¢(R)=IR12) exhibit quite clearly the  diversity of possible fork
operations; notice that they cannot be Boolean.

The expandability of the RA reducts of the finite FA’s is as follows:

n>0 (2, {Boolean} ol(Z)]=0  @[(2M;]=1

5.2 Direét-product Factors of Foi'k Algebras

In the next section we will construct examples of such RA’s with given
infinite cardinality: (simple, proper) elastic RA's P with |[P|, pairwise non-
isomorphic, special PFA-expansions. In these constructions we shall have
occasion to use some lower bounds on the special indices of some direct
powers and products of RA's.
For this purpose, we con51der prime algebras and recall the construction of
the relativisation of an RA to one of its ideal elements, extending it to FA's,
We first recall concept of ideal element of an RA and the construction of
the relativisation of an RA to one of its ideal elements. ’
Consider an RA R=<R,0,00,1,7,%,+,0,;>. An element je R of % is called ideal iff
c0;j;00=r [J6nsson & Tarski '52, p. 129, 130, Definition 4.5 (iv)]. We use J(R)
to denote the set {je R/oo;j;00=j} of ideal elements of relational algebra X,
Recall that f[R]:=<J(R),0,,”,+,¢> is a Boolean algebra, such that i;j=iej and
it=i for i,je J(R) [Jénsson & Tarski '52, p. 130, 131, Theorem 4.6 (viii, ix)].
We now extend the construction of the relativisation of an RA to an ideal
element to FA's. For an FA 7=(%,,V], we set J[ F1:=9[ F.]. By the theorem on
simple FA’s in 2.2 and [Jénsson & Tarski '52, p. 132, 133, Theorem 4.10],
FA ¥ is simple iff J(F)c{0,00}. So, ¥ is prime iff J(F)c{0,o0} and Ozee.
Recall that the relativisation of RA R to ideal element ie J(R) is the A-
algebra RW:=<RW,0,i,10i,”® 1 + ¢ ;> where R():={reR/r<i} and ~(r):=r"ei
[J6nsson & Tarski '52, p. 132, Definition 4.8]. It is an RA, a homomorphic
image of RA R under relativisation _(:R— R, defined by _(D(r):=rei
[J6nsson & Tarski '52, p. 132, Theorem 4.9]. o _
Lemma Relativisation of FA to ideal elements
Consider an FA 7=(R,V) with carrier R. Given an ideal element ic J( H)=J(R),
consider the set of elements below i: F(D:={fe F/f<i}..
a) Set FD={fe F/f<i} is closed under fork V:FxF—F.
b) Relativisation _(1):F— F®, defined by _()(f):=fei, is a ¢-homomorphism
from FA F=(R,V) onto the V-expansion F):=(RWD,V), with kernel
ker(_()=F({) where j=i". Thus V= FF® with j=i"e J(F). ‘ :
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¢) FD:=(R1,V) is an FA with J(FD)=J( HNEFD={jeilje JI(P}.
d) FA #D is prime iff i is an atom of BA JIF1=J1K].
"Proof outline ,
First, notice that, for j.ke J(H=J(R), JVk (G;mT)e(k;pT)<(; °<>) (k;o0)<jok.
a) Thus, for r,se F1), rVs<iei=i; and so rVse F().
b) By part (a), R is expandable by fork V to ¢-algebra . F=(R,V). |
To see that _(D:F—F®) preserves fork, consider elements r=rei+rei~ and
s=sei+sei” of F, and notice that rVs=(rei)V(sei)+0+0+(rei")V(sei™);
whence (rVs)ei=(rei)V(sei).
c) We clearly have J(}(‘))CJ(?)mF(‘)c{Jol/Je (D). ' ,.
{ If ke J(FD)EFW then k<i and i;k;i=k so k=kei and eo;k;o0= °°,1,k i oo_k 3}
We also have {jei/je J(H)}cI(FD).
{ If k=iej with je J(F) then k=iej<i and k=ieje J( ), so i;k;i=iekei=k. }
d) FA W js simple iff J(F)={0,i} iff for every je J(F): jeie {0,i}.
Thus, FA FD is prlme iff i#0 and for all JE J(F), jeie {0,i}.
0D | |
The next- result characterises the direct product factorisations and the
factors of an FA in terms of its ideal elements. We call FA G a factor of FA
F iff F=GxH for some non-trivial FA 7.
"Proposition Factors of FA and ideal elements
Consider an FA 7 with set of ideal elements J( ).
a) F=GxH iff G=F& and H= F) for some ideal elements g=h"eJ ( P.
b) FA G is a factor of FA Fiff G=F8) for some element ge (J(F)-{e=}).
Proof outline
Similar to [Jénsson & Tarski '52, p. 134 135, Theorem 4.13]. -
a) We use the characterisation of relativisation in the preceding lemma. .
() With g=h~e J(F), we have FA's F&=g/F(h) and 7<h>~ F/F(®) such that
FE)x gr(h)~}7[F(h)mF(g)] I
(=) Given FA's G and %, call P= gx}[ set g: —<°°g,0}[> and h: _<Og,oo,{>
Notice that g=h"e J(P).
Now, consider the product pro_]ectlons p: GxH—>G and q: G><H—>H
Notice that their kernels are ker(p)=P(") and ker(q)=P(8);
thus G=P/PM=P(8) and H=P/PE)=zph)
Hence, P=GxH=P&xPM) with g=h"e J(P).
Now, given an isomorphism m between T_ GxH and ¥, we have
F= Fm@)x FmM) with m(g)=m(h) e J(F). ’
b) With h—g el (]‘) relativisation -}(h) is non- tr1v1a1 iff h=0 iff g—h #00,
OED

The next result describes the prime tactors ‘of a direct product of prime
FA's.
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Corollary Prime factors Of direct product of prime FA's

Consider a direct product Fi= Xie1#; of prime FA's 7, iel. Any prime factor
g of FA Fis isomorphic to some factor 5" G= 7,, for some ie 1.

Proof outline ‘ o

Consider the (ideal) elements I'=<...0;,. ..,Ok,i..>, iel, of FA &

They are the atoms of the BA J[ ﬂ and 7,* FU, for each iel.

By the proposition and lemma, G= 78 with g an atom of BA J[ ,‘TJ

Thus, for some icl, g=i: whence g- 7(g) Fi=F. :

OFD

The situation is entirely similar to the case of RA's: the prime factors of a
direct product X;.;R; of prime RA's are the components R;, iel.

The next lemma gives a lower bound on the special index of a direct
power of prime RA's. , : -
Lemma Lower bound on the special index of direct power of prime RA's '
For each prime RA R, if [#@ then 8(R)>6(R). :

Proof outline

Since RA R is prime, for each special expansion ¥ of R, the direct power A
is a special FA expansion of Kl with single prime factor 7.

Now, prime G,He SPC(R) are isomorphic FA's iff the direct powers

G',Hle SPC(RY) are isomorphic FA's. :

Hence, 8(R)=6(R).

The next lemma gives a lower bound on the special index of some direct
products of prime RA's. :

Lemma Special index of direct product of prime, special RA's

Let K be a prime RA of cardinality |Rl=x. Given a set of special prime FA’s
Q; of cardinality 1Q;l= C, with RA reducts P;, iel, consider the dlrect product
R*:=(Xje 1POXR. If xe C_,/1eI } then G(R*)>6(L7{) ' :
Proof outline . ‘

Since RA R is prime, for each special expansion ¥ of R, the direct product ‘
F*:=(Xie1Q))x F is a special FA expansion of RA K* with set of prlme factors '
" {QlieI}U{ ¥} (with set of cardinalities {{/ie I}u{x}). o
Now prime G,He SPC(R) are isomorphic FA's iff the direct products" R
G*=(X;c1Q)X G and H*= (X,EIQ,)x}[ are 1somorph1c FAs (smce |RI=xe {’Y,/IGI})
Hence, 6(9{*)>6(7{)

OED

5.3 Analysis of (Proper) Fork Algebras

We now . introduce a tool fqr the analysis of FA’s. Given a ¢-algebra %, let
2:=1V1, and consider the set of its sub-identities of 2: SI2( F):={fe F/f<2e1}.
Notice that any ¢-isomorphism between ¢-algebras ¥ and G provides a
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bijection between SI2( ) and SI2(G), so ISI2(HI=IS12(G)I.

We shall call a ¢-algebra 7 size-controlled by cardinal vy iff its set SI2( F) of
sub-identities of 2 has cardinality |SI2( F)|=27.

In view of the preceding remark, ¢-algebras G and H that are size-
- controlled by distinct cardinals cannot be isomorphic.

In a PFA Q=<Q,2,V, 1y,-,T,u,n,l,.£*> with fork «* induced by coding *:U2—U,
its set of sub-identities of 2 is SI2(Q)={qe Q/qc2n1y}=§#(2n1y). In case PFA
Q is simple (V= U2) the element 201U is connected to the set of fixpoints of
its underlying coding.

Given a function *: U2, cons1der its set of fixpoints fxpt(*):={ue U/u*u u}.
This set of flxpomts can also be conveniently represented by 1ts identity

Lixpe(wy:={<u,u>e ‘U2/u*u=u}. Notice that Ilfxpt(*)l Ifxpt(*)l _

The next result shows a. connection between the set of sub-identities of2
of a simple PFA and the set of fixpoints of its underlying coding.
Prbposition Simple‘ PFA connection: SI2 vs. fxpt(*)

Consider a simple PFA Q=<Q,3,U?, lU,~,T,u,m,I,4*> with fork «* induced by
coding #:U2—U. Then 201U=1fxpt(*); so SI2(Q)=§ [lfxpt(*)]mQ. ‘
Proof outline v

First, we see that 201U"1fxpt(*)’ since <u v>e2nly iff v—ue fxpt( )

Hence, since Qc# (U2), re SIZ(Q) iff re Qm@[lfxpt(*)]

OFD

In a simple PFA, the set of fixpoints of its underlying coding provides a
tool for checking whether it is special, as shown in the next result.
Lemma Set of fixpoints of coding and special simple PFA's S
Consider a simple PFA Q=<Q,@,U?, 1y;,~,T,u,n,l,£*> with fork «* induced by
underlying coding *:U2—U with set of fixpoints fxpt(*)={ue U/u*u=u}.
Then, simple PFA Q is special iff *:U2— U is surjective and fxpt(*)=U. |
Proof outline

~We have 2=1y£*1y, and, by the preceding proposition, anU—lept(*)

Thus, 1yclyg*ly iff U—fxpt(*) Also, 1yz*1ycly iff fxpt(*)=U. ,

So, 1y<*1y=1y iff fxpt(x)=U. Also U22*U2=U2 iff *:U2—U is surjective.

5.4 Construction of (Infinite, Simple) Proper Fork Algebras

In the next section, we shall construct some infinite (simple, proper) non-
Boolean RA’s that have many (special) fork expansions.  We shall control
the cardinalities of the RA's by means of the sizes of their sets of
generators. We shall control their fork expansions by means of the sizes of
the sets of sub-identities of 2.

First, controlling the cardinality of an infinite 51mp1e PRA by means of the
sizes of its sets of generators is quite easy, in view" of the remark, in
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section 4, on subalgébras generated by infinite subsets.

Lemma Infinite simple PRA’s and sets of generators

Given an infinite cardinal x>X, algebra P is a simple PRA with cardinality
IPl=x over set U iff P is the subalgebra P(UZ2)[G] of the full PRA P(U?2)
generated by some subset Gg# (U?) with cardinality IGl=x.

We now analyse and generalise the construction involved = in  the
proposition on large simple non-Boolean PFA’s in section 4. Each injective
function *:U%2— U induces a fork operation £* on relations over U, which
gives rise to induced projections p*:=(1y2*U)T and g* =(U22* 1T

Proposition Simple PRA’s and PFA expansions ‘

Let P be a simple PRA over set U. Consider any injective funcuon *:U2—U

inducing fork operation «* and projections p* and g*.

a) PRA P is expandable by the induced fork «* iff induced prOJectlons p*
and q* are in its carrier P.

'b) If {p*,q*}<P and fxpt(*)e 1P(U) {where 1P(U): {ScU/JO(ls)cP} then PRA
P has fork expansion P*=(P,z*) size-controlled by cardinal y—lfxpt( )Nz
has set of sub-identities of 2 SI2(P*)= Sﬂ[lfxpt(*)]

Proof outline \

a) By the lemma on expandability of subalgebras of reducts in 5.1.

b) By the proposition on simple PFA connection between SI2 and fixpoint
in 5.3, since & [1gy,(x)]<P and y=|fxpt(*)|=|1fxpt(*)|.

6. FORK EXPANSIONS OF INFINITE RELATIONA‘L ALGEBRAS

We will now construct some infinite (‘simple, pro_per) non-Boolean  RA’s
that have many (special) fork expansions. ~

We first construct some infinite simple non- Boolean PRA’s that have
special fork expansions controlled by the sizes of their posmb]e sets of
sub-identities of 2. '

6.1 Spemal Codings and Sets of Fixpoints ,
To control the set of fixpoints of its underlying codlng, and SO the set of

sub-identities of 2 of a simple PFA, we construct ‘special codings. with a
given set of fixpoints. ‘ :

The next result presents a set-theoretical construction for a specxal coding
on an infinite set U with controlled set of fixpoints. ~
Proposition Special coding with controlled set of fixpoints

Consider an infinite set U of cardmahty k>R . For each subset TcU w1th
ITl=x, there exists a bijection *S:U2—U with fxpt(*S)=S, where S:=U- T.

Proof outline ' |

First, since set U is infinite, the following sets have the same infinite
cardinality |Ul=x>R: its square U2=UxU, its identity (diagonal) relation
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1y:={<u,v>e U%u=v} and its complement ly~={<u;v>e U?/uzv}.

Thus, we can partition T into disjoint subsets A and B of U, both with
cardinality x. So we have a bijection f: ly=—A.

We also ‘have a bijection g:T—> B without fixpoints.

{ We have bijections go:A—By, and g,,;:B,— B, neN, w1th pairwise
disjoint domains and images. Their disjoint union gives a bijection g from
T=AuUB onto B=U,.NB, without fixpoints, as required. }

We now define *S:U2—U as follows:

for ue S we set u*Su:=u (notice that ug¢ AUB);
for ue T we set uxSu:=g(u) (notice that g(u)e B);
for <v,w>e 1y~ we set v+Sw:=f(v,w) (notice that f(v,w)e A).

So, ¥8:U2—U is a bijection, from U2—lsu1Tu1U onto U=SUBUA, since it is

the disjoint union of bijections with pairwise disjoint domains and images.

Also, u*Su=u iff ue S, because for ug S u*Su=g(u)»u. Thus fxpt(*S)=S.

O

By a special coding on set Ufivvxing"a subset ScU we mean a bijective
function *S:U%2— U with fxpt(*S)=S. It induces fork «S over & (U2) and
projections pS and ¢S in @ (U?).

Corollary Simple PFA and special coding with smaller set of ﬁxpoints
Consider a simple PFA Q=<Q,&, U2,1y,~,T,u,n,l,2*>  over set U where «* is the
fork induced by some special coding *:U2— U with Ifxpt(*)I<|Ul. Then le a
special FA, and hence non-Boolean.

Proof outline

By the lemma on set of fixpoints of coding and special simple PFA's in 5.3.
02 | | |
Corollary Many speczal codlngs wzth smaller sets of fixpoints

Consider an infinite set U. For each subset ScU with cardinality |S|<|U|
there exists a special coding *S: U2 U with fxpt(*S)=S.

Proof outline - o

We apply the previous proposition on special coding with controlled set of
fixpoints to the complement T:=U-S={ue U/ue S} (with |T|=lUl, since ISI<IUI).
oI e |

6.2 Large Simple Proper Relational and Fork Algebras

We will now construct many infinite special (prime, proper) fork algebras,
by putting together the preceding considerations. '

Proposition Many large prime, special PFA's

For each infinite cardinal k>X,, there exist at least k, pairwise non-
isomorphic, prime special PFA's.

Proof outline

We select a set U with cardinality |Ul=x=X, and for each subset ScU with
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cardinality [Sl=y<k, We obtain a simple special PFA Qg size-controlled by 1.
The corollary on many special codings with' smaller sets of fixpoints yields
a special coding *S:U2—U with fxpt(*S)=S, inducing fork «S and projections
pS and ¢S. Set Gg:=# (15)u{pS,qS}u (U?) (note that k<IGgl<2¥+2+k=x) and let
Ps:=P(U?)[Gg] be the subalgebra of the full PRA P(U?2) generated by Gg.
Then, Pg is a simple PRA of cardinality IT§|=K2NO (so prime), which has a
special fork expansion Qg=(Pg,25) with ISI2(Qg)l=2Y (in view of section 5).
Therefore there are at least x, pairwise non-isomorphic, prime specral
PFA's Qg with cardinality 1Qgl=x, for ISl<x. ‘

OED . .
This information about the infinite (prime) PFA’s is summarised below:
K2, o c(x)=K 4 ‘ V(K)2K .

We now wish to strengthen the preceding result to the effect that We have
many large prime, special PFA's with the same RA reduct. For this
purpose, we now construct a prime, non-Boolean, elastic PRA of each
infinite cardinality (with special PFA-expansions size-controlled by
smaller cardinals). ' o

Theorem Large prime, non-Boolean, elastic PRA’s

For each infinite cardinal 1<>NO, there exists a prrme non- Boolean, elastic
PRA P, of cardinality |P |=x: PRA P_ has k, pairwise non- 1somorphrc
special FA expansions Q, for each smaller cardinal y<x.

Proof outline

The set U:=x is such that each cardinal &<x, & is a subset EcU w1th IEl= §<1c
So, by the corollary on many special codings with smaller set of fixpoints,.
for each cardinal y<x, we have a special coding *: U2 1, ‘with fxpt(*Y)—y, B
inducing fork «Y and projections pY and q. :
Set H:= SOw(Uz)uuY«[{pY,qY}USO(lY)] (notice that x<|Hl<k+x. (2+K)=x) and |
consider the subalgebra P,: =P(U2)[H] of the full PRA P(U2?) generated by H.

Then, P, is a simple PRA of cardinality |P l=x>X (so prime), wh1ch has a
specral fork expansion QY'[ ,2Y) with ISI2(Q2/)| 2%, for each y<x. ‘
Therefore, P, is a prime, non-Boolean, elastic PRA of ‘c'ardinality ,|1’k|=K."
OFD , « | R

This information about the infinite (prime) PRA’s is summarised below: -
K=K ’ P, {prime} O (P)=x - 9(P)=x

6.3 Large non-Boolean Relation and Fork Algebras '

We now wish to show that there are many infinite elastic RA's and non-
Boolean FA's of each given infinite cardinality. These (non-simple)
algebras will be constructed from the prime ones obtained in 6.2.

We shall now exhibit many non-Boolean elastic RA’s of each infinite
cardinality, each one of them with many non-isomorphic special FA
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expansions. We examine two constructions, namely direct powers and
products; in each case we obtain non-simple FA's, which we guarantee to
be non-isomorphic by controlling the sizes of their sets of ideal elements.

We first use a direct-power construction to exhibit an infinite collection of
pairwise non-isomorphic non-Boolean elastic RA's of each given infinite
cardinality. N

Theorem Infmztely many large non-Boolean elastic RAs

For each infinite cardinal x>, there exist infinitely many pairwise non-
isomorphic non-Boolean elastic RA's of cardinality «.

Proof outline , | ' ;
By the preceding theorem on large prime, non-Boolean, elastic PRA’s, we v
have a prime, non-Boolean, elastic PRA P of cardinality |Pl=x.

For each neN con51der the direct power Pn+1,

Then P+l s an RA, of cardmahty |Pn+1|=xn x=x and with special index ‘
8(P+1)>0(P)=x, Wthh has exactly 20+1 jdeal elements.

Thus, each RA P‘“ is elastic, so non- Boolean with cardinality |£P“+1| =x.

Hence, there are at least. X, pairwise non-isomorphic elastic RA's fP“*lfvof
cardinality x, for ne N.

OFD ,

Thus, for the elastic (non-Boolean) RA's, we have: L
K2R P! {elastic RA} o(Pth=x = @(PthH=x

K2 Elastic RA's ' o(x)=1 V(K2R

We now use a direct-product construction to exhibit large collections of
pairwise non-isomorphic non-Boolean elastic RA's of each given 1nf1n1te
card1na11ty :
Theorem Many large non-Boolean elastic RA’s

For each infinite cardinal x>RX, there exist at least x pairwise non-
isomorphic non-Boolean elastic RA’s R[vy] of cardlnahty x (each one of them
with special index 6(R[y])=x). : :
Proof outline :

By the theorem on large prime, non-Boolean, elastic PRA’s, we have

a prime, non-Boolean, elastic PRA Q of cardinality Q=X ;

a prime, non-Boolean, elastic PRA P of cardinality |Pl=x.

For each cardinal y<x, form the direct product R[y]:=Q%?P.

Then, ﬂ(['y] is an RA, of cardinality x=|PI<IR[y]l<k.x=x and w1th spcc1a1 index
0(R[Y])=6(P)=x, which has exactly 2¥! ideal elements. -
Thus, each RA R[y] is elastic, so non-Boolean, with cardinality |R[y]l=x.

Thus, there are at least x pairwise  non- 1somorphlc ‘elastic RA's R[y]= QYXT
of cardinality x, for y<x. : :

OFD | .

Thus, for the elastic (non-Boolean) RA's, we can actually state: .
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K2Ro Rly]. {elastic RA} - (RIYD=x  o(R¥D=x

K=K ‘Elastic RA's R O'(K)>l V()%

We can consider. refining the dlrect product constructron of the precedlng
theorem to exhibit even larger collections of pairwise non-isomorphic
. non-Boolean elastic RA's of each given 1nf1n1te ‘cardinality. In this refined
construction we guarantee the resulting RA's to be non- 1somorphlc by
controlling their sets prime factors.

We first consider some notations for cardinals. Given a set I of cardinals
let IT, . I'y'=|><y < Iyl be the “cardinality ‘of the direct product xyely Grven a

cardinal x, let x?: :H

Proposition Collecttons of large non-Boolean elastic RA’s

For each infinite cardinal K>N0 such that x?<x, there exist at least 2
pairwise non-isomorphic non-Boolean elastic RA’s R[I] w1th cardinality «x.
Proof outline » _

By the theorem on large prime, non-Boolean, elastic PRA’s,

for each infinite cardinal R j<E<k, we have: '

a prime, non-Boolean, elastic PRA % of cardinality |Z|=.

For each set I of infinite cardinals strictly below x ( ng—&oland le— & ol=x),
form the direct product R[I]: (xyel Y)><QJ

Then, R[I] is an RA, with cardinality x<|R[I]l<x?<x and with special 1ndex
8(R[11)=6(P,)=x, which has set of prime factors {TyyeI}U{T }.

Thus, each RA R[I] is elastic, so non-Boolean, with cardinality |K[I]l= K.
Therefore, there are at least 2¥ pairwise non- 1sornorphrc elastic RA's
RI1l= (><YEI )XT of cardinality «, for Ie KO(K»NO)

OFD | | .
For an infinite successor cardinal x=2% with a=R, wevhave 1(?=HYE KZYSK. ,

Theorem Very large collections of large non-Boolean elastic RA’s

For each infinite successor cardinal x=2% with a>R, there exist at least 2¥
pairwise non-isomorphic non-Boolean elastic RA’s R[I] with cardinality «x.
Thus, for the elastic (non-Boolean): RA's, we can actually state: -

k=2% with a>X R[1] {elastic RA} O(R[1D=x (p(R[I]])—K

¥=2% with a>X Elastic RA's o(x)=21 - v(x)=2¥

In view of the preceding theorem and the proposition on mah_y ‘large
prime, special PFA's in 6.2, we can now see that there are large collections
of pairwise non-isomorphic special FA’s, for each infinite cardinality.
Corollary Large collections. of large special FA’s

Consider an infinite cardinal x>X,. '

a) There exist at least x pairwise non- -isomorphic specral (simple, proper)
FA's with cardinality x. :

b) If x is a successor cardinal x=2% with o>, then there exist at least 2¥
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pairwise non-isomorphic special FA’s with cardinality «x.
The situation for the infinite special FA’s is summarised below:
K=2Rg : o(x)2K ; v(K)2K

k=2% with a2 R ' o(k)2K S ov(k)22K

7. CONCLUSION

A fork algebra (FA, for short) is a relational algebra (RA, for short)
enriched with a new binary  operation, called fork. They have been
introduced because their equational calculus has applications in program
construction, as well as some interesting connections with algebraic logic.

In this report, we have concentrated on the infinite FA’s, contrasting them
with RA’s and with the finite FA's.. For this purpose, we have introduced
some concepts for the analysis of fork algebras and for the construction of
some special infinite RA’s and FA's. We also have simplified and extended
some results ‘appearing in previous reports [Veloso '96a,b].

Section 2 has provided some background [Veloso '96a] about fork algebras
“and their reducts (relational and Boolean algebras), the algebraic structure
of FA’s, and their concrete, set-based, versions (fields of sets and proper
FA’s and RA’s) Section 3 has reviewed some results about the Boolean FA’s
(those where fork is Boolean meet) and the finite FA’s [Veloso '96b].

- The main body of the report consists of sections 4, 5 and 6, which cover
mainly infinite  FA’s and RA’s. In section 4 we have established the

existence of simple non-Boolean (proper) FA’s of each infinite cardinality.
In section 5, we have suggested some concepts and methods for the
analysis of FA's and their RA reducts, with the purpose of comparing RA’s
and FA’s. We have examined fork expansions of RA’s, introducing in 5.1
some indices for the fork-expandability of RA’s, and examining the direct-
product factors of FA’s in 5.2. Then we have considered in 5.3 some
concepts for the analysis of (proper) FA's, examining how they can be
controlled by means of the underlying coding, as well as some methods for
constructing (infinite, -simple) proper FA's in 5.4. In section 6, we have
applied these ideas to fork expansions of infinite. RA's: we use a set-
theoretical construction, examined in 6.1, to exhibit many infinite (simple,
proper) non-Boolean RA’s with many expansions to FA’s in 6.2 and 6.3.

The infinite elastic RA’s constructed in section 6 demonstrate quite clearly
the diversity of possible fork operations. They also show the _contrast
between finite and infinite FA's.

The results ‘recalled in section 3 show. that, up to isomorphism, the finite
FA’s are the finite direct powers 2" of the two-element (Boolean) FA and
that the only simple finite FA’s are I and 2. Thus, a finite FA, in addition to
being Boolean, is completely determined by its RA reduct (which we call
rigid). ThlS contrasts with the case of infinite FA’s.

Let us compare finite and infinite FA's as well as infinite RA's.

We consider first a comparison in terms of the cardinalities of the
isomorphism classes of (simple) FA's with cardinality’ .
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The situation for finiie" FA's is as follows:

n=0 1 {trivial} o o(29)=1 v(29)=1
n=1 2 {prime} s(2h=1  v(2h=1
n>1 - 2" {non-simple} T 6(2m=0 v(2M=1
A summary of the situation for finite FA's is: '

ne N 2" {Boolean} ’ O<o(2")<v(2")=1 '
For the infinite FA's, the situation is entlrely different:

K2R {s1mp1e} N0<K<c(1<)<v(1<)

k=2% with =Ry - ‘ X o<k<o(k) and v(x)=2%>2%o0

Let us now compare the RA reducts of some finite and infinite FA's, in
terms of their expandability indices, introduced in 5.1. We have: ‘
neN (2, {Boolean} O B[(EMI=0  ol(2),]=1
K2R P, {non-Boolean} | 8(P)=x (P )=x
These infinite elastic RA’s demonstrate quite clearly the diversity of
possible non-Boolean fork operations. And there many such elastic RA's
with each infinite - cardinality :
(K>No) there are at least K>N0 (31mple) infinite FA's of each mfmlte
cardlnahty K2 N g; _ v
(a+> X ) there are at least 2%>2%0 (non-simple) FA's with cardinality
‘o>, for each infinite successor cardinal o*>X.
Also, finite and infinite FA's are quite distinct from three viewpoints:
(1) the finite FA's are all Boolean, whereas
there are non-Boolean infinite FA's of each infinite cardlnahty,
(o) there are only two simple finite FA's (I and 2), whereas
~ there are at least k=X simple infinite FA's with cardinality x2Xg; ‘
(v) the finite FA's are. characterlsed by their- cardmalmes 2", whereas‘ -
there are at least k=X (simple) FA's with cardlnahty K2Rq-
" (for successor cardinal .a*> R there are at least 2¢>2%0 -
(non-simple) FA's with cardinality a+>X). ‘ ‘
The RA reducts of finite and infinite FA's are “also d1st1nct in two ways:
(p) the RA reducts of the finite FA's have a smgle FA expansion, whereas °
for each infinite cardmahty K=K there are ¥ (s1mple) FA's of cardmahty‘
k with the same RA reduct; ‘

(6) the RA reducts of the finite FA's have no specml expans1on whereas
there are (simple) infinite elastic FA's of each infinite cardinality
(whose RA reducts P, have |P |=x>&, special FA expansions).
We have employed the following main ideas. We control the size of RA's
by controlling the sizes of their sets of generators. We guarantee that an
RA has an FA expansion by putting the defined projections of the latter in

its carrier. We force simple PFA's to be non-isomorphic by controlling . the
sizes of the set of fixpoints of their underlying codings. Finally, we

20



construct non-isomorphic (non-simple) RA's by controlling the sizes of
their sets of ideal elements or by controlling their prime (simple and non-
trivial) direct-product factors.

We conclude by hinting at a possible refinement of these constructions,
which may provide finer tools for the analysis and construction of infinite
(simple, proper) FA's. In - 6.1 we have presented a set-theoretical
construction -of coding with controlled sets of fixpoints: it yields an
injective coding *:U2— U with given fxpt(*):={ue U/u*u=u}. Some refined
constructions appear to be able to control entire families of sets of higher
fixpoints; for instance given subsets ScTcU with |U-TI=IUl, one would
obtain an injective coding *:U2— U with {ue U/u*u=u}=S and
{ue U/u*(u*u)=u}=T. Similarly, one would control entire families of sets of
higher fixpoints Syc...cSpc...cU with [U-U, NS,I=I1UL

APPENDIX: DETAILED PROOFS OF THE RESULTS.

We present in this appendix detailed proofs of the results, except for those
in sections 2 and 3 (whose proofs appear in [Veloso '96a]).

Lemma Non-surjective codings for infinite sets

For each infinite set U, there exists an injective, non-surjective coding
function *:U2—U. :

Proof , ‘ | :

Consider a set U with cardinality |Ul=x>& and select an element ue U=2.
Since U2=UxU and U-{u} have the same infinite cardinality x, we have a -
bijection from U2 onto U-{u}. This provides an injective, non-surjective
coding function *:U2—U. \

OFD

Proposition Largé simple non-Boolean FA’s

For each infinite cardinal x>X, there exists a simple non-Boolean FA with
cardinality «.

Proof o

Consider the set X consisting of the FA equations together with Tarski's
rule Vx(—x=0—oc0;X;00=0c0) and the sentence Ix,y — xVy=Xxey.

Choose a set U with cardinality |Ul=x>X, and, in view of the preceding
lemma, an injective, non-surjective coding function x: U2 U.

Now, consider the full PFA P*(U?)=< £ (U?),2,U2%,1y,~,T,u,n,l,2*> over U.
Notice that P*(U2) has the following properties. .

1. P*(U?) is a PFA with cardinality |P*(U?)|=2%>k. -

{ Indeed, |1P+(U2)|=]2!V=2%>x. } |

2. P*(U?2) satisfies Tarski's rule VX(%Xz'O—)oo;x;oozoo).

{ Indeed, since UZe # (U?2), it is simple and satisfies Tarski's rule. }

3. P*(U2?) satisfies 3x,y — xVy=xey. .'

{ Indeed, since *:U2—U is not surjective, P*(U2) is nor-Boolean. }
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Thus P*(U2) 1s a model. with cardinality 2>k, of set £, which is consistent.
The Downward Loéwenheim-Skolem Theorem then guarantees that
~the consistent set X has a model ¥ of infinite cardinality x<2¥.

Notice that model ¥ of set £ has the following propertles

a. Model ¥ is a fork algebra. - :

{ Indeed, ,‘7 satisfies the FA equatlons } o

b. Model ¥ is a simple FA.

{ Indeed, ¥ satisfies Tarski's rule VX(—|X~O—)°° X; oo~°<>) }

c. Model ¥ is a non-Boolean FA.

{ Indeed, ¥ satisfies 3x,y = xVy=xey. }

Thus, ¥ is a simple, non-Boolean FA with cardinality | F=x.

0D L | -

Proposition Large szmple non _Boolean PFA’s =~

- For each infinite card1na1 K2R there exists a 51mple non- Boolean PFA
P (U?) with cardmahty X. '

Proof ' AR

Choose a set U w1th cardmahty |U| 1<>N0 and an 1nject1ve non- surjecuve

coding function *:U2—U.
Again, consider the full PFA T“(UZ) < P(Uz) @,02, 1U,~, u.n,lL2*> over U:

it is a simple, non-Boolean (since *:U2—U is not SUl‘_]CCthC) PFA with

cardinality 2¥>x.
Notice the set Jﬂm(Uz)cSO(Uz) of finite subsets of U? has cardmahty

[0 ,(UD)l=x. R g=x.
Now, consider the subalgebra fP*m(Uz) LP"(Uz)[[Om(Uz)] of the full PFA P(Uz)
generated by § ,(U2). Notice that it has the following propertles
1. Subalgebra T“(,,(U2) is a simple PFA. ‘ :
{ Indeed, it is a subalgebra of the s1mple full PFA ?*(Uz) }
2. Subalgebra P (U?) has cardinality |?(U?)l=x. |
{For |PU?)l=lf ,(U)I. Ro=k.Ro=k [Burris & Sankappanavar '81, p. 32] }
- 3. Subalgebra ?*(U?) is non-Boolean. : e
{ Since *:U2—U is not surJectlve 81mple PFA T“m(Uz) 1s non Boolean }
Lemma Expandabzlzty of subalgebras of reducts = ’

Consider an algebra ¥ of FA-signature ¢, with defined elements T:=(1Voo)t
and p:=(e0V1)T, and a A-subalgebra i’(of its A-reduct " F,. S

a) If ¥ satisfies axiom (V-def), then A- subalgebra ‘.Rof -ﬂ is- expandable by
V:FEXF—F iff © and p are in R. :

b) If © and p are in R and ¥ is an FA then so is the V- expansmn LI{V

Proof _ O o : : :

a) Since 7 satisfies (V def) we have rVs=(r;tt)e (s; pT) for every r,se RcF
Thus, R is closed under V"iff T=(1Voo)T and p= (oon)T are m R.
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{ (=) If R is closed under V then T=(1Vee)’ and p=(eoV1)? are in R.
(<) If T,peR then rVs=(r;nf)e (s;p")eR, for every r,seR. }
b) Since R will be closed under V, the V-expansion R¥V=(R,V) of subalgebra
R of F, will be a ¢-subalgebra of FA ¥, and thus R¥e FA.
0D | | |
Proposition Upper bound on fork indices of RA's
An RA R with cardlnahty IR|=x has fork index (p(‘]{)<1<2
‘Proof
Consider an FA-expansion ¥ of RA ® with defined projections T F=(1V goo)T
and pf:=(°°V_¢1)T. Then R=1%,, so by the preceding lemma, T and p are in R.
This defines a" function P:FRK(R)—R? from the set FRK(R) of FA-expansions
of RA R into R2=RxR. | |
This function P:FRK(R)—R? is injective, in view of axiom (V-def).
{ Indeed, given 7,GeFRK(R) with P()=P(G), we have V =V ;and F=G,
since 1V gs=[r;(T #N)]e[s;(p I=[r;(TgH]Ie[s;(p gNI=rV gs. }
Thus, |FRK(R)I<IR2|I=IR12=x2, and o(R)<IFRK(R)!; so o(R)<k2.
OFED :
Corollary Upper bound on fork indices of infinite RA's
- An infinite RA R, with cardinality IRI=x>& has fork index @(R)<x.
Proof :
By the preceding proposition, ¢(®)<«x?, and, since k=X, k=K.
OED ' §
Lemma Relativisation of FA to ideal elements
Consider an FA #=(R®,V) with carrier R. Given an ideal element ie J( })—J (SR)
consider the set of elements below i: F():={fe F/f<i}..
a) Set Fi)={fe F/f<i}) is closed under fork V:FxF—F.
b) Relativisation _(D:F—F®, defined by _()(f):=fei, is a ¢-homomorphism
from FA #=(R,V) onto the V-expansion F1:=(R1),V), with kernel
ker(_)=F0 where j=i~. Thus FD= FFW) with j=i"e J(F). ‘
¢) F0:=(KD,V) is an FA with J(FD)=J( HnFD=(jei/je J(P}.
d) FA W js prime iff i is an atom of BA J[ F]1=9[R].
"Proof
First, notice that, for j-ke I(H=J(R), jVk=(j;nT)e(k; p’r)<g oo)e(k;o0)<jok.
a) Thus, for r,se F®), we have by fork monotonicity [Frias et al. '95, '96], -
rVs<iVi<iei=i; and so rVse F(). .
b) By part (a), R() is expandable by fork V to ¢-algebra F=(R,V).
To see that _():F—F({) preserves fork, consider elements r=rei+rei~ and
s=sei+sei” of F, and notice the following calculations.
1. rVs=(rei)V(sei)+(rei)V(sei™)+(rei”)V(sei)+(rei”)V(sei")
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2. (rei)V(sei™)=0, (rei")V(sei)=0, and [(rei” )V(su )]01—0.

{ Fork monotonicity [Frias et al. '95, '96] and the above remark yield:
(rei)V(sei™)<iVi™<iei™=0, (rei”)V(sei)<i"Vi<i~ei=0, and
[(rei™)V(sei)]ei<(i™ViT)ei<(i™ei™)ei=i"ei=0. }

3. rVs=(rei)V(sei)+(rei")V(sei™).

{ By 1 and 2: rVs—(roi)V(soi)+(roi)V(soi')+(r-i‘)V(soi)+(r-i‘)V(Soi‘)=
=(rei)V(sei)+0+0+(rei7)V(sei™)= (I“l)V(SOI)'l-(I"l YWV(seiT) . }

4. (rVs)ei=(rei)V(sei).

{ By 3 and 2, since (rei)V(sei)<iei=i: (rVs)ei= [(r-l)V(s01)+(r-1 )V(s-1 )]-1_
=[(rei)V(sei)]ei+[(rei™)V(sei™)]ei=[(rei)V(sei)]ei+0=(rei)V(sei). }

Hence, _D(Vs)=(rVs)ei=(rei)V(sei)=_()(r)V_0)(s). .

By [J6nsson & Tarski '52, p. 132, Theorem 4.9], relativisation _():F—F®, -

defined by _()(f):=fei, is an RA-homomorphism from RA R onto the

relativisation R® (with kernel ker(_())={fe F/fei=0}=F{) where “j=i").

Hence, relativisation _():F—F® is a p-homomorphism from FA #=(R,V)

onto the V-expansion F1:=(R),V), with kernel ker(_(1))=FQ where J—l )

Thus, F=FFW with j=i"e J(F]. :

c) We show the inclusions J(}'(l))cJ(_‘}')nF(l)c{Ju/Je J(,‘]")}CJ(,‘]:(I))

1. If ke J( FicF® then ke F® and ke J(F).

{ If ke J(FD)cF® then ke F() and k=i;k;i s0 oo;k;e0=00;i;k;i;00=i; ik 1—k }

2. If ke J(F)NFD then k=isj for some je J(P).

{ If ke F® and ke J(F] then k=iek and ke J(7]. }

3. If k=iej for some je J(F) then J(FD].

{ If k=iej for some je J( ) then k=iej<i and k=ieje J( %), so i;k;i=iekei=k. }

d) Since the universal element of g s i, by the remark on simple FA's,

FA FD js simple iff J(F)<={0,i}. By part (c), J(FD)={jeilje J(P}.

So, J( FN{0,i} iff {jeilje J(P}c{0.,i} iff for every je J(P: jeic {0,i}.

Hence, FA F1 is prime iff i#0 and for all je J(F), jeic {0,i} -

iff i is an atom of Boolean algebra 7] F1=J[R].

0D B |

Proposition Factors of FA and ideal elements

Consider an FA ¥ with set of ideal elements J(F).

a) T=GxH iff G= #8) and H= Fh) for some ideal. elements g=h"eJ( 7).

b) FA -G is a factor of FA ¥ iff G= #8) for some element ge (J(P)- {°°})

Proof

Similar to [Jonsson & Tarski '52, p. 134 135, Theorem 4.13].

a) The preceding lemma characterises relativisation F) to ideal element
ie J(F) as a homomorphic image of ¥ under relativisation homomorphism

_0.F—F®, defined by _()(r):=rei, so Fi= FFW with j=i"e J(F].
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(&) With g=h"e J(#), we have homomorphic images 78 and FM of ¥, and

an isomorphism m from F onto F&x M) defined by m(f):=<feg,feh>.

{ By the preceding lemma, function m:F—F(&xF{), defined by
m(f):=<feg,feh> is a homomorphism from ¥ onto F(&x FM) with kernel
ker(m)=ker(_(®)nker(_(M)=FM~F®=(0}. }

(=) Given FA's G and #, call P:=GxH, and set g: -<°°g’09{> and h: =<0g,004p>.

Notice that g and h are ideal elements of P=GxH such that h=g~.

{ Clearly g™=<co ;04> "=<eo",047 >=<04,005>=h. Also, g=<o05,042€J( GxH),
because oo € I(G) and‘Oﬂe J(#H) (see [Veloso '96b; Appendix]). }

Now, consider the product projections p:GxH—G and q:GxH—H.

Notice that projection p:P— G has kernel ker(p)=P(®,

{ Since r=<g,h>eker(p) iff g=0 iff r<<0 400, iff re P, } .

Thus, P/ker(p) and P/P(M) are homomorphic images of P with the same

kernel ker(p)=P(M. Hence, G=P/ker(p)=P/P(M=pP(8),

Similarly, projection q: GxH—H has kernel ker(q)= =P(8); so P/ker(q) and

P/P(8) are homomorphic images of P with the same kernel ker(q)=P(&).

Hence, H=P/ker(q)=P/P(&)=ph),

Therefore, P=GxH=PE®xPD) with g=h"e J(P].

Now, if function m:GxH—F is an isomorphism between P=GxH and ¥, then

we have 7= Fm()x F#mh) with m(g)=m(h)~e J(F).

{ Because, then m:P—F gives an isomorphism between BA's 9P} and T ﬂ
Thus, G=P(&)= Fm(8) and H=PM)= Fmh); 5o P= Gx H= Fm()x Fm(h), }

b) By part (a), F=GxH iff G=F& and H= FM) for some g=h"e J( ).

Now, relativisation #M is non-trivial iff h=0 iff g=h~wzco.

Thus, FA G is a factor of FA Fiff G=#®& for some ge (J(H-{e=}).

OED o . '

Corollary Prime factors of direct product of prime FA's
Consider a direct product F:=X;.;F of prime FA's %, iel. Any prime factor
G of FA ¥i is isomorphic to some factor F: G=7;, for some 1eI

Proof :

Recall that J(X;c1 %)={ke F/Viel: k(i)e {0;,o0;}}.

{ Since, for prime FA F J(F)={0;,00;}, i1, see [Veloso '96b; Appendlx] }
Notice that an ideal element ac J(¥) is an atom of the BA [ 7]
iff a(i)#0; for a unique iel. ‘

{ If a(i)=0; for a every ic then a=<...,a;,...>=<...,0;,...>=0. _
If a(i)#0; and a(j)=0; for distinct i#je I, then a=<...,a;,...,3;,...> has non-zero
elements strictly below it (as 0=<.. O OJ, ><<., 0 Bjpe - ><<...,a;,...,aj,._. >). }
Now, consider the elements i:=<. O 205>, ie I, of FA 7 (i. e. i(1):=00;
and i(j):=0; for jeI- {i}). Notice the following properties .
- 1. For each ie I i=<...0;,...,00;,. ..>eJ(P (see [Veloso '96b Append1x])
{ Because oojisc0=<.. ooJ,OJ,ooJ, 1109130013004, .,094 10} 09y, . S, . O 5%, 0py- - ->=1. }
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2. For each ieI: F=FD
{ As in the preceding proposition, projection p;:F—F; has kernel
ker(p;)=F(® where h=i"e J(F); so F= F/ker(p;)= FIFM= FD )

3. For each iel: i=<...0j,...,%j,...,0,...> is an atom of the BA J[ .

{ For every i,jeL: i(j):»0; iff j=i. } : ‘

4. The set of atoms of the BA J[ 7] is {ieFliel}.

{ Given an atom a of the BA J[ 7], we have a umque iel such that a(i)=0;
(so, since k(i)e {0;,20;}, a(i)=o0;). Thus, a=<...0;,...,%0;,...>=1. } :
Now, since G is a prime factor of FA ¥, then, by the preceding proposition,
G=F& with ge (J(F)-{es}), and by the previous lemma on relativisation of
FA to ideal elements, g is an atom of Boolean algebra J[ 7]. :

Thus, for some iel, g=i, whence G=F&=FD=7,.

OD | | | S

Lemma Lower bound on the special index of direct power of prime RA's

For each prime RA R, if [#@ then 6(R)26(R).

Proof .

For each special expansion Fe SPC(X) of RA R, the d1rect power A is a

special FA expansion of RA R! with single prime factor 7. :

{ Indeed, since ¥ is an FA expansion of R, so is 7 an FA expansion of Rl;
also, 7 is a special FA as it is a non-trivial direct power of special FA #;
its single prime factor is ¥, by the preceding corollary. }

This defines a function _:SPC(R)— SPC(RY) from the set of FA-expansions

of RA R into the set of FA-expansions  of -the direct power Rl -

Now, prime G,He SPC(R) are isomorphic FA's iff the direct powers

Gl Hle SPC(RY) are isomorphic FA's

{ (=) If G=H then clearly =4
(<) If G'=4 then so are their single prime factors G=#. }

So, we have a well-defined injective function from SPC(R)/= into SPC(RY/=.

Hence, 6(R)=ISPc(R)/=l<ISPc(RY)/zl=0(RY).

OFD .

Lemma Speczal index of direct product of prime, special RA's

Let R be a prime RA of cardinality |R|=x. Given a set of special prlme FA’s

' Q; of cardinality 1Q;|={; with RA reducts P, icI, consider the direct product

R*:=(X;e 1P)X R, If ke {/ie I} then 9(-:7(’*‘_)29(9().

Proof

For each special expansion Fe SPC(R) of RA 17{, con51der the dlrect product
F*:=(X;e1Q)x F. Notice that it has the following properties.

1. The direct product ﬁ:(xieIQ)XTis an FA expansion of RA R*.
{ Since each Q; is an FA expansion of 7, icl, and ¥ is an FA expansion of X,
80 is F*=(X;c1Q)X F an FA expansion of R*=(X;c[P)XR: }
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2. The direct product F*=(X;c1Q;)xF is a special FA.
{ Since it is a non-trivial direct product of special FA's Q;, iel, and T }
3. Fr= (XIGIQ,)X_‘}' has set of prime factors {Q/ieI}u{ ¥}, '
(with set of cardinalities {{/ieI}u{x}). ' S
{ By the corollary on prime factors of direct product of prime FAs the
prime factors of the direct product F*=(X;.;Q))x F are Q;, iel, and . }

This defines a function _*:SPC(K)—SPC(R*) from the set of FA-expansibnsf
of RA R into the set of FA-expansions of the direct product K*=(X;.P)*xR,
Now, prime G,He SPC(R) are isomorphic FA's iff the direct products
| GF=(X;e1Q)x G and H*=(X;.1Q)xH are isomorphic FA's.
(=) If G=H then clearly G*=(X;c1Q)X G=(X;c1Q)xH=H*.
(=) If g*_}[* then so are their prime factors G=# :

{ If G*={*, then prime factor G of G* must be 1somorph1c to some pnme
- factor (in the set {QlicI}u{H}) of H*.

But, G* is not isomorphic to any Q;, i1, since [Rl=xe {yi/ie I} thus g~5{ }
So, we have a well- defined injection from SPC(R)/= into SPC(R*)/=.
Hence, 'e(ﬂ'<)=ISPc(:l()/slslspc(ﬂ(*)/sl=e(9{*). ’
OFD | '
Proposntlon Simple PFA connection: SI2 vs. fxpt(*) : L
Consider a simple PFA Q=<Q,d,UZ?, 1y, T u,n,L,.z*> with fork 2* 1nduced by
coding *: :U2—U. Then 201 y=1gxpy(xy 50 SI2(Q=# [1ggp(x)]NQ.
Proof , -
First, we see that 2mlU-1fxpt(*)’ since <u,v>e2nly iff v=ue fxpt(*)
{ <u,v>e 2mlU iff <u,v>e 1y; and <u, v>e 1y V1 iff u=v and <u,v>= <u u*u> 1ff

v=u=ux*u iff v=ue fxpt(*). } A :
Hence, since Q;SO (U?), »re SI2(Q) iff re Q and rglfxpt(*j ‘iff rejer-XO [lflxpt(*)]. ;e
OFD
Lemma Set of fixpoints of codmg and speczal szmple PFAs ‘
Consider a simple PFA Q=<Q,3,U?, 1y, T.u,n,l,z*> with fork «* 1nduced by
underlying coding *:U2—U with set of f1xp01nts fxpt(*)={ue U/u*u= u}
Then, simple PFA Q 1s spec1al iff *: U2——>U is sur_]ectlve and fxpt(*);eU
Proof ' ~
We have 2=1y«£*1y, and, by the preceding proposition, zmlU'—lfxpt(*)
So 1yclys*ly iff 1U=201U iff 1U"1fxpt(*) iff U_.fxpt(*)
Also, 1yz*lycly iff 2c1U iff fxpt(*)=U.
{ Because, 2c1y; iff <u,u*u>e 1U whenever <u,u*u>e 2

iff for all ue U: u=u*u iff fxpt(*)=U. }
Hence, 1y<*ly=1y iff fxpt(+)=U, i. e. 1< 1U¢1U iff fxpt(*)¢U }
By the remark in 2.3, U2*U2=U2 iff codmg *:U2>U is surjective.
OED '
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Lemma Infirite simple PRA’s and sets of generators

Given an infinite cardinal k=X, algebra 2 is a simple PRA with cardinality
IPl=x over set U iff P is the subalgebra P(U2)[G] of the full PRA T(Uz)
generated by some subset Gg # (U?2) with cardlnahty IGl=x.
Proof S
The assertion follows from the remark, in secuon 4, on subalgebras of
P(U2) generated by infinite subsets.

{ (=) If P is a simple PRA with cardmahty [Pl=x over set U,

then P=P(U2)[G] with G:=Pc# (U?) (so |Gl=IPl=x).

(=) If P=P(U?)[G] with Gc # (U2) and |Gl=x, then P has cardmahty
|P|—|G|.NO—K.NO—K [Burris & Sankappanavar '81, p. 32]. }

OED
PropositionSimple PRA’s and PFA expanszons
Let P be a simple PRA over set U. Consider any injective functlon * U2—>U
inducing fork operation «* and projections p* and q*.

a) PRA P is expandable by the- 1nduced fork «* 1ff 1nduced prOJectlons p*
and q* are in its carrier P.

b) If {p*,q*}<P and fxpt(*)e 1P(U) {where 1P(U):={ScU/# (15)cP}, then PRA
P has fork expansion P*:=(P, 2*) size-controlled by cardinal y:=Ifxpt(*)I: LP*
has set of sub-identities of 2 SI2(P*)= Sﬂ[lfxpt(*)]

Proof

a) The RA reduct of the full PFA LP"(UZ) is the full PRA P(U?).

So, {p*.q*}cP iff P is expandable by the induced fork «*,

by the lemma on expandability of subalgebras of reducts in 5.1.

b) Consider such a fork expansion P*:=(P,£*) of P. It is.a simple PFA.

By the proposition on simple PFA connection between SIZ and f1xp01nt in
5.3, we have SI2(P*)= 60[lfxpt(*)]mP*—JO[lfxpt(*)]mP

But, -since fxpt(*)e 1F(U), we have §[1¢, 0 x)]CP.

Thus SI2(P*)= 50[lfxpt(*)]mP—A’O[lfxpt(*)] 50 ISIZ(P)I 27 since y-llfxpt(*)l
OED B i
Propos1tlon Speczal codmg wzth controlled set of fixpoints -

‘Consider an infinite set U of cardmahty K2 X 4. For each subset TcU w1th
ITI=x, there exists a bijection *S:U2—U with fxpt(+S)=S, where S:=U-T.
Proof B | | -
First, since mflmte set U has cardinality |U| K>80, the following sets have
the same infinite cardinality x2X:

its square U2=UxU, its identity (diagonal) relation INE -{<u v>e U2/u—v} and
its complement 1y~={<u,v>e U2/uzv}.

{ Indeed, [U2I=[UlP=x.x=x, IlUI =Ul= Kand K—IUI<IIU~|<IU| K.}

Since ITI=x=IUl, we can partition T into disjoint subsets A and B of U, both
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with cardinality x. Since 11;~I=x=|Al, we have a bijection f:1;~—A.

Also, since |Tl=x=IBl, we have a bijection g:T—B without fixpoints.

{ We can partition B into X subsets B,, ne N, all with cardinality x=IBl. So,
we have bijections gy:A— By, and gn,:By— B, ne N, with pairwise
disjoint domains and images. Their disjoint union gives a bijection g from
T=AUB onto B=U, NB, without fixpoints, as required.

(Indeed for each te T=AU(ULNBp), g(t)#t, since, for te A g(t)= go(t)e (By-A),
and for te B, g(t)=gn,1(t)e (Bpye1-Bp). }

We now define *S:U2—U as follows:

for ue S we set uxSu:=u (notice that ue AUB);
for ue T we set u*Su:=g(u) (notice that g(u)e B);
for <v,w>e 1y~ we set v¥Sw:=f(v,w) (notice that f(v,w)e A).

Hence, #S:U2—>U is a bijection, from U2=1U'u1U~ onto U=SUT, because it is

the disjoint union of bijections (lg, g and f) with pairwise disjoint domains

(1g, 17 and 1y~) and images (S, B and A).

Also, uxSu=u iff ue S (because for ug S u*Su=g(u)#u). Thus fxpt(*S)=S.

0D | o

Corollary Simple PFA and special coding with smaller set of fixpoints

Consider a simple PFA Q=<Q,@,U?,1y,~,T,u;n,L,£*> over set U where £* is the

fork induced by some special coding *:U2—U with Ifxpt(*)I<|Ul. Then Q is a

special FA, and hence non-Boolean.

Proof

Underlying coding *:U2—U is surjective with fxpt(*)2U (since Ifxpt(*)I<IUl).

The lemma on set of fixpoints of coding and special simple PFA's in 5.3

guarantees that simple PFA Q is special.

OFED ,

Corollary Many special codings with smaller sets of fixpoints

Consider an infinite set U. For each subset ScU with cardinality ISI<|Ul,

there exists a special codmg *S:U2— U with fxpt(*S)=S.

Proof

Given subset ScU, consider its complement: T:=U-S={ue U/ueS}.

Since ISI<|Ul, we have IT|=IUl, and the previous proposition on special

coding with controlled set of fixpoints gives a buectlon *$:U2>U w1th

fxpt(*S)=U-T=S.

OED ,

Proposition Many large prime, special PFA's

‘For each infinite cardinal k2R, there exist at least x, pairwise non-

isomorphic,  prime special PFA's.

Proof .

Select a set U with cardinality |Ul=x>X. For each subset ScU with

29



~cardinality [Sl=y<¥, we exhibit a simple spe01a1 PFA Qg that is size-

controlled by 7: ISI2(Qg)|=2. ,

‘For this purpose, we choose, by the corollary on many special codmgs with
smaller sets of fixpoints in 6.1, a special coding *S:U2—U with fxpt(*S)=8S,
inducing fork «S and projections pS and gS. Set Gg:=# (15)u{pS,qS}u £ 4(U?)
and consider the subalgebra Pg: Q’(Uz)[GS] of the full PRA P(U?) generated
by Gg. Notice the following properties.

1. Set Gg=# (15)u{pS,q5}u o(U?) has cardinality IGgl=x.

{For x=1# (U?)I<|IGgl and IGgl<| 0 (1)I+1{pS,qS }+| 8 o(U2)I=2"+2+x=k (aS 2'<k. }

2. Algebra Pg=P(U?)[Gg] is a simple PRA with cardinality |Psl=x, so prime.
{By the lemma on infinite simple PRA’s and sets of generators in 5.4, since
it is the subalgebra of the full PRA P(U?) generated by Gg with IGgl=x.}

3. Simple PRA TS—T(UZ)[GS] has a fork expansion Qg:=(Pg,£5) whose set of

- sub-identities of 2 has cardinality 1SI2(Qg)l=2".
{By the proposmon on simple PRA’s and PFA expansions in 5.4, since = °
{pS,45}cGgcPg and #(15)cGgcPg with fxpt(+S)=S .} ' -
4. Simple fork expansion Qg=(Pg,«5) is a special, so non-Boolean, PFA. .
~ {By the corollary on simple PFA and special coding with smallel; set of .
fixpoints in 6.1, since special coding *5:U2—U has Ifxpt(+S)l=y<x=IUl.}
Therefore, there are at least x, pairwise non-isomorphic, prlme special
PFA's Qg with cardmahty |QS| x, for ISl<x.
OFD
Theorem Large prime, non-Boolean, elastic PRA’s 3 :
For each infinite cardinal k>X,, there exists a prime non-Boolean, elastic
PRA P, of cardinality [P |=x: PRA P, has x, pairwise non- 1somorphlc
special FA expansions Q, for each’ smaller cardinal y<x. :
Proof : : |
Given infinite cardmal k=R, consider set U:=x.

For each smaller cardinal £<x, & is a subset £cU of cardmahty |§| é
~In particular, U:=k is a set with cardinality |Ul= Iel=x2x,. :

So, by the corollary on many spemal codings ‘with smaller set of fixpoints
in 6.1, for each smaller cardinal y<x, we have a special coding *: U2-—>U
with fxpt(+*?)=y, inducing fork «¥ and projections p and q".. ‘
(Note that Ilfxpt(*)l 11,]=y, so |£0[1fxpt(*)]| 2¥<k.) ,

Set H:= Som(Uz)uuY«[{pV qY}uSO(IY)] and consider the subalgebra Q’ T(Uz)[H]
of the full PRA LP(UZ)_ generated by H. Notice the following properties.

1. Set H= (U)uL,[{p".q"}u#(1)] has cardinality IHl=x.

{For x=l# ,(U?)I<IHI and [Hl<| P o(UHHU, [{p.q"} U 2 (1)]lsk+k.(2+K)=x. }
2. Algebra P, =P(U?)[H] is a simple PRA with cardinality x2X, so prime.
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{By the lemma on:infinite simple PRA’s and sets of generators in 5.4, since
P is the subalgebra of the full PRA P(U?) generated by H with |Hl=x.}

3. For each cardinal y<x, simple PRA P, has a fork expansion Q;=(%,,£")
whose set of sub-identities of 2 has cardinality ISI2(Qyl=27.

{By the proposition on simple PRA’s and PFA expansions in 5.4, since
{p?.q"}cHCP and fxpt(+)=ye 1P(U) (for # [1gyp)]=# (1)cHCP).}

4. Simple fork expansion QY--[TK,zY] is a special, so non-Boolean, PFA.

{By the corollary on simple PFA and special coding with smaller set of
fixpoints in 6.1, since special coding *:U2—U has Ifxpt(*Y)I—'y<1<-|Ul }

5. PRA P_ is elastic, so non-Boolean.

{By the remark in 5.1 and the fact that PRA P, of cardiriality ITK|=K, has at

least ¥, pairwise non-isomorphic, special PFA expansions Q, for y<x.}

Therefore, P, is a prime, non-Boolean, elastic PRA of cardinality |2 l=x.

Theorem Infinitely ‘many large non-Boolean elastic RA's

For each infinite cardinal K2Kg, there exist- infinitely many pa1rw1se non-

isomorphic non-Boolean elastic RA's of cardinality .

Proof

By the preceding theorem on large prime, non-Boolean, elastic PRA’s, we
have a prime, non-Boolean, elastic PRA P of cardinality |Pl=x.

For each ne N, consider the direct power P"*! and |

notice that it has the following properties.

1. The direct power P"*! has cardinality |P"*!|=x.

{ Indeed, |P+!|=|Pn+1=x" x=x. }

2. The direct power P**! is a non-Boolean RA.

{ Indeed, T‘\’*l is a direct power of a non-Boolean RA 2. }

3. The direct power P"*! is elastic, by the lower bound on direct powers.
{ Indeed, 8(P"*1)26(P)=x, by the lemma on direct powers in 5.2. }

4. The direct power P! has exactly 2°*! ideal elements.

{ Since simple RA P has 2 ideal elements, see [Veloso '96b; Appendix]. }
Thus, each RA P°+1 is elastic, so non-Boolean, with cardinality |Pn+1]|=x.
For distinct k#le N, the direct powers P%*! and P*! are not isomorphic.

{ Pk+1 and P*! have, respectively, 2k+! and 2!*! ideal elements. }

Hence, there are at least X pa1rw1se non- 1somorphlc elastic RA' P+l of
cardinality , for ne N.

O

Theorem Many large non-Boolean elastic RA’s

For each infinite cardinal x> ,, there exist at least x pairwise non-

isomorphic non-Boolean elastic RA’s R[y] of cardinality x (each one of them
with special index 8(Z[y])=x).
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Proof
By the theorem on large prime, non-Boolean, elastic PRA’s, we have
a prime, non-Boolean, elastic PRA Q of cardinality |Ql=¥ q; :

a prime, non-Boolean, elastic PRA P of cardinality |Pl=x.

For each cardinal y<x, form the direct product ' R[v]:= Q%P
and notice that it has the following properties.

1. The direct product ®[y] has cardinality |R[y]l=x.

{ Indeed, x=IPI<|R[y]l and [R[y]l=IQIIPI<(y¥).x<(27).x=x, since 2'<x. }

2. The direct product R[y] is a non-Boolean RA.

{ Indeed, R[y] is a direct product of non-Boolean RA's Q and P. } _

3. The direct product Z[y] is elastic, by the lower bound on direct products.

{ Since |P=x=Ry=1Ql, 6(Q*P)=6(P)=x, by the lemma in 5.2. }

4. The direct product ®[y] has exactly 2¥! ideal elements.

{ It is a direct product of y+1 simple RA's, see [Veloso '96b; Appendlx] }
Thus, each RA ZR[y] is elastic, so non-Boolean, with cardinality. |R[y]l=x.
For distinct d#n<x, the direct products ?{[8] and K[n] are not-isomorphic.

{ R[] and R[n] have, respectively, 281 and 2V+! ideal elements. }
Therefore, there are at least x pairwise non-isomorphic elastic RA's
RIy]=Q% P of cardinality x, for y<x.

OED
Proposition Collections of large non-Boolean elastic RA’s
For each infinite cardinal x>X, such that x?<x, there exist at least 2%
pairwise non-isomorphic non-Boolean elastic RA’s R[I] with cardinality «x.
Proof _ '

By the theorem on large prime, non-Boolean, elastic PRA’s,

for each infinite cardinal X <E<k, we have:

a prime, non- -Boolean, elastic PRA P, of cardinality |T§| &

Consider a set Icx—X, of infinite cardinals strictly below «,

and notice that [Tl<lk— & ol=x (since x>X ) and for each yel, y<x so 2¥<k.
Now, form the direct product 9{[1]':=(><YelLPY)x_’P]c ' :

and notice that it has the following properties.

1. The direct product R[I] has cardinality |R[I]l=x. _

{ Indeed, x=I2,I<IR[1]! and liR[I]I:I(XY 1P XPy |<|>< 9:"YISI'IY,E K2\(=1<?S1;. }

2. The direct product R[I] is a non-Boolean RA. ' :

{ Indeed, R[I] is a direct product of non-Boolean RA's TY’ for yel, and P_. }
3. The direct product R[I] has set of simple factors {i’a/yel}u{?‘(},

(with set of cardinalities {y/yel}u{x}).

{ By the remark on prime factors of direct product of prlme RA's in 5.2,
the prime factors of the direct product (><YE vy)fo are P,, yel, and P. }

4. The direct product R[I] is elastic, by the lower bound on direct products.
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{ Since IP l=xe I={|S’.’Y|/'yel}, BL(X ¢ | By¥ Py )20(P,)=x, by the lemma in 5.2. }

Thus, each RA R[I] is elastic, so non-Boolean, with cardinality IR[1]l=x.
For distinct M=Ne # (x—{x,X}), FA's ®RIM] and K[N] are not isomorphic.
{ For definiteness, say McNcx—{x,Xy} and consider an element ve (N- M):&@
Then, P, is a prime factor of R[N] with |P,|=v.
The prime factors 2 of R[M] have |Ple MU{x}.
Thus, since ve Mu{x}, P, cannot be a prime factor of RIM]. }
Therefore, there are at least 2* pairwise non-isomorphic elastic RA's
Q{[I];(XYGITY)XTK of cardinality x, for Ie & (x—Rg) .
OED L
Theorem Very large collections of large non-Boolean elastic RA’s
For each infinite successor cardinal x=2% with o>, there exist at least 2¥
pairwise non-isomorphic non-Boolean elastic RA’s R[I] with cardinality «.
Proof . o
Since a=®,, we have x=2%0a=R,,.
So, by the preceding proposition it suffices to show that x?<x.
Indeed, for each ye x=2% we have y<2% so y<o, whence 2¥<2%=x.
Thus, 1<?=l'[wE BVAS A
OED
Corollary Large collections of large special FA’s
Consider an infinite cardinal k>RX.
a) There exist at least x pairwise non- 1somorph1c special (simple, proper)
FA's with cardinality x.
b) If x is a successor cardinal k=2% with a=X, then there exist at least 2%
pairwise non-isomorphic ‘special FA’s with cardinality x.
Proof
a) By the proposmon on many large prime, special PFA's.
b) For each . infinite successor cardinal x=2% with a>X,, the preceding
theorem, gives at least 2% pairwise non-isomorphic non-Boolean elastic
RA’s R[I] with cardinality x, each one of them has an FA expansion #[I].
We thus have a collection with at least 2¥ pairwise non- 1somorphlc spemal
FA’s #I] with cardlnahty K :

OFD

-REFERENCES

Bell, J. L. and Slomson, A. B: (1971) Models and Ultrapoducts (2nd rev.
prt). North-Holland, Amsterdam.

Burris, D. and Sankappanavar, G. (1980) A Course in Universal Algebra.
Springer-Verlag, New York.

33



Chang, C. C. and Keisler, H. J. (1973) Model Theory. North-Holland,
Amsterdam.

Ebbinghaus, H. D., Flum, J. and Thomas, W. (1984) Mathematical Logic.
Springer-Verlag, Berlin.

Enderton, H. B. (1972) A Mathemancal Introductzon to Logic. Academic
Press; New York. v

Frias, M. F., Baum, G. A., Haeberer, A. M. and Veloso P. A. S. (1995) Fork
algebras are representable Bull. of Sect. of Logic, Univ. Lodz, 24(2),
64-75. ‘ v

Frias, M. F., Haeberer, A. M. and Veloso, P. A. S. '(1996) A finite
axiomatization for fork algebras. Bull. of Sect. of Logic, Univ. Lodz, -
(forthcoming). : '

Halmos, P. R. (1963) Lectures on Boolean Algebra D. van Nostrand,
Princeton, NIJ. :

Jonsson, B. and Tarski, A. (1952) Boolean algebras with operators: Part II.
Amer. J Math, 74, 127-162.

Maddux, R. D. (1991) The origins of relation algebras in the development
and axiomatization of the calculus of relations. Studia Logica, L(3/4),
421-455.

Shoenfield, J. R. (1967) Mathematical Logic. Addison-Wesley, Reading.
Sigler, L. E. (1966) Exercises in Set Theory. D. van Nostrand, Princeton, NJ.

Tarski, A. and Givant, S. (1987) A Formalization of Set Theory without
Variables. Amer. Math. Scoc. {Cclloquium Publ. vol. 41}, ‘Providence,
RIL

van Dalen, D. (1989) Logzc and Structure (2nd edn, 3rd prt) Springer-
Verlag, Berlin.

Veloso, P. A. S. (1974) The h1story of an error in the theory of algebras of
relations. MA thesis, Univ. California, Berkeley.

Veloso, P. A. S. (1996a) On the algebraic structure of fork algebras PUC- -
Rio, Dept. Informitica, Res. Rept. MCC 04/96, Rio de Janeiro.

Veloso, P. A. S. (1996b) On finite and infinite fork algebras. PUC-Rio,
Dept. Informitica, Res. Rept. MCC 05/96, Rio de Janeiro. ‘ ,

34



