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On Cartesian Codings and the Set-Theoretical
Nature of Fork Algebras of Relations

Paulo A. S. VELOSO

{e-mail: veloso@inf.puc-rio.br}
PUCRioInf MCC 21/96

Abstract. A fork algebra is a relational algebra enriched with a new binary
operation. This class of algebras was introduced because its equational calculus has
applications in program construction. It also has some interesting connections with
algebraic logic. In this report we examine the set-theoretical nature of fork algebras,
namely to what extent fork algebras of relations are concrete. We investigate
whether every fork algebra of relations can be represented as a cartesian one (whose
‘underlying coding is true cartesian-product pair forming). We argue that the answer
is affirmative, but with a proviso. The main idea is using the room provided by the -
‘neutral element for relational composition to accommodate the cartesian behaviour.
We first show that these widened fork algebras of relations are still fork algebras, in
that they satisfy the fork equations, and then that they can be represented by proper
fork algebra (with real identity). We also establish that the fork algebras of relations
can be represented as cartesian ones, and exhibit a simple proper cartesian fork
algebra of each given infinite cardinality. We finally show that the enlargement of
the identity is essential, by exhibiting large collections of (simple) proper fork
~ algebras of relations that cannot be represented as cartesian ones.

Key words: Fork algebras, relational algebras, representability, fork algebras of relatlons
proper fork algebras, cartesian coding, cartesian algebras of relatlons non-cartesian fork
algebras.

Resumo. Uma éalgebra de fork é uma algebra relacional enriquecida com uma nova
operacéo binaria. Tal classe de algebras foi introduzida porque seu célculo equacional
tem aplicagbes em construcdo de programas, tendo também interessantes conexdes
com légica algébrica. Neste trabalho examina-se a natureza conjuntista das algebras
de fork de relagdes, em que medida 4lgebras de fork de relagbes sdo concretas.
Investigamos. se toda algebra de fork de relagdes pode ser representada como uma a
cartesiana (cuja codificagdo subjacente é realmente formacgdo de pares cartesianos).
Argumentamos que a resposta é afirmativa, mas com uma ressalva. A idéia central
se baseia em usar o espacgo fornecido pelo elemento neutro da composigdo relacional
para acomodar o comportamento cartesiano. Inicialmente mostra-se que tais versoes
liberais de 4lgebras de fork de relacdes ainda sio algebras de fork, uma vez que
satisfazem as equagdes de fork, e que elas podem ser representadas pelas dlgebras de
fork préprias (com a real identidade). Também se estabelece que as algebras de fork de
relagcbes podem ser representadas pelas cartesianas, e exibe-se uma algebra cartesiana
de fork simples prépria de cada cardinalidade infinita. Finalmente mostra-se que tal
liberalizacdo da identidade é essencial, exibindo-se vastas cole¢bes de édlgebras de fork
(simples) que n&o representadas pelas cartesianas.

Palavras chave: Algebras de fork, algebras relacionais, representabilidade, dlgebras de fork de

relagdes, élgebras de fork préprias, codificagdo cartesiana, 4lgebras cartesianas de relacoes,
dlgebras de fork ndo cartesianas.
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1. |NTRODUCTION

In this ' report we examine the set- theoretical nature of fork algebras,
namely to what extent fork algebras of relations are really concrete.

A fork algebra (FA, for short) is a relational algebra (RA for short) enriched
with a new binary operation, called fork. This class of algebras was
introduced because its ‘equational calculus -has applications in program
construction. It also has some interesting connections with algebraic logic.

~Algebras of relations involve relations on a set (of points), whereas fork
algebras of relations (FAR's, for short) deal with relations on a set of objects
(trees) - structured by an underlying pair-packing coding. The original
intuition behind ‘this structuring operation ‘is the true @ cartesian pair
forming. Subsequently this idea was widened to an injective coding, which
is enough for many purposes.. But this widening was criticised on the
grounds that such FAR's have a hidden underlying coding, and thus fail to
be concrete (see, e. g. [Sain '94]). Indeed, while the operations of a (simple,
proper) algebra of relations are natural set-theoretical operations, which
are determined once the underlying set is given, this does not occur even
with - the simple, proper fork algebra of relations (due to the arbitrary
nature of the hidden underlying coding). ' ‘

So, we examine the question: can every FAR be represented as a cartesian
FAR (one whose underlying pair-packing coding is true cartesian-product
pair forming)? We will argue that the answer is yes, but with a proviso.

Both the positive answer and the constraining proviso come from a simple,
though crucial, idea of using the room provided by the neutral element for
relational composition to accommodate the required behaviour. :

We show that every FA can indeed be represented as a cartesian FAR by
making use of the room provided by the neutral element I for relational
composition |.. The drawback of this representation is the choice for I, which
renders them- not so concrete. The constraining proviso is that if one insists
in taking 1 as . the concrete identity (diagonal) relation, then such
representation is not always possible: we show that there are many non-
trivial FAR's that cannot be represented as proper cartesian FAR's.

As mentioned, the main device for getting cartesian representability
amounts to considering this wider class of FAR's, where I is not required to
be the identity on the underlying set. We begin in section 2 with some
preliminaries on algebras of relations. Then we examine in section 3 how a
fork operation on relations is induced by a coding on its underlying set.

In section 4 we introduce this class of FAR's, which is wider than the class
of proper fork algebras (those, where I=1;). We also argue, along the lines of
[Frias et al. '96], that every PFA (short for proper FAR) is a fork algebra in
that it satisfies the three fork equations. We then establish that the subclass
of proper FAR's is sufficiently wide to represent all FAR's. So, even though
the relaxed FAR's are less restricted than the PFA's, they are still AFA's.



In section 5 +we’examine the class of cartesian fork algebras of relations,
whose underlying coding is true pair forming. By showing that every coding
algebra is a homomorphic image of some cartesian coding algebra, we
establish that the subclass of the CAR's (short for cartesian fork algebras of
relations) is sufficiently wide to represent all FARs We also exhibit a
simple PCA of each given infinite cardinality.:

Sections 4 and 5 together establish that two distinct subclasses of FAR's -
the PFA's and the CAR's - are sufficiently wide to represent all FAR's.

~The questlon of representability by proper CAR's .is taken up in section 6
We first introduce the. subclass of weird algebra of relations (WAR's, for
short) and show they cannot be ‘represented as PCA's. We then establish
that this subclass is populated by exhibiting first some admittedly
uninteresting (essentially Boolean algebras) PWA's (short for proper WAR's)
of each nonzero cardinality. With the aim of showing some more -interesting
WAR's, we introduce the merge algebras of relations, whose underlying
coding is a merge-like operation on -infinite  sequences, and .observed. that
most MAR's are non-Boolean WAR's. With these results we can exhibit, for
each infinite cardinality, a simple proper MAR as well as large collections of
pairwise non-isomorphic PWA's. Thus, at each infinite cardinality, the class
of PCA's, though populated, fails to represent many PFA's.

These results establish the positive answer as well as the constraining
proviso concerning the question of presentation of FAR's in set-theoretical
cartesian terms. Indeed, every FAR can be represented as a cartesian FAR
(one whose underlying pair-packing coding is true cartesian-product pair
forming), and in this sense one may say that the nature of FAR's is set
theoretical. But, this representation is achieved at the price of enlarging the
true identity to an equivalence relation that is a neutral element for
relational composition, in this choice 'residing the only source of non-
concrete nature. This widening of the identity is unavoidable if one wishes
to encompass all the (proper) FAR's: at each infinite cardinality, the class of
proper cartesian FAR's, though populated, fails to represent many PFA's. -

2. PRELIMINAR'IES ALGEBRAS OF RELATIONS
We begln by recalling the concept of algebra of relations (or AR, for short)
[Jénsson & Tarski '52; Veloso '74]. :
An algebra of relatzons (on set U) is. an algebra Q=<Q,u,N, % V- LT D>, where
“-its reduct <Q,u,N,J,V> is a field of subsets of VcU? (w1th U2:=UxU);
- operation T:Q—>Q is relation transposition, i. e. r'={<v,u>e U%/<u,v>er};
- operation 1:QxQ—Q is relation composition, i. e.
rls={ <u,w>e U%/3ve U [<u,v>er&<v,w>€es]};
- IeR is a neutral element for operation [: rll=r=IIr.
We shall call an AR P=<P,u,n,d V,4,I,T,I> on set U proper (a PAR, for short)
iff T is the 1dent1ty (diagonal) relation on U: I=li={<u,v>e U2/u—v}



It is well known that every . AR Q is isomorphic to a proper: AR P.
- We recall [Jénsson & Tarski '52, Theorem 4.24, p. 140; Veloso '74, p. 7] that,
in an AR Q on set U, both elements I and V are equivalence relations on U.
Also, the quotient projection n:U— U with U: —U/I induces an image mapping
N: 9 (U?)— # (U?), defined by N(r):={<n(x), n(y)>e U%/<x,y>er}. Thus, every AR
Q=<Q,u,n,@,V,~ I.T.I> (on set U) is isomorphic to a proper AR
P=N(Q)= <N(Q)um®N(V);, 1y > (on set U=U/I) [Jénsson & Tarski '52,
Theorem 427 p. 142; Veloso ‘74, p. 71. " L
Given VcU?, the powerset PAR of V is the PAR T(V) =< S’J(V) u N2 V, ,I, >

The full PAR on set U is the PAR P(U2):=< JO(U ),u,N,D,V,~ 1T lU

~ Recall that an AR Q_.<Q SRa%%] V,~,I,T,I> on U with V=U2 is s1mp1e [Jonsson &
Tarski '52, Theorem 4.28, p. 142; Veloso 74, p. 7, 12]. So the full PAR P(U2)
‘and its subalgebras are simple.

We. shall also have occasion to use the followmg constructlon :

Lemma Change of una’erlymg set of AR's
' G1ven a - surjective function h: W—>U every AR Q—<Q u,N,d V,~,I, ,I> on U is
_isomorphic to an AR H(Q) on W. :

Proof outline ‘ :

Function h:W—U induces a preimage mapping H:# (U%)— £ (W?), by

H(r): ={<w!,w'">e W2/<h(w ),h(w")>er}, which preserves Boolean structure.

If hhW—U is surjective, then H SO(Uz)——MO(Wz) is 1nJect1ve and preserves
Peircean structure. :

OFD

3. PAIR CODING AND |NDUCED FORK

Algebras of relations involve relations on a set (of pomts) whereas fork
algebras of relations deal with relations involving “structured objects. Such
structured ‘objects present a behaviour -akin to that of pairs. We first
examine how a fork operatlon on relations is induced by a codlng on its
underlying set.

If set U happens to be closed under cartesian product (Uch:U) then we
already have in U ordered pairs (v,w) of elements v,we U. True pair forming
gives an insertion of U2=UxU into U, assigning (v,w)e U to <v,w>e U2,

In .general, we may resort to a function *:U2—U. Such a function *: U2—>U
induces a binary operation £ on relatlons on U Th1s operatlon called fork

induced by *:U2—U, is defined by
1,48 = {<u,v>e U2/3v',v'eU [v' *v"—v&<u \Y% >61&<u v'>e s]}
So, r «s = {<u,v¥w>e U%/<u,v>e r&<u,w>e s}.»

A 51mple property of the induced fork is its monotomclty with respect to
inclusion: if r ¢ p and s < q then r 4s ¢ p «q.



Now, given a‘(umiversal) relation VcU?. we wish to have the fork of any two
relations included in V. In view of monotonicity, it suffices to .guarantee
that V,«VcV. We say that *:U2— U packs relation VcU? iff <v,viw>e V

whenever <v,w>e V. { For a transitive relation VgU?, packing V is a
necessary and sufflclent condition for V «VcV. }

Notice that if +:U2— U is injective, one can recover v and w from v*w. But
one can also relax this requirement to injectivity over universal VcU2, We
shall say that *:U2— U is a coding for relation VcU? iff *:U2— U packs
relation V and the restrlctlon yI* :V—U of »:U2—U to VcU? is injective.

For the case where I is not necessarily  the 1dent1ty, it is natural to consider
relaxed versions of these ideas. -

A function o: UzeU induces another binary operation 41 on relatlons on U:
the (relaxed) fork induced by °:U?—U under 1 as follows

r.As == {<u,v>e U’/Eiv RY eU [<u,v'>er&<u,v"'>es&<v'ev", v>el]}. =~
Note that ro4Is = (rzs)L. So, A is st111 monotonic with respect to inclusion.

By a coding algebra on set U we mean an algebra of the form <U,o> with
0:U2—U. We shall say that coding algebra <U,°> is a pair-packing for relation
VcU? under relation IcV _iff <v,z>e V whenever <v,w>e V and <vew,z>el and

whenever <u',v'>,<u",v">e V: <u'ov',u"ov">eliff <u',u">el and <v',v">el.

Notice that these concepts reduce to the previous ones in the case I=1.

4. FORK ALGEBRAS OF RELATIONS

Algebras of relations involve relations on a set (of points), whereas fork
algebras of relations (FAR's, for short) deal with relations on a set of objects
(trees) structured by an underlying pair-packing coding. -

‘Consider an AR Q=<Q,u.N, IV, |, T I> on set U. A function :U%2—U induces a
relaxed fork operatlon zI on # (U?). If Q is closed under the relaxed fork

operatlon 2! we can expand AR Q by .

A fork algebra of relations (on set U) is an expansion (Q,QAI] of an AR
Q=< Q,u,m,@,V,*,l,T,I> on U by the binary operation relaxed fork OAI ‘induced
by some underlying pair-packing for relation VcU? under relation ICV.

In other words, ’atn FAR (on set U) is an algebra G=<G, u,N,3,V,~I,T.1,£>, where
- its reduct G, =<G,u.N,2 ,V,~|TI> is an AR on set U;

- for some underlying pair-packing <U,°> for VCU2 under ICV
operation £:GxG—G is relaxed fork induced by ° under I, i. e.
res =r.ds = (res)l = {<u,w>e UZ/3ve U [<u,v>e 1, £8&<v,w>€ I1}.

It is not difficult to see that if the reduct G, is simple then'so is G.



We call FAR H proper (a PFA, for short) iff its reduct # , is a proper AR.
We shall use FAR for the class of FAR's and PFA for the class of PFA's.

For PFA's the relaxed fork reduces to the induced fork. It is not difficult to
see that in a PFA H=<H,u.n.,@.V,~I,T ,I <> the induced fork £ depends only

on the restrlctron vk V—éU of *:U2->U to the universal relation V.

Notice that the. restriction *: V—)U of *: U’—)U to VcU? is injective 1ff <U, * >
is a pair- packmg for V under the identity I. Thus, each injective *:V—U
gives rise to a powerset PFA P*(V) of V as the £- expansion (T(V) 2) of the
powerset PAR A(V)=< SO(‘V),U.,K\,@,V,~‘,|,'T,‘1U> of V. In particular, for. injective
#:U2—U, we have a full PFA P+(U2):=(P(U?), «). The full PFA's and their
subalgebras are 51mp1e | ' '

The abstract versions of the algebras of relatrons are the relational algebras:

algebras R=<R,+,e,0, o0, ”:,t,1> satisfying familiar equations [Jénsson & Tarski
'52, Definition 4.1, p. 127, 128; Veloso '74, p. 7, 8]. Similarly, the abstract
versions of the FAR's form the class AFA of (abstract) fork algebras, which
are expansions of relational algebras by a fork operatron satisfying three
equations. A fork algebra (AFA, for short) is an expansion RV=(R,V) of a
relational algebra R by a binary operation V:RxR—R satisfying the following

three fork equations: (rVs);(pVq)t=(r;pT)e(s;q¥), rVs=(r;nT)e(s;pT) and nVp<l1
(with T:=(1Vee)T and p:=(eoV1)7). }
It is not difficult to see that these three fork equations are satisfied in
every proper FA [Frias et al. '96]. '
Proposition Properties of PFA's: PFHCHFH

Given PFA #=<H,u,n,@,V,~T|,1;,2> define :=(1;2V)T and p:=(Vz1y)T.

a) (r£s)l(p«q)T=(rlpT)N(slgT). |

“b) mspcly,.

¢) rzs=(ritT)N(slpT).

Proof outline

These equations follow from properties of fork. mduced by codmg

{ First, inclusions (rlpT)N(slqT)c(r«s)l(p2q)T and rzsc(ritT)(slpT) are easy.
Now,(rzs)i(p£q)Tc(rlpT)n(slqT) and T£pcly; use the injectivity of *:V—U.
Finally, inclusion (rItT)n(slpT)crzs follows form (a) and (b). }

OFD '

The next result shows that the subclass of proper FAR's is sufficiently wide
to represent all FAR's. : :
Theorem Representatton of FAR's as PFA's: FRRCIIPFRA]

Every FAR G is isomorphic to some proper PFA #.

Proof outline |

Consider FAR G W1th underlying pair-packing codmg 0:U2>U.



We have a surjective.mapping n:U—U with U:=U/I, inducing a relational
isomorphism N:gé'—él’ onto PAR P with universal relation VcU?2.

We can define a coding *:U2—U so that n(u)*n(v):=n(ucv) for <n(u),n(v)>e V.
Then *:U2— U is well-defined pair-packing for ¥V under 1.

Also, N preserves forks: N(rzs)=N(r) zN(s). .

Hence, N(G) is cldsed»under ,Z; SO we can expand PAR P to PFA “H=(P, £), and
N:G—N(G) is an FA-isomorphism between FAR G=(G ,.2) and PFA #H=(P, 4).
As a consequence of this representation, we see that ‘FAR's are AFA's:
widening the ‘diagonal relation 1 to a larger neutral element I for | does not

preclude satisfaction of the three fork equations.

Corollary Properties of FAR's: FARRcCAFA

Evéry FAR g=<G,u,h,®,V,~,I,T,I,4> satisfies the three fork equations: '

a) (rzs)l(p<q)T=(rlpT)(slq"), | o

b) mzpcl,

c) res=(ritDHN(slpT), :

with the defined 'projections' m:=(12V)T and p:=(V<DT.

We thus have the following inclusions PFACFARCAFA as well as the
representation FARCI [PFAIcAFA, whence ILTPFAI=I[FARIcAFA.

We should also mention the Representability Theore'rr‘l‘ [Frias et al. '95,'96].
Theorem Representation of AFA's as PFA’s: 'HFHCI[PFH] ' '
Every AFA 7 is isomorphic to some proper PFA AH. |

‘Summing up, we have the following inclusions PFACFARCAFA as well as the‘
representations I[PFH] AFA=I[FAR].

5. CARTESIAN FORK ALGEBRAS (OF RELATIONS)

We now examine cartesian fork algebrasv of relations, where the underlying

pair-packing coding is true pair forming.
We shall show that every FAR is isomorphic to some cartesmn FAR.

Consider a set U closed under cartesian product (Uch:U) Then, true pair
formation gives an insertion (,):U2— U, assigning (v,w)e U to <v,w>e U2
Since (,):U2-U is injective, it is a coding for any VU2, |

The fork induced by (,):U2—U on relations on U is

r )z s = {<u,(v,w)>e U%/<u,v>er&<u,w>es}.

We call FAR C=<C,u,n,d,V,~,I,T1, 2> on set U cartesian (a CAR, for short) 1ff

- U is closed under cartesian product: UxUcU;

- insertion (,):U2—U is a coding for VgU? under IcV; _

- operation 2:CxC—C is the relaxed fork induced by (,):U%?—U under I, i. e.

‘r4s = r(,)zls = {<u,z>e U%/<u,vser&<u.w>e s&<(v,w),z>eI}..



We shall use CAR for the class of cartesian FAR's. Clearly CARCFRR.

By the cartesian closure of a set U we mean the union U*:=U, . NU, where
Ug:=U and U, ,:=U,u(UxU,). Clearly UxU*cUX, so U* is closed under
cartesian product. Also, for an infinite set U‘ with cardmahty Ul=x= Ry, its
cartesian closure has cardinality x<IU*|<R . x?=x.

The next result shows that the cartesian codlng algebras generate by
- homomorphic images all codlng algebras. ‘ : ~

Proposition Cartesian coding

Every coding algebra <U,*> is a homomorphic image of some cartesian
coding algebra.

Proof outline - » o

Consider the. term algebra <T,o> freely generated by the elements of U.
Evaluation is a homomorphlsm from <T.e> onto <U,*>.

Now, consider the closure U* of U under cartesian product B

Since we have a single operation, <UX,(,)> is a homomorphlc 1mage of <T,o>.
We thus have a surjective homomorphism k from <U*,<(,)> onto <U,*>.

0D _ : o

We can now show that the subclass of cartesian FAR's is sufficiently wide to
represent all FAR's. We will then have the inclusion CARcFAR together with
the representation FARCI[CAR], whence I[CAR]=I[FAR]=I[PFA].

Theorem Repres,en'tation of FAR's as CAR's: FRRCI[CAR]

Every FAR G is isomorphic to some cartesian algebra of relations C.

Proof outline '

Consider FAR G, which may be assumed proper, with coding *: U2—>U

By the preceding proposition, we have a surjective homomorphism k from
cartesian coding algebra <W,(,)> onto <U,*>; call I; =ker(k) its kernel.

Now, surjective k:W—U induces, by preimage, injective k: p(U?-)_)p(WZ) _
This preimage mapping gives a relational isomorphism K:G— Q from proper
AR G =<GunG,V,~LL1;> onto AR Q=<K(G),u,n@,V,~.T.I> with V:=K(V)c W2,
‘Also, <W,(,)> is a pair-packing for relation V=K(V) under relation IcV.
Since k is an epimorphism of coding algebras, K preserves induced forks.
{ For r,scV, we have K(r) )AK(S)CK(I'AS) and K(rzs)c[K(r) )AK(S)]I

whence K(r)(, AK(s)= [K(r) )AK(S):HI—K(I'AS)H

Now, for r,se G, K(r£s)e K(G) and so K(r) AIK(S) K(rzs)iI=K(rzs). }
Thus, K(G) is closed under A; so we can expand AR Qto CAR (Q )A—] and
K:G—K(G) is an FA-isomorphism form FAR G=(G 4,4) onto CAR C—[Q,mz—] |
D o
Notice that for a proper FAR #, the above cartesian FAR C=K(#) has

I=ker(k) and cannot be guaranteed to be proper. So, natural question
concerns the representability of FAR's as proper CAR's.



We first examiné the' proper cartesian algebra of relations.

A proper cartesian algebra .of relations (a PCA,‘for, short) on set U is a CAR
D=<D,u,n,3,V,~,l,T.L£> with I=1y, i. e. an FAR D=<D,u,n,&,V,~,T,1y,,2>. We
shall use PCA for the class PFANCAR of proper cartesian FAR's

We now exhibit a simple PCA of each given‘infinite cardinality.

Proposition Large simple proper cartesian algebras of relations

For each infinite cardinal x> there exists a simple proper cartesian
algebra of relations P with cardinality |Dl=x. |

Proof  outline v : ,

Select a set U with [Ul=x>R,, and consider its cartesian closure W:=Ux.:
Since set W=U* is closed under cartesian product, we can expand the full
PAR P(W?2) to T(')(W2)=(?(W2),(7)4], which is a simple, proper CAR. |
Then, the subalgebra D of the full PFA P(W?2) generated by # »(W?) is a
simple PCA, on set U, with cardinality |Dl=1§ o(W2)l=|W2|=x.

OED i

6. NON-CARTESIAN CODING

As mentloned every FAR can be represented as a cartesian FAR, which is in
general - not proper. We now examine the next natural question: the
representability of FAR's as proper cartesian FAR's. We shall exhibit large
classes of FAR's that cannot be isomorphic to proper cartesian FAR's.

We begin by noticing that the usual idea of ordered pair leads to u#(u,u).

[If u=(u,u) then elements (u,u)e UxU, (u,(u,u))e Ux(UxU), and so forth, would
be equal, even though one would like to view them as ordered pairs,

triples, etc. In the usual set-theoretical constructions of ordered pairs as
sets, say (v,w)={{v},{v,w}}, u=(u,u) would lead to the cycle u=(u,u)e {u}eu,
and thus to an infinite descending € -chain ...(u,(u,u))e {(u,u)}e (u,u)e {u}eu.]
Thus, in proper cartesian FAR C on set” U one must have the equation
(11N 1y=2.

Now, by a weird algebra of relations (WAR, for short) we mean an FAR
W=<W,u,Nn,2,V,~,|.T.1,.2> where (I41)ml¢® We use PWA as short for proper
WAR, and denote their respective classes by PIWA and WAR. |

We thus immediately have the next non-representability: result: the class
PCA=PFANCAR of proper cartesian FAR's cannot represent any WAR.
Proposition Non-cartesian coding: WARNI [PCH] =0

A WAR cannot be isomorphic to a proper cartesmn FAR.

[t remains to exhibit such WAR's. Some Boolean FAR's (w1th z= ) prov1de
somewhat uninteresting examples of WARs

Lemma Many proper weird algebras of zdentztzes

For each nonempty set Uz, there exists a proper WAR on set U w1th

cardinality |UI.



Proof outline

‘Consider the powerset PAR of Ij;: the PAR P(1)=<#(1),u.n,D, 1,71, L 1>
We have the diagonal bijection d:l;— U with d(u,u)=u, and d induces |
diagonal fork ,« on #(ly) which behaves as intersection: r ;£ s =r1Ns. .
Since #(1y;) is closed under-diagonal fork £, we can expand PAR P(1y;) to
PA(1)=(A( 1), ). Clearly (g £l nly=ly=a. : »
Then, the subalgebra I of the powerset PFA Pd( 1) generated by £ (1) is a
WAR, on set U, with cardinality | 1= ,(1,)l=IUl. |

QFD - 3 .
The WAR's of identities exhibited in this lemma are essentially Boolean

algebras. It would be of interest to. have non-Boolean WAR's. For this
purpose, we ‘first define merge coding. -

Given a set A, consider the set U:=A® of all o-sequences <ag,aj,...,ap,...> of
elements of A. We now define the merge operation [:582— S as follows
<a0 t: FERR: MU >I<b0,b1, —<a0,b0,a1 bl’ <s8p b ‘

Notice that one can recover both arguments a and b from the result alb
(since, for each neN: a, .=(aJb),, and b -(afb)-,nﬂ) ‘Thus [:U2—U is injective.

Moreover, for a constant sequence a‘”=<a,a,... a,...>e A®, we have a“’fa“’—a“’
We also have similar merge 'operations'on‘ AI, for every: 1nf1n1te set L.
The fork induced by [:U2—U on relations on U=A® is

T £s= {<u,vlw>e S¥<u,v>er&<u,w>es}. |

Now, by a merge algebra of relations over set A (MAR, for short) we mean a

FAR M=<M,u,n,J,V,~|.T.1,2> on set U:=A® such that

- operation £:MxM—M is relaxed fork induced by the merge operatlon
f82—>SunderI(1erzs—rjzls—(rjzs)ll) -

‘We then clearly have most MAR's as examples of non- Boolean WAR's.

Lemma Merge algebras of relations as (non Boolean) WAR's:

Consider a merge algebra of relations M over set A (so, on set U:=A‘°)v.

a) If set A is nonempty (A#Q) then M is a WAR.

b) If I~2Q, then M is a non-Boolean WAR '

Proof outhne ‘

a) We have some constant sequence a‘”—<a a,. L>eAC.

So <a® a®>=<a® a®a®>e (1 uf lp)Nlyehnl Thus (IJAII)mI;t@

b) Since a=p, |IAl>1. Hence M is a WAR, by (a).

~ Also <a,0>€ 1j;cl, so <o,afp>e IJ41~<:IJAII~' whereas INI'=@. So, M is non- “Boolean.
QED

~ We now exhibit a simple MAR of each given infinite cardinality, so a. WAR.



Proposition: Large- szmple proper non-Boolean MAR's

For each infinite cardinal x2=X there exists a 51mp1e proper non-Boolean
MAR M with cardinality |M=x.

Proof outline :

Select a set A with cardmahty |Al=x and consider the merge operatlon [ on
U=A®. Then, the full PFA P(U2) is a simple proper MAR.

Consider the subset»H—{<aw,b‘°>/a,be.A};50(U ) (note that [HI=IA|2=x).

Thus, the subalgebra M of the full PFA TJ(Uz) generated by H is a simple
proper non-Boolean MAR with cardinality |MI=IH|=x. |

OFD | R

We now use direct products to exhibit large collections of pairwise non-
isomorphic non-Boolean PWA's of each given infinite cardinality. For this

purpose, we notice that a direct. product of proper non- -Boolean WAR's is
isomorphic to a proper non-Boolean WAR.

Theorem Many large proper non Boolean WARs
Consider an 1nf1n1te cardinal K2R . :
a) There exists a simple non -Boolean PWA M, with cardinality M, |=x.

b) There exist at least x, pa1rw1se non- 1somorph1c non- Boolean PWA's w1th
cardmahty K.

¢) If ¥ is a successor cardinal (x=2% with a>R,), then there exist at least 2,
pairwise non-isomorphic, non-Boolean PWA's with cardinality x.

Proof outline

a) Follows immediately from the preceding results.

b) For each cardinal y<x, form the direct product G[yl:=MxM,, where M is a
‘simple non-Boolean PWA with cardmahty | M= Xo.

Then, G[y] is (isomorphic to) a non-Boolean PWA, of cardinality K<|g[y]|<1c K,
which has exactly 2¥! ideal elements (see [Veloso '96b; Appendix]):
Hence, there are at least x pairwise non- 1somorphlc non- Boolean PWA's
g[y] =M% M, of cardinality x, for y<x. - ST

¢) For each set Ick—R,, form the direct product H[I]:=(X YEIfM )xM

Then, H[I] is (1somorphlc to) ‘a non-Boolean PWA, and #H[I]= (>< M)xM has
cardinality k<|H[II<IA[]}<2%* 0. x=% (smce K=0r=20).

The non-trivial simple factors of H[I] are M ,yeI and fM (see [Veloso '96¢]).
Therefore, there are at least 2% pa'irwise non-isomorphic non- Boolean

PWA's ﬂ-l[I]=(><YG171/[,{)><9\/[K of cardinality x, for le 2 (x—R).
7. CONCLUSION

We have examined the set-theoretical nature of fork ‘algebras, namely to
what extent fork algebras of relations are really concrete.
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Algebras of relations involve relations on a set (of points), whereas fork
algebras of relations (FAR. for short) deal with relations on a set of objects
(trees) structured by an underlying . pair-packing coding. The original
intuition behind this structuring operation is the true pair forming of the
~cartesian product. So, we have examined the question: can every FAR be
represented as a cartesian FAR (one whose underlymg pair- packlng coding
is true cartesian-product pair forming)? :

The answer, in a nutshell, is yes, with a proviso. One can indeed represent
each FAR as a cartesian. FAR by making use of the room provided by the
“neutral element I for relational - composition |. The drawback of this
representatlon is “the choice for I, which renders them not so concrete. The
constraining proviso is that if one insists in taking I as the concrete identity
- (diagonal) relation, then there are many. non-trivial FAR's that cannot be
represented in - this manner, as proper cartesian FAR's.

The main device for getting cartesian representab1]1ty amounts to
considering this wider class of FAR's. where I .is not required to be the
identity on the underlying set. In section 3 we have examined how a fork
operation on relations is induced by a coding on its underlying set.

In section 4 we have introduced this class of FAR'S which is wider  than the
class PFA of proper fork algebras (those where I=1;): PFAcFAR. We also
argued, along the lines of [Frias et al. '96], that every PFA is an AFA
(PFHCHFH) in that it satisfies the three fork equations. We have then
‘established that the subclass of proper FAR's is sufficiently wide to
represent. all FAR's: FARRCI[PFRA]. So. even though the relaxed FAR's are less
restricted than the PFA's, they are still AFA's. We thus have the inclusions
PFACFARCAFA and the representations ITPFA]=I[FAR] . The latter, with the
Representablhty Theorem HFHCI[PFH] of [Fr1as et al. '95,'96], yields
I[PFH]—I[FHH]—HFH .

In section 5 we have examlned the class of cartesxan fork algebras of
relations, where the underlymg pair-packing coding is true pair forming. By
showing that every coding algebra is -a homomorphic image of some
cartesian coding algebra, we have established that the subclass CARcFRAR is
sufficiently wide to represent all FAR's: FRARcCI[ICRAR]. We have also
exhibited a simple PCA of each given infinite cardinality. Yo

The question of representability by proper CAR's is taken up in section 6.
We have first introduced the subclasses W AR of weird algebra of- relations
and PWA of the proper WAR's (PIWAcCWARCFAR) and argued they cannot be
represented. as. PCA's: WARNITPCA]=0. We then have established that these
classes are populated by exh1b1t1ng first some admittedly umnterestlng (in
that they are essentially Boolean algebras) PWA's of each nonzero
cardinality. With the aim of showing some more interesting WAR's, we have
introduced the merge algebras of relations, whose underlying coding is a
merge-like operation on infinite sequences, and observed that most MAR's
are non-Boolean WAR's. With these results we have been able to exhibit, for
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each infinite. cardinality, a simple proper MAR as well as large collections of
pairwise non-isomorphic PWA's. .
Hence, two subclasses, PFA and CAR, of FAR have the following properties.

- They can represent all the FAR's: FRRCI [PFFI] and FHHc:I [CAR]

(soI[PFH]—I[FHR]—I[CHR]) '

- They can represent all the AFA's: I[PFH] I[CFIR] =I[FAR1=AFA

(in view of the Representablhty Theorem [Frias et al. '95 '96])
But their intersection PCA=PFAACAR is not wide enough: we have alarge
class WARCFAR such that WARNI[PCA]=0. Indeed, PCA fails to represent
many (simple) proper fork algebras at each infinite cardinality.
To summarise the non-representability results, let us introduce some
notation. Given a class C of algebras, we use the notations C{x} for the class
of algebras in C with cardinality x and |C/z| for the cardinal number of

pairwise non-isomorphic algebras in class C . (the cardinality IC/=| where = is
the equivalence relation of being isomorphic between algebras in class C).

We also use C<x> to abbreviate the cardinal number IC{x}/=| of pairwise
non-isomorphic algebras in class € with cardinality x, and SMPL to denote
the class of simple fork algebras. o

For each 1nf1n1te cardinal k>R, even though SMPLmPCH{K};ﬁ@ we have
- M e SMPLAPFRA{x }-I[PCA] = :
(simple MAR M, with cardinality x, not representable as a PCA);
- (PFA-I[PCA])<x>2k2X| » | |
(k pairwise non-isomorphic PWA's (M )YXM(EPFH{K} I[PCH] for y<x);

- (PFRA-I[PCA] )<x>22"> R if x is a successor cardinal (x=2¢ with oa=Kg)
(2% pairwise non-isomorphic (>< M)xM ePFA{x}-I [PCH] for ICK—NO)

Thus at each infinite cardinality, the class PCRA= PFAANCAR of proper
cartesian FAR's, even though populated, fails to represent many PFA's. ’

APPENDIX: DETAILED PROOFS OF THE RESULTS
We present‘in this appendix detailed proofs of the results.

Lemma Change of underlying set of AR's ;

Given a surjective function h:W— U, every AR Q_< Q,u,n,3,V,~,I,T ,I> on U is
1somorphlc to an AR H(Q) on W 3 : ‘
Proof '

Function h:W—U induces a preimage mapping H: XO(UZ)—> JO(WZ) by
H(r):={<w' ,w">e W2/<h(w'),h(w")>er}.

a) This prelmage mapping H: P (U2)—= o (W2) preserves Boolean structure:

- H is a Boolean homomorphlsm from <Q,u,n,J,V,~> onto <H(Q),u,N,J JH(V),~>.
(i) H preserves inclusion: if rcs then H(r)cH(s)

If <w',w">e H(r) then <h(w'),h(w")>ercs, so <w',w">e H(s).

(i) HQ)c # [H(V)]

12



If se H(Q) then, for some re Q, s=H(r), so rcV and s=H(r)cH(V).

(iii) H(rns)=H(r)nH(s) |

<w',w">e H(rns) iff <h(w'),h(w")>erns iff <h(w"),h(w")>er and <h(w'),h(w")>€es

iff <w' \w'>e H(r) and <w',w">e H(s) iff <w'.w">e H(r)mH(s). ‘

(iv) H(@)=C

- <w',w">e H(D) iff <h(w"), h(w")>e@ SO H(@)c@

(v) H(r~)=H(r)~

<w',w'">e H(r~) iff <h(w"),h(w")>e Vr~ lff <h(w ),h(w")>e V and <h(w'),h(w")>er

iff <w',w">e H(V) and <w',w">g H(r) iff <w',w">e H(V)r\H(r)~ H(r)~.

(vi) H(rus)= H(r)uH(s) v ,

H(rus)= H[(rms) 1= [H(r)mH(s)]‘-H(r)uH(s)

b) If hW—U is surjective then H: 50(U2)—>$0(W2) is injective and preserves

Peircean structure. :

- H: 9 (U%)— £ (W?2) is injective

If r#2 then, for some u',u"e U, <u',u">er, so, for some w',w'e W,

<h(w"),h(w")>=<u',u">er, thus <w',w">e H(r)¢® ,

Now, consider H(Q):=<H(Q),u,n,&,H(V),~.T, ,H(I)> :

(i) HeT)=H()T ' '

<w',w">e H(tT) iff <h(w'),h(w")>erT iff <h(w"),h(w")>er iff <w",w'>e H(r) 1ff

<w',w">e H(r)T. L

(i) H(o)IH(s)cH(xls) :

If <w',w">e H(r)IH(s) then, for some we W, <w',w>e H(r) and <w, w'>e H(s)

So, with h(w)e U, <h(w'"), h(w)>er and <h(w), h(w")>e s, whence .

<h(w'),h(w")>erls and <w',w">e H(rls). .

(iii) H(rls)cH(r)IH(s) : . :

If <w',w">e H(rls) then <h(w'),h(w")>erls, so, for some ue U, <h(w'),u>er and

<u,h(w")>es. Thus, since h is onto U, for some we W, h(w)=u, and so

<h(w"), h(w)>e r and <h(w),h(w")>e s. Hence <w',w>e H(r) and <w,w'">e H(s) and

~ thus <w',w">e H(r)IH(s).

Hence H is an 1somorphlsm of AR Q onto H(Q) which is then an AR

OFD

Proposition Prope'rties of PFA's: PFAcAFA -

Given PFA #H=<H,u,n,3,V,~.T), 1y,<> define T: (1U4V)T and p (VAIU)T

a) (r£8)l(p£q)T=(rlpT)N(slqT).

b) mzpcly,.

C) r£s= (rInT)m(stT).

Proof

First notice the following exphclt descrlptlons of the defmed projections:
T:=(lyy,2V)T={<u*v,u>e V/<u,v>e V} and p:=(V £1y) ={<u*v,v>e V/<u,v>e V}.

Indeed, TCT:=1U*£V {<u,u wy>e U 2/<uu'>e l; and <u,v>e V}.

Similarly, pT:=V z1={<v,uxv">e U?/<v,u>eV and <v,v">e 13}, |
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a) (rlpn(slgT)crizsip,«q)T and (r,£$)I(p,£q) Tc(rIpT)r\(squ)
(i) For (rlpT)n(slgha(r £9))(p, 4q)T consider <u, z>e(rIpT)m(slq ).
Since <u,z>erlpT, we have some ve U such that <u,v>er and <v z>ep

Since. <u,z>e slqT, we have some we U such that <u,w>es and <w,z>e qT.
From <u,v>er and <u,w>es we have <u,vxw>er £s.

E F*'om <Z,V>€p and <z,w>e( we have <z,v¢w>ep,_ Aq

So, we have y=v*we U such that <u; y>e r.«s-and <y,z>€ (p Aq)T

" Hence <u,z>e (rzs)l(p.2q)T. B

(ii) For (r,zs)l(p, Aq)Tc(rIpT)m(squ) con51der <x,z>€ (r,zs)l(p, zq)T

We then have some ye U such that <x,y>er £s and <y,z>e (p<q)T.
From <x,y>er s, we get <u',u">e V so that y=u'*u" with <x,u'>er and <x,u">es.
From <z,y>ep,£q, we get <v',v">e V so that y=v'*v" with <z,v'>ep and
<z,v">eq. : : .
Since <u'*u",v'*v">=<y,y>e l;cV, we have u'=v'" and u"=v".

From <x,u'>er, with u'=v', and <v',z>epT, we have <x,z>erlpT.

From <<x,u">es, with u"=v", and <v",z>e‘qT, we have <x,z>€ squ.
Hence <x,z>€ (rlpT)n(slgT).

b) m«pcly

Assume <z,w>e T _£p.

Then, for some <u,v>eV, w=u*v w1th <z,u>e T and <z,v>eP.
From <z,u>e T, we have z=uxy for some ye U.

From <z,v>ep, we have z=x*v for some xe U.

Since <uxy,x*v>=<z,z>€ l;cV, we have u=x and y=v.

Thus <z,w>=<u*y,u*v>=<z,z>€ .

¢) r,zsc(rnT)N(slpT) and TN (slpDer,es -

(i) For rzsc(rinT)N(sIpT), consider <u,z>er s.

Then, for some <v,w>e V, z=v*w with <u,v>er and <u, w>es.

From z=v*w with <v,w>e V we get <v,z>=<V,v*w>e 7T and <w,z>=<w, - pT.
We thus have ve U such that <u,v>er and <v,z>e 7T, so <u,z>erinT.

We also have we U such that <u,w>es and <W,Z>€ pT 50 <u,z>e€ stT :

Hence <u,z>e (rit))n(slpT). T : : :

(i) For the other inclusion, item (a) gives (rInT)m (stT) (r,£8)(T Ap)T.
So, by part (b), we have (rITtT)fj(stT,)—(r:kzs)I(Tc*zp)Tg(r*zs)l(IU)T=r*zs.
oD : . : . .
Theorem Representatton of FAR's as PFA's: FRRCI[PFA]

Every FAR G is 1somorph1c to some proper PFA .7{

Proof

Con51der FAR G=<G,u,n,2,V,~,I.1.I,£> with fork induced by underlylng pair-
packing <U,°> for universal VcU? under relation IcV
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Since I is an equivalence relation on U. we have a surjective quotient
projection n:U—>U, mapping ue U to u/le U:=U/I. This induces injective

N:§# (U?)— #(U2) by N(r):={<n(x),n(y)>e U?/<x,y>er}. Since I=ker(n), N(I)= Iy
We thus have a relational isomorphism N:G—P from gf<G,u,m,®,V,~,l,T,I>
onto proper AR Tz<N(G),u,m,®,E,*,I,T,1!> with universal V:=N(V)cU?. |
Now, since <U,°> is pair-packing for V under I, we can define *:U2—>U by
(u/Iy*(v/I):=(uev)/I for <(u/l),(v/I)>e V_ and arbitrarily outside V.

Then *:U2— U is well-defined pair-packing for ¥V under I.

{ One can see that #: U2—>U is well-defined as follows.

Consider <u,v>e V. If <u,x>,<v,y>el then <x,y>e IT|V|ICV whence <uov,xey>el.
Thus, for <(u/l), (viD>e ¥, whenever <Uu,X>,<V y>eI we have (u°v)/I (xoy)/I
Now, *:U?—U packs V, for <v, w>e V entails <v,vew>e V since <VoW,vow>e lUCI
Thus, <(v/I) (v/I)*(w/I)> <(v/D), (vow/I)>e V whenever <(v/D(wih>e V.

- Finally, one can see that *: U2—>U is injective over V. as follows."

Given <u,v> and <x,y> in V, <u*v,x*y>e [ yields both <u,x>,<v,y> in I

Thus, over V, if (/¥ (v/ID)=(x/1)*(y/I) then (u/I)=(x/I) and (v/D)=(y/I). }
Also, the RA-homomorphism N preserves induced forks: N(rzs)=N(r),«N(s).
{ Indeed, <x/I,z/I>e N(rss) iff <x,z>erzs iff, for some <v,w>e V, <x,v>er,
<x,w>es and <voew,z>e I'iff, for some <v,w>e V, <x/L,y>e N(r) <x/lLw>e N(s) and
vxw=z/l iff <x/1,2/I>e N(r) «N(s). }

Hence, N(G) is closed under induced fork 4 and we can expand PAR Ptoa
PFA #=(P, <). Then N: G—N(G) gives an FA- 1somorphrsm from FAR g=(g 4,4]
onto proper FAR H= (.‘P 4)

OFD

Corollary Properties of FAR's: FRRcAFA

- Every FAR G=< G,u,n,3,V,~|.T 1,.> satisfies the three fork equations:

a) (r£s)l(p£q)T=(rlpT)n(slqT), a

b) mzpcl, '

c) res= (rInT)m(stT)

with the defined 'projections’ T:=(I12V)T and p =(vVzDT.

Proof

By the preceding theorem we have FAR g 1somorphlc to some PFA 5-[ and
the latter satisfies these equations since PFACAFA. .

OED

Proposition Cartesian coding _ |

Every coding algebra <U,*> is a homomorphic image of some cartesian
coding -algebra. . ‘ '

Proof
Consider the term algebra <T,o> freely generated by the elements of U.

[T is the disjoint union U, NT, where T:=U and T, :=Tyu{t'et"/t',t"e Ty}.]
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We have an -evaluation - mapping €: T—)U defined by e(u) u for ue U and
e(t'ot")=e(t")*e(t") for t'et"e U. ~

[e is defined by e(u)=u for ue T(=U and e(t°t”) e(t)*e(t") for t°t"e(Tn+1 -To):]
Evaluation e:T—U is a homomorphism of <T.,°> onto <U*>.

[It is onto ,since e(u)=u for ue U, and e(t'ot")=e(t')*e(t") for t',t"e T= uneNT ]
Now, consider the closure UX of U under cartesian product.

[Ux 1s the (disjoint) union U,.NU, where U(,—U and Un+1—Unu(U xUp)- ]

Since we have a single operation, <T,°> is 1somorphlc to <U%,(,)>.

[Define mapping 1:T—U> as the (disjoint) union i:=U,.Ni, of bijections, where
ig:=1y To—=Ugand iny;:(Tpy -Tp)>UpXU, with i, [tot"]:=(1,[t'],1,[t"]). ]

We thus have a surjective ‘homomorphism k from <U*,(,)> onto <U, *>
[Mapping k:U*—U is the composite bijective i'!: U"—)T followed by surjective
e:T—U. So, k(u)=u for ue UO—U and k[(v,w)]= k[v]*k[w] for (v w)eU ><U ]

OED

Theorem Representation of FAR's as CAR's: FARCI[CAR]
Every FAR. G is isomorphic to some cartesian algebra of relations C.

Proof :

In view of the representatlon of FAR's as PFA's, we may assume G to be a_
proper FAR <G,u,n,@,V,~T|, ly,<>, with underlying coding . algebra <U, *>.

By the preceding proposition, we have a surjective homomorphism k from
cartesian coding algebra <W,(,)> onto <U,*>; call I:=ker(k) its kernel.
Now, surjective k:W—U induces, by preimage, injective K: 80(U2)4>60(W2)
This preimage mappmg gives a relational 1somorphlsm K:G—=Q from propef
AR G =<Gu.N,2 VLT ,1y> onto AR Q=<K(G),u,n,&,V,~,|.T.I> with V:=K(V)cW2.

Since k is a homomorph1sm of coding algebras <W ( )> is a pair-packing for
relation V:=K(V) under relation IcV.- ‘ : '

<

{ First, insertion (,):U2—U is injective.
Also, if <v,w>e V=K(V) and <(v,w),z>e I=ker(k), then <k(v) k(w)>eV and :
k(v)*k(w)=k[(v,w)]=k(z); so <k(¥).k(z)>=<k(v),k(v)*k(w)>e V and <y z>e V.
Finally, <(v,w),(x,y)>e I=ker(k) iff k(v)*k(w)=k[(v,w)]= k[(_,y)] k(x)*k(x) 1ff
k(v)= k(x) and k(w)=k(y) iff <v.x>el and <w,y>eL }
We now show that relatlonal 1somorphlsm KG-—>K(G) preserves mduced '
forks and that K(G) is closed under ()4—~ : (e
For thls purpose, we establish K(r)( AK(s)= [K(r)()AK(s)]II K(rzs)II forrch
1. Flrst we show that for r,scV: K(r) )AK(S)CK(I‘AS)
{ To see that K(r) )AK(S)CK(I‘AS) con81der <u,z>€ K(r) AK(S)
Then, for some <¥,_\1>€V <u,v>e K(r) and <u,w>e K(s) with (u,w)=z.
So, <k(u),k(v)>er and <k(u),k(w)>es and <k(v),k(w)>e V with k[(u,w)]=k(z).
* Thus, <k(u),k(v)*k(w)>erzs with k(v)*k(w)=k[(u, w)]=k(;). e
Hence <u,z>e K(r«s). }
2. We also show that for r,scV: K(rés)c[K(r) AK(S)]II
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'{ To see that K(rAs)c[K(r) AK(s)]I consider <u,z>€ K(r«s); so <k(u),k(z)>er«s.
Then, for some <x,y>e V.. <k(u) x>er and <k(u),y>e s with x*xy=k(z).

~ So, for some <x,y>eV, <k(u),k(x)>er and <k(u),k(y)>es with k(x)*k(y)= k(z)
Thus, <u,x>e K(r) and <u,y>e K(s) with k[(x,y)]=k(x)*k(y)= k(z) N
“Then <u,(x,y)>e K(r) 1<K(s) and <(x,y).z>€ ker(k)=I; so <u,z>e [K(r) AK(S)]II b

3. We now have for rch K(rzs)lI= [K(r AK(s)]II K(r) AIK(S)
{ Indeed, K(r) AK(S)CK(I‘AS) yields [K(r) LK(s)]IIcK(rzs)II
Also, K(rés)c[K(r) 4K(S)]|I yields K(rzs)lIc[K(r) AK(S)]IDI [K(r) 4K(S)]|I
Hence K(rzs)lIc[K(r) LK(S)]HCK(IZS)II i. e. K(rés)II K@zl }
4. In partlcular for rseG K(r)( AK(s)= [K(r) AK(S)]’I K(rzs)lle K(G).
{ Indeed, we have rzseG so K(rzs)e K(G); thus since Q is an AR,
K(rgs)ll= K(rzs)e K(G), whence K(r) )AIK(S)“K(I‘AS)”EK(G) I
Therefore K(G) is closed under relaxed fork )4— So. we can expand AR Qto
_CAR C—(Q,( )AI] Then K: G—-)K(G) gives an FA- 1somorphlsm from FAR g—lgé,zl
onto CAR c—(Q, A ,
OID |
Pr0p0s1t10n Large szmple proper cartesian algebras of relatzons
For each infinite cardinal k>R, -there exists a srmple proper cartesian
‘algebra of relations D with cardmahty |Dl=x.
Proof. ’ : ,
Select a set U with |Ul= K>NO, and consrder its cartesian closure W:=U*. “
Since set W=U* is closed under cartesian product we can expand the full
PAR P(W?2) to LP()(WZ) (A(W?2),£), which is a simple, proper CAR.
Set G:=# ,(W?2) (note that K—IWI<|G|<N0 W l=x) and let D be the subalgebra of
the full PFA P)(W?) generated by G (note that K—|G|<|Q)|— X |G| K).
Therefore D is a simple PCA, on set U, with cardlnahty IQ)l X.
Proposition Non-cartesian coding: WARAI [PCH] =®
A WAR cannot be isomorphicv to a proper cartesian .FAR.

Proof ‘
In WAR W we have (LL)NrD, so ‘W does not satrsfy the equatlon (IzI)nI—@

A proper cartesian ‘FAR C on set U has =], ‘so C satlsfles (IAI)mI-@

Lemma Many proper . wetrd algebras of zdentztzes :

For each nonempty set Uz@, there exrsts a proper WAR on set U, with
cardmahty Ul ‘

Proof

C0n51der the powerset PAR of 1j;: the PAR ¥ IU)—<8’J(1U) u,nN,, lU, T >

17



{ Notice that‘for relations r.scly, rls=rnscly and rf=r. Thus,
P(1)=< SO(lU),u,m,Q,»lUf;m,id.1U> is essentially a Boolean algebra. }
Also, we have the diagonal bijection d:1;—U with d(u,u)=u.
Now, d induces fork ,« on £ (1), which behaves as intersection: r g4 s =1ns.
{ First rns ¢ rdzs,(because if <u,v>ernscly then u=v and d(u,u)=u, so
<u,v>=<u,d(u,u)> with <u,u>er and <u,u>es. and thus <u,v>e I4<s).
Also r 48 C INs (because, if <U,V>ET LS then, for some <v',v'>e Ly, ’
<u,v'>ercly and <u,v'>esclyy with d(v',v")=v; so v'=u=v" and
v=d(v',v")=d(u,u)=u, whence <u,v>=<u,v'>er and <u,v>=<u,v'>es. }
Now, since §(1y;) is closed under diagonal fork dz, we can expand PAR P(1y)
to Pd(1y)=(P(1y),4¢). Clearly (lyy i« Iy) N 1y =(1y N 1y) N 1y =1y=d.
Set K= (1) (note that lUI<IKI< R . I1,1=IU1) and let 1 be the subalgebra of the
powerset PFA Pd(1y) generated by K (note that UI=IK <l =&, |K| ub.

Therefore, I is a WAR on set U, with cardinality |Il= |U|

QFD

Lemma Merge algebras of relations as (non Boolean) WAR'S'

Consider a merge algebra of relations M over set A (so, on set U: =A%).

a) If set A is nonempty (A=D) then M is a WAR.

b) If I~2, then M is a non-Boolean WAR.

Proof

a) We have some ae A#J and constant sequence a®=<a,a,. >eA®.

Since a®[a®=a®, we have <a®,a®fa®>=<a®a®>e (IUJAIU)mlu and (IUFlU)mlU;t@; ’
whence @#( 1y 1y)n lychNIc[(D N =G/ DNAL

b) We have some <a,f>e ['#2.

First =B (since <o,p>e "< (1y)"). Thus |A|>1 and A=J [so M is a WAR, by (a)].
Now, consider <a,p>e I~ and <o,0>€ I;cl Notice that <oc,ocf[3>e IJAF,‘ SO IIA*;&@ and
@Il ; whereas InI"=@. Hence [/1I"#=InI", and M is non-Boolean.

OFD | |
Proposition Large szmple proper non-Boolean MAR's

For each infinite cardinal x2X, ‘there exists 2 51mple proper non-Boolean
MAR M with cardmahty IM =K. :

Proof

Select a set A with cardmahty |Al=x and consider the merge operafion [ on
U=A®. Then, the full PFA T(Uz) is a simple proper MAR. -

Set H:={<a® b®>/a,be A} (note that k=|Al<IA2=x) and let M be the subalgebra
of the full PFA P/(U2) generated by H (note that x=IHI<IMI=r . 1HI=x). '
Since A is infinite, we have distinct a=be A. So <a®b®>e (1y)~#<2.

Thus, by the lemma, M is a non-Boolean MAR ‘

Therefore, M is a simple proper non-Boolean MAR of cardinality x.

18



OFD

Theorem Many large proper non Boolean WAR's

Consider an infinite cardinal k2X.

a) There exists a simple non- -Boolean PWA M, with cardinality IM l=x.

b) There exist at least . pairwise non-isomorphic, non-Boolean’ PWAs with
cardinality x.

¢) If x is a successor cardmal (k=29 with oc>N0), then there exist at least 2K,
pairwise non-isomorphic, non- BooleanvPWAs w1th cardinality k.

Proof outline :

a) By the preceding results, we have a simple proper non- Boolean MAR M
with cardmahty M |= ¥ and M, is a PWA. |

b) For each cardinal y<k, form the direct product Gly:=MxM,, where Mis a
simple non-Boolean PWA with cardinality |M|=x,. o

Then, G[y] is (isomorphic to) a non-Boolean PWA, and G[y]:=M* M, has
cardinality k=M<l Gly]l< X oYxskk=x. '

Also, G[y] has exactly 21 ideal elements (see [Veloso '96b Appendix]).

* Hence, there are at least x pairwise non-isomorphic non-Boolean PWA's
GlYl=M% M. of cardinality x, for y<x.

c) For each set Icx-X, form the direct product 7-[[1] (XyelM )xM

" Then,' H[1] is (isomorphic to) a non-Boolean PWA.

Notice that H[I] has cardinality x=IM_I<IH[1]I<|H[«]l and H[x] has cardinality
I}[[K]lzl(xyeKMY)I.lMKH(XYGaﬂlfly)l.|Mu|.lMK|Soc°‘.oc.Ks2“°‘.oc.1<=K (since x=at=2%).
Also, for any non-trivial factorisation H[I]z Fx @G, if F is simple non-trivial
then ¥ must be isomorphic to M, or to some M with yeI. Thus, the set of
non-trivial simple factors of #[I]is { M, }u . M\/yel (see [Veloso '96c]).
Therefore, there are at least 2X pairwise non-isomorphic non-Boolean
PWA's 5-[[1]=(><Ye19\'/[\,)><_‘7l{K of cardinglity K. for e £ (x—X ).

OED
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