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On Modularity under Internal and External Choice
in Formal Software Development

Paulo A. S. VELOSO, Sheila R. M. VELOSO AND José L. FIADEIRO
PUCRioInf MCC 33/96

Abstract. We examine some interactions between internal and external choices
performed by agents in the context of modular software development of (versions
of) programs from formal specifications. We emphasise implementations of
collections of ‘specifications, which may be viewed as describing versions of
programs, and the use of labels to tag them and their development paths. The
concept of implementation, as interpretation into a conservative extension, is
generalised to labelled collections of specifications and formulated in categorical
terms. We then show that the category of such collections has pushouts and that this
construction preserves modularity as required for composing implementations.

Key words: Software development, formal specifications, implementation, modularity,
pushouts, versions of programs, labelled collections, internal and external choices, angelic

and demonic nondeterminism.

Resumo. Examinamos algumas intera¢des entre escolhas internas e externas
efetuadas por agentes no contexto de desenvolvimento modular de (versdes de)
programas a partir de especificagbes formais. Enfatizamos implementa¢des de
colegbes de especificacdes, estas podendo ser encaradas como descrevendo versdes de
programas, e o emprego de rétulos para-sua identificagdo e de suas trajetérias de
desenvolvimento. O conceito de implementagdo, como interpretagio em uma
extensdo conservativa, é generalizado a colegbes rotuladas de especificagbes e
formulado em termos categérios. Mostramos entdo que a categoria dessas colegdes
tem somas amalgamadas (pushouts) e que esta construcdo preserva modulandade
conforme requ1r1do para compor implementagdes.

Palavras chave. Desenvolvimento de programas, especificagdes formais, implementacao,
modularidade, somas amalgamadas (pushouts), versdes de programas, cole¢des rotuladas,
escolhas internas e externas, ndo determinismos angélico e demoniaco.



1

W . 0 I o Ul b W N

CONTENTS
. INTRODUCTICN
MOTIVATION: COLLECTIVE SOFTWARE DEVELOFMENT

BACKGROUND : FORMAL SOFTWARE DEVELOPMENT

.

FORMALiSATION: COLLECTTONS AND LABELS

. CATEGORICAL APPROACH

. CATEGORTCAL CONSTRUCTIONS

. MODULARTTY

THE Ro_w OF LABELS IN MODULAR DEVELOPMENT |
CONCLUSIONS

APPENDIX: -DETATLED PROOFS OF AUXILIARY RESULTS
REFERENCES

N o b N R

NP =



1. Introduction

In this paper we examine some interactions between -internal and
external choices performed by agents in the, context of modular  software
development of (versions. of) ‘programs . from formal specifications. We
cmphasise implementations of ‘collections -of specifications, which.::may be
viewed as describing versions of programs, -and. the use of labels: to. tag
them and their development paths. The concept of 1mp1ementat1 n, as
1nterpretat10n into ‘a conservative extension, is. generahsed to lab“ll'd
collections of specrflcatlons and formulated in categoncal terms. W
show that the category of such collecttons ‘has pushouts and that ths
constructlon preserves modularrty as requrred .fo'r' composmg
1mp1ementat10ns | " L

Each agent in a team developmg (versmns of) proorams faces’ several
desrgn decisions. One generally con51ders that the developer may take
any part1cular set of design decisions as long as the requrrements are
met. This corresponds to an external choice (under control of the agent),
and also to angelic nondeterminism (a successful path is enough). Now,
consider a collection of (versions of) programs where the choice of the
version is not under control of the designers. Then, every version in the
collection ‘should be developed. This corresponds to an internal chorce
and also to demonic nondeterminism.

We examine here modularity in formal development of software versions
and some relationships with internal and external choices. The structure
of this paper is as follows. We begin by. motivating collective software
development and recalling some background about modular formal
software development. We then proceed to formalise collections of
specifications and their collective development, which motivates the
introduction. of labels for their versions. A categorical approach becomes
then natural. These labelled collections of specifications and their
interpretations form a category, which is shown to have pushouts, whose
modularity - (as preservation -of faithfulness or conservativeness) is seen
to be inherited from that of the individual specifications. Then we
examine the role of labels in achieving compositionality of collective
implementations - and conclude with some remarks about  connections
with other works and possible extensions.

2. Motlvatlon collectlve software development

One often has versions of requirement spec1f1cat1ons for a system that
may lead to ‘several versions of programs. Sometimes the one: has ‘not
enough information to select between- the alternative specifications ' or
programs’ before developing them. This leads naturally to the question of
developlng collections of (vers1ons of) specrflcatlons or programs.

Consider the following scenario. A company is"in the process of producing
a system. Some versions of specifications, forming a‘-collection, are to be



developed into a corresponding collection of (versions of) programs
implementing them. An agent, a developer or a team of developers, will
be in charge of this development. Another agent, called the decision
maker, will select which version will actually be turned into a product.
We consider that this decision about which version to select is not to be
made before the development (perhaps because it w111 depend on the
development  process or on 1ts outcome)

In developing (versions of) programs the developer faces several design
dec1S1ons One generally considers that the developer may take any
partlcular set of design decisions as long as the requirements are met.
This corresponds to an external choice (under control of the developer),
and also to angelic nondeterminism (a successful path is enough)

Consider a collection of (versions of) programs where the choice of the
version is not under control of the designer. Then, every version in the
collectlon must be developed. This corresponds to an 1nterna1 ch01ce, and
also to dernomc nondetermlmsm

We examine here the interaction between these two kinds of choices in
the context of modular software development from formal spec1f1cat10ns,
To emphasise that we are dealing with several versions -of programs, and
thus that a specification may be developed along different paths, we use
labels: we will deal with labelled collection of specifications. Labels are
widely used nowadays: as traces, time stamps, evaluations of confidence,

etc.
3. Background: formal“softwarev development

The stepwise approach to formal software ‘development [Maibaum,
Veloso & Sadler '85; Turski & Maibaum '87] advocates that the
specification of the procedures to be implemented be given as a ‘theory
presentation ‘in a suitable logic. The starting point of this. process: of
program ~ development is the formal specification ~of ‘the desired
behaviour “by a set of sentences ' (a  theory . presentation).. Each
development step ~consists in the implementation ‘of 'a formal
specification A in terms of another formal specification €, which is
assumed to be closer to the intended programming environment.

Such an implementation step consists of an extension of C with new
symbols corresponding to those of A and new axioms which spec1fy
properties of these new symbols. This gives rise to a new formal
specification B. Since one does not wish to disturb the given concrete
specification C, this extension B should not impose any new constraints
on C. This can be formulated by requiring the extension from C to B to be
conservative, in the sense that B adds no new consequence to C. in the
signature of the latter.

One then wishes to correlate the abstract symbols in A to correspondmg
ones in B. But, the properties of A are important, for instance. in
guaranteeing the correctness of an abstract program supported by A.
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Thus, in translating from Ato B, one wishes to preserve the properties of
A as given by its axioms. This can be formulated by requiring the
translation from A to B to be an interpretation of theories, in the sense
that it translates each consequence of A into a consequence of B.

We thus arrive at the concept of an implementation (triangle) of A on C
as an interpretation of A into a conservative extension B (a mediating
spemﬁcauon) of C [Maibaum, Veloso & Sadler '85; Turski &. Maibaum ‘871,
as depicted in figure 3.1.
Ve
Figure 3.1: Canonical implementation step

A useful tool for program development is the structuring of a
specification into a “context" and "parameter”, i.e. a parameterised
specification [Ehrig & Mahr '85]. The idea is that the context (e. g.
SEQ[DATA]) can be plugged into different situations by appropriate choice
of values (instantiation) for the parameters (e.g. giving rise to SEQ[NAT],
etc.). :

The simple tools of - conservatlve extension and 1nterpretat10ns between
theories provide us with qu1te straightforward account of
parameterisation. A spe01f1cat1on S is said to be parameterised by a sub-
specification X (called parameter) whenever S is a conservative extension
of X, and a parameter instantiation is an interpretation p of X into an
actual argument Y [Ma1baum Veloso & Sadler '85; Tursk1 & Maibaum
'87]. |

In defining the result of a parameter instantiation, one has to complete a
diagram of two specifications B and D with a common source C, which is
extended to B and interpreted into D, to a rectangle. The completion of
the diagram is achieved by the pushout construction [Arbib & Mannes
'75; Mac Lane '71], and the preservation of conservativeness is
guaranteed by the Modularisation Theorem [Veloso & Maibaum '95;
Veloso '96]. This situation is illustrated in figure 3.2.

B . : Lo . B.—— M

V. S e W D Y

C'_—‘j_‘)D‘ B cC — D
- et

Parameter instantiation Modularisation Theorem

Figure 3.2: Completing a rectangle of interpretations
In composing implementations one faces a similar situation of completing
a rectangle,” so as to preserve conservativeness. This construction gives a
mediating specification for the composite 'implementation as illustrated

in figure 3.3. (Here, preservation of conservativeness is 1mportant for
ensuring that the pushout specification indeed servés as’ 'a mediating
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specification for the composite implementation.

A —= - a —=— B 1,

o
9]
H.< U < =B

Figure 3.3: Composition of implementation steps

We now recall some concepts from formal specifications and logic
[Enderton '72; Ehrig & Mahr '85; Shoenfield '67; Turski & Maibaum '87].
We consider a sigrnature K as characterised by its alphabet of extra-
logical (predicate and function) symbols together with syntactical
declarations. A specification is a theory presentation, i. e. a pair S=<K,Z>,
consisting of a signature K and a set T of sentences of K (its axioms),
generating - its ‘theory Cn(S) (which consists of the consequences. of 1ts
axioms). o : »

Given signatures I and K, a translation tv:I—>‘K 1is a‘ syntax-preserving
signature morphism mapping each symbol of I to a corresponding
symbol in K of the same kind; so each formula of I is translated to a
formula of K.-An interpretation from P=<I,I'> to R=<K,®> is a translation
t:I->K that translates Cn(P) into Cn(R). A faithful interpretation t:P—R is
one such that, for every sentence o of I, ce Cn(P) iff t(s)e Cn(R)..

We call I a sub-signature of K (denoted by IcK) when K can be obtained
from I by adding some extra-logical symbols (and declarations); we then
have an inclusion translation j:I-» K. We say that R extends P
(conservatively). iff IcK and the inclusion _]I—)K 1nterprets ‘P into R
(falthfully) : -

4. Formallsatlon coll-ecti-ons and labels

We w1sh to formahse 1mp1ementat1on of versmns of specxflcatlons and
programs. The objects. we have to deal with ‘are collectlve spec1flcat10ns
collections of spemflcatlons over ‘the same underlymg s1gnature A

In our scenario we assume internal choice within the collection and
external ‘choice along the development. So, an -implementation of
collective specifications should provide an 1mp1ementat10n trlangle for
each version of the abstract spec1f1cat10n in the collecuon

Consider collectlve spec1f1cat10ns a and C, over the respectwe signatures
L and K. A ‘collective spe01f1cat10n implementation of a:on ¢ should
provide, for each yversion a of a, a mediating spec1f1cation b
conservatively -extending some version ¢ of ¢ together with an
interpretation ta->b. In: view -of the situation; it is quite reasonable to
consider mediating specifications over- the same underlying signature I
and interpretations ta-—>b with same underlying signature translation



t:L—>I. Then, the mediating specifications will also form a collective
spec1f1cat10n b and it is natural to explicate an 1mplementat1on of
collective specifications in terms of collecuve interpretations into
collective conservatively extensions. ’

‘Given collective specifications a and b, with respective signatures L and
'L, a collective interpretation of a into b amounts to a translation tL—I of
their underlying signatures, such that for. each version b of b, there
exists a version a of a which t 1nterprets into b. A collective extension is
a collectlve 1nterpretat1on whose underlying signature translation is an
1nclus1on, an extension is. collectzvely conservative when each version b
‘of b is a conservatlve extens1on of its correspondmg Versmn a’in a. .

.Now in view of our mot1vat10n 1t is quite natural to. regard the varlous
versions within a collecuve specification as tagged by labels 1dent1fy1ng
them. We are thus led to the idea of labelled collective spec1f1cat10n as a
family. (€,)e g Of specifications over a common signature K indexed by a
set E of labels. (The set of labels, in addition to tagging the versions, can
also serve to record the overall design strategies concerning the

development of each version.)

A labelling consists of a set of labels together with a mapping assigning -
to each label a specification over a common signature. Thus, a labelled
collective speczfzcatzon e can be described by the data (see figure 4.1):

- a set L(€) (its underlying label set),
-~ a signature " S(€) (its common underlying szgnature) :
- a mapping €[_] assigning to each label e L(€) a specification over S(€).

Label = Specification =~  Signature
ee L) = ele]  over  S@©)
Flgure 4.1: Labelled collective spec1f1cat10n
.Now, , consider labelled collective specifications aand b. A labelled

collective interpretation from a to b is accordingly ‘a pair <p,s> Where

p:L(b)— L(a) is a relabelling of their underlying label sets,
s:5(a)— S(b) is a signature translation between their signatures;

such that (see figure 4.2)
- for every label B of L(b) translat1on S 1nterprets a[p(B)] into b[B],

e, sa[p(B)]—éb[B] -
L@) S@) pPe L<a> aipB) ]

p T, ls): pT = sl
L {) Sb Be Lb) b

Figure 4.2: Labelled collective interpretation

We thus formalise collective specifications essentially as mappings from
set of labels to specifications over a common signature. So, we are
naturally led to a categorical. approach, which is..quite appropriate for



several aspects. We shall in the sequel regard labelled collective
specifications as forming a category and examine some of its categoncal
properties and ‘constructions.

5. Categorical approach

We consider for label sets the category of sets and functions. We thus use
for label sets a category LBL that has pullbacks [Arb1b & Mannes '75 Mac
Lane '71] ‘

A spemﬁcauon is a presentatlon over an underlymg s1gnature So, we
consider categories SGNT, of signatures, and SPEC, of speczfzcatzons,
together with a functor una’erlymg signature U(_ ): SPEC—)SGNT Thus, each
interpretation of specifications T:I'—>A in SPEC has, as usual, an underlying
signature " translation U(T):UT)— U(A) in SENT (see figure 5.1).

roun
T 4 —L L U)
A ‘U(A)

Flgure 5.1: Functor underlymg swnature ‘Zl( ) SPEC—)SGNT)

A labelled (speczfzcatzon) ob]ect € consists of

- a set L(e) (called its underlying label set),

- a mapping €[_] assigning to each label € of L(e) a specxflcatlon in SPEC.
We say that such an object € is collective when all the specifications
involved are over the same s:lgnature A labelled collective object is a
labelled object € such that for every €' and €" in L(e) U(e[e'])=U(e[e"]). In
other words, the composite mapping €;U:L(e)— SGNT is a constant, which
we call its common uﬂderlying‘_s_ignature S(e) (see figilre 5.2).

ge L) - ele] _..La__) g L(e)\__i__,. SPEC
e - N l u

g"e L(e) o e[g-- 74 gn ¢ o ‘

o ' ' Asont

Flgure 5.2: Labelled col]ectlve object with common underlylng s1gnature

We now cons1der 1nterpretat10ns between labelled ’collectlve
specifications as morphisms -between labelled collective ob_]ects

Consider labelled collective objects a and b. Alabelled collective

morphism from a tob is a pair <p,s> where (see figure 5.3) -
p:L(b)—> L(a) is a morphlsm in LBL, relabellmg the underlymg label sets,
s:S(a)— S(b) is a morphism in S6NT, between the underlying 51gnatures
subJect to the following requirement: :
- for every label B in L(b) there exists a morph1sm sp: :a[p(B)]—>bI[B] in
SPEC whose underlying translation U(sp) is s S(a)—= S(b).



a pPreL@) amp) ] 4 sa)
<p,s> 1 : p T = s ¢ _ s

b Be Lb) Bb 8] Sb)y

Figure 5.3: Labelled collective morphism <p,s>:a—b

The appropriate componentwise composition of labelled collective
morph1sms is easﬂy seen to yield such a morphism (see figure 5.4). The
composite <p,s>;<q,t>:=<q;p,s;t> of <p,s>:a—b and <q,t>:b—cisa
morphlsm from a tocC (w1th S; ty a[p(q(y))]—cly]l as the composite Sq(y)ty

of s )a[p(q(y))]—>b[q(y)] and t, :b[q(7)]= cly], since it has underlymg

q(y
81gnature translatlon ’U(sq(y), )= ‘Zl(sq(y)) ‘Zl(ty) =s; t) »
p(q(Y) ye L@) ap (afy)) S@)
amp T : Sq(y);ty ~L — st d
vye L(C Clyl Se)
U T T )
plaly))e £@) ap(a))] sa)
s d u
p T af) — I s
ameLbd) = bla ] Sb)
g T £ _a | It
YeLE) o L se

Figure 5.4: Composition of labelled collective morphisms

One can see that we thus have a category LCS of labelled collective
specifications. It is clear that underlying label set and signature become
functors L(_) and S(_) from LCS into LBLOP and SGNT i. e the former is
contravariant and the latter is covar1ant (see f1gure 5.5). ’

a - L@) a | s@)

L ' ‘ S
<p,s> 4 —_— Top <p,s> { _— I s
b Lb) b Sb)

Figure 5.5: Functors L():LCS—LBLoP and .S(_) LCS—SGNT

6. Categorlcal construct ions

We assume that category SGNT of signatures has pushouts. We shall place
two requirements on the functor U(_):SPEC— SGNT. The first one
corresponds. to requiring an interpretation of specifications to be
characterised by its underlying signature translation. The second one
enables transferring pushouts from SENT to SPEC.

Faithfulness
Functor U(_):SPEC—> SGNT is faithful:
if U(W)=TU(V) in SGNT then U=V in SPEC (see figure 6 ).



In other words, given a .pair of morphisms pu:I'=> A and v:I'—= A with
common source and target in SPEC, if their images under U are the

same morphism U(W)=UWV): UT)— U(A) in SGNT, then u=v:I'>A in SPEC.

r = T i uUr = U
TN v —— 5 dw) v = i Uv) = p=v
A = A o aa) = U(a)

Figure 6.1: Faithfulness of s_ighaturé’fuhctbr U(_):SPEC— SENT

\}

T o ‘ . ! 3
Anmmm AR = Cmuct)
O-T SPEC po : c' (s)) SGNT po l ﬂ(c')

|
I _T_;> © UT) ——> UO)

U
Figure 6.2: Pushout transfer for S1gnature functor U(_):SPEC—SGNT

Pushout transfer
In SPEC each pair of morphisms ¢:I'—>A and t1:I'—>© with common source
I' has a pushout ¢:A—¥ and 7".I'> ¥ with common target ¥, so that the
rectangle U(c):U(T)— U(A), U(t):U(T)— U(®), U(c'): U(A)— U(¥) and
U(t): U(T)—>U(Y) is a pushout in SGNT (see figure 6.2).
In other words(see figure 6.3), given a pushout rectangle s:I—1J, t:I->K,
s':K—L and t:J—=L in S6NT, for. each pair of morphisms ¢:I'>A and
7:'—> © with common source I' in SPEC, such that U(c)=s and U(7)=t,
there exist an obJect ¥ and morphisms ¢ ‘A— ¥ and 7' :'—> ¥ with
‘common target ¥ in SPEC, so that : :
(Uy ‘Zl(o )=s and U(t' )=t with ‘ll(‘I’) L;
(po) oc:I'=A,1:I'->0, 0" :A—>Y¥ and 1' T V¥ is a pushout rectangle in

SPEC.
‘ZI(A) —t+ L A
Uo) T SGNT po T s & ¢ 1 SPEC
)
(t) o s =¥
t= Ut : : :
WA — > L= UY) uo) | SPEC po t ¢
SGNT T s=Ulc) = I
‘Z](G)) : r —_— 0
)

Figure 6.3: Pushout transfer from SGNT to SPEC via U(_):SPEC—>SGNT

Since SGNT is assumed to have pushouts, the latter requirement. for
faithful U 1is seen to be guaranteed by the following joint translation

8



transfer condition.

Joznt translation transfer (see figure 6.4) Lo
" Given a pa1r of specifications A and © in SPEC, for each pair of
morphisms s":U(A)— L and tU(©)— L with common target L in SGNT,
there exists a specification ¥ and a pair of morphisms 6 :A— ¥ and
' 1:©—¥ in SPEC, such that
(U) U(c')=s' and U(t")=t' with U(¥)= L
(up) given a pair of morphisms n:A—Z and v: @——)- in SPEC, for each
morphism k:L— U(E) such that t;k=U(p) and s';k=U(v) in SGNT,
there exists a morphism x:¥—E in SPEC such that U(y)=k.

T

te U ) A=
Up) —— == L= U S PEC { e
 SGNT . T s=Ulc) —
ue) ©
UE) g
ap) b 4
k ' X7
s
/
up) — L ¥
e
SGNT t SPEC
wWO)

Figure 6.4: Joint translation transfer condition for'ﬂ(_):SPE;:—) SGNT
We now wish to show that the category LCS of labelled collective

specifications has pushouts. For this purpose, consider a pair of labelled
collective morphisms <p,s>:c—b and <q,t>:c—d with common source C.

We first construct a labelled collective object a and morphisms
<'p,s'>:d—a and <'q,t'>:b—a, such that the rectangle <p,s>:c—Db,
<q,t>:c—d, <'q,t'>:b—a, and <'p,s'>:d—a commutes in the category LCS of
labelled collective specifications (see figure 6.5).

We construct them by using the pullback in LBL and the pushout in. SGNT
as well as the pushout transfer from SGNT to SPEC

b c<'g, s e
<p,s> T - LCS T <p,s>
c | — a
' <qg,t>

Figure 6.5: Commutative réctangle' <p,s>;<'q,t'>=<q,t>;<'p,s'>> in LCS

In category LBL we have underlying morphisms p:L(b)— £(c) and
q:£L(d)— L(c) with common target L(C). We form their pullback yielding
morphisms 'p:A— £(d) and 'q:A—> £L(b) with. common sourée A in LBL.

9



In category SGNT we have underlying morphisms s:5(c)—> S(b) and
t:5(c)— S(d) with common source S(c). We form their pushout yielding
morphisms s":5(d)—L and t:S(b)—~L with common target L in SGNT."

Loy —2I— a Sy — g
P l LBL pb d © | s T SGNT po T s
L) — £a) Se) — Sd)

Figure 6.6: Label set and signature for pushout in category LCS

We thus have a label set A and signature L. We now wish to construct a
labelled collective object a with underlying label set A and common
signature L. :

We define the mapping a[_]:A— SPEC as follows. C0n81der a label o in A.
We then have labels 'q(a) in L(b) and 'p(e) in £(d). such that
p('q(a))=q('p(e)). Thus, in category SPEC we have underlying morphisms
s.q(a):c[y]—)‘b['q(oc)] and t'p(a):c[y]—éd['p(oc)] with common source c[y],
where y:=p('q(a))=q('p(a)). Now, by the pushout transfer requirement on
functor underlying signature U(_):SPEC— SGNT, we have a specification ¥
and a pair of morphisms T:b['q(a)]—= ¥ and c:c['p(a)]—= ¥ with common
target ¥ in SPEC such that U(¥)=L as well as U(t)=t' and U(c)=s'. We now
set a[a]'—‘P We thus have a mapping a[_]:A— SPEC (see figure 6.7).

qo) —2 g blg)]  ——s v
p { = 1 o Sqr) T SPEC po T o
‘y L e— pM) ‘ cyl] —— dip

202 Co o)

Flgure 6 7: Mapplng al_]: A—)SPEI: for pushout in category LCS

The con_structed ‘A is a labelled collective ob)ect with underlymg"'label"{set'
L(a):=A and common signature L, because for every label a.in L(a):=A,
we have U(ala])=L. So a has common underlying signature S(a)=L.

We now claim that the palrs <'p,s'> and <'q; t'> are labelled collectlve
morphisms <'p,s'>:d—a and <' q;t' >:b=5a’ Indeed, given any label ‘o in
L{(a):=A, we have by constructlon ~morphisms ‘1T:b[' q(oc)]—) ala] and
c:d['p(a)]—>afa] with common target af[a]:=¥ in SPEC such that U(t) is
t:S(b)—S(a) and U(o) is s’ 5((1)—95(?1) so we set t' ;=T and s':=0.

‘q(@) € L (D) bl ” Sb)
g T = tg=1 ¥ —— It
aeL@) af] Sa@)
ol e Ld) dip@ ] o Sd

o 1 teo L a .
P = sS4 =0 — s
ael@) ajo] S@)

Figure 6.8: Labelled collective morphisms in LCS
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We thus have a pair <'p,s'>:d—a and <'q,t'>:b—a of labelled collective
morphisms with common target a in LCS.

The commutativity <p,s>;<'q,t'>=<q,t>;<'p,s‘>' now follows from the
commutativity of the component rectangles 'q;p='p;q in LBL and s;t'=t;s' in
SGNT (see figure 6.9).

Lb) —2 _  La) sby —5  sa
p ¢ LBL o & s T S6NT T s’
L) e—-&— £a) - S© — Sd)
LT oy TS
b —sar> a ,
<p,s> T LCS - T <p,s™> |
¢ a4

Fiéure 6.9: Commutativity transfer to LCS via functors £(_) and S(_)

Thus, from a pair of labelled collective morphisms <p,s>:c— b and
<q,t>:c—d with common source C in LCS, we have constructed a pair
<'p,s'>:d—a and <'q,t'>:b—a of labelled collective morphisms with
common target a in LCS, such that the rectangle <p,s>:c—b, <q,t>:c—d,
<'q,t'>:b—a, and <'p,s'>:d—a commutes in LCS, as shown in figure 6.5.

We now examine the universal property of the construction.

For this purpose, we consider a pair <f;i>:b— e and <g,j'>:d—->e of
morphisms with common target € in LCS such that <p,s>;<f,i>=<q,t>;<g,j>,
as depicted in figure 6.10. We wish to show the unique common
factorisation of morph1sms <f,i> and <g,j> via some morphlsm in LCS.

* b ‘ <fi> e
<p,s> 1T LCS T <g.3>
c _—_— d
L <g,t>

Figure 6.10: Commutative diagram <p,s>;<f,i>=<q,t>;<g,j> in LCS

Towards this goal, we use the functors underlying label set and s1gnature
as well as the universal properties of our construction.

We apply the functors L(_):LCS—LBLOP and S(_):LCS— SGNT to the above
rectangle in LCS. We will obtain commutative rectangles in LBL and in
SGNT. Then the universal properties of the pullback in LBL and of the
pushout in SG6NT, respectively; will yield the components of the desired
morphism in LCS. " '

Since underlying label set is a (cqntravariant) functor L(_):LCS—LBLOP,
the commutativity <p,s>;<f,i>=<q,t>;<g.j> in LCS yields the commutativity
f;p=g;q in LBL (see figure 6.11).
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b | <fi> e
<p,s> T LCS ‘_ T <g,i>
c _ d

<g,t> : :
Ll
Lb) —— L@
p 4 LBL 5

L) — L@)
. q

Figure 6.11: Commutativity transfyer‘ from LCS to LBL via functor L(_)

Thus, since the rectangle p:L(b)— £(c), q:£(d)— L(c), 'q:L(a)—> L(b) and
'p:L(a)—> L(d) is a pullback in LBL, we have a unique label morphism
h: L(e)— L(a) factorizing f and g, i. e. h;'q=f and h;'p=g, in LBL. (see figure

6.12).

. qﬁ B
Ld)

o) - — | o
Figuré,_6,.;12: -Pullback property of label set in category LBL
Similarly, since underlying common signature is a (covariant) functor
S(_):LCS—SGNT, the commutativity <p,s>;<f,i>=<q,t>;<g,j> in LCS yields the
the commutativity s;i=t;j in SGNT (see figure 6.13).

<fi>
b =7, e

<p,s> 1 LCS T <g,3>

¢ <q,t>  d
sy
sb)y — . Se)

s T  seNT T g
Se©) ';?f» sd)

Figure 6.13: Commutativity transfer from LCS to SGNT via functor S(.) .

Thus, since the rectangle s:5(c)— S(b), t:5(c)— S(d), s:5(d)— S(a) and
t:S(b)— S(a) is a pushout in S6NT, we have a unique signature morphism
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k:S(a)— S(e) factorising i and j, i. e. s';k=j and t';k=i, in SGNT (see figure
6.14). '
‘ __Se)

S(b)

pp— - sd).
F1gure 6. 14 Pushout property of 31gnature in category SGNT

We now claim- that the pair <h,k> is a labelled collective: morphlsm in the
category LCS of labelled collective specifications. w

To establish this claim, we must verify the requirement for every label ¢
in L(e) there exists a morphism k.:a[h(e)]—e€[e] in SPEC whose underlying
translation ‘Zl(kg) is the given k: 5(a)——> Sce).

Indeed, given any label e in L(€), we have i b[q(h((e))]—) e[e] and
Je: d[p(h((a))]—-)e[e] in SPEC with underlying mgnature translations ‘71(18) i
and U(j.)=j in S6NT. Now, in SGNT, we have the commutativity s;i=t;j i. e.
U(s: (h(s))) ‘U(le) Ut (h(e))) ‘U(Js) by the faithful requirement on the
functor U(_):SPEC— SGNT U(s, q(h(a)),l) ﬂ(t'p(h(e)),j) yields the
commutativity Sq(h(e)),l =t p(h(e))’-]e in SPEC (see figure 6.15).

sby —  se
s T saﬁt T
S© —T-> Sd)

U4 T faithful

bla(he))] S N ekl
Sghe) | SPEC T %
cly] ———— dip(hE))]
to(hie))

Figure 6.15: Transfer of commutativity from SGNT to SPEC via S(_)

Now, the rectangle with morphisms sq( (&))" :clyl—= b [ q(h(e))]

hi) y:elyl= d'p(h(e)], s'yey:d'p(h(e))]— alh(e)] and
th e):Pl'q(h(e))]—a[h(e)], where y:=p(’ Q(h(S))) q('p(h(e))), is a pushout in
SPEC. Thus we have a (unique) morphism jy:a[h(e)]—>€[e] factorising i and
Jg» 1. €. th(s),x =i, and Sh(g),X—_]s, in SPEC (see figure 6. 16).
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b ['q(h(e)]

[ t h(e)
Sl
S 'q(h( £)) SPE“C po h(z)
| )
™ i : > d ['p(he)]

Figure 6.16: Pushout property of specification in category SPEC
 Now, since underlying common signature is a functor S(_):LCS=>SGNT, we
also have the commutativities U (t'y(¢y);U(x)=U(i,) and
‘Zl(s'h(a));‘ll(x)=‘ll(js) i. e. t;U(x)=1, and s';U(x)=]js, in SGNT. Thus, by the
uniqueness of k:S(a)— S(e) as a factorisation of i and j in SGNT, we have
U(x)=k. Hence, by setting ‘kg:=x we have a morphism k. :alh(e)]— €[e] in
SPEC such that U(k.)=k:S(a)— S(€). Thus <h,k>:a—e is .a 'labelled collective
morphism in LCS (see figure 6.17).

he) e L@) alh€))] a say
AT =%x=x! — {x

€ B '
eeLE) ele] o Se)

~ Figure 6.17: Labelled collective mediator morphism
This argument shows the existence of a;llabelled collective mediator
morphism <h,k>:a—e factorising <f,i> and <g.j>, i. e. <'q,t'>;<h,k>=<f;i> and
<'p,s'>;<h,k>=<g,j>, in LCS, as illustrated in figure 6.18).

Figure 6.18: Mediator morphism <h,k>:a—€ in LCS
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 The uniqueness of such a factorisation follows from the uniqueness of the
components and the functorial nature of L(_):LCS—>LBL°P and

S(_):LCS—> SGNT. Indeed, cons1der any morphism <m, n> a— € such that

<'q,t'>;<m,n>=<f,i> and <'p,s'>;<m,n>=<g,j>, in LCS. By applying the
functors  L£(_):LCS— LBL°P and S(_):LCS— SGNT we have the
commutativities m;'q=f and m;'p=g in LBL as well as t';n=i and s';n=j in
SGNT. By uniqueness of such factorisations, the former yields m=h and the

latter yields n=k. We therefore have <{m,n>=<h,k> in LCS as claimed.

Summing up, in LCS, from a pair of labelled collective ‘morphisms
<p,s>:c—b and <q,t>:c—d with common source C, we can construct a pair
<'p,s'>:d—a and <'q,t'>:b—>a of labelled collective morphisms. with
common target a, such that the rectangle <p;s>:c—>b, <q,t>:c—>d,
<'g,t'>:b—a, and <'p,s'’>:d—>a commutes (as shown in figure 6.5) and ‘has
the universal property of umque factorisation (see figures' 6.10 ‘and
6.18). ~
This f1mshes the proof that the category LCS of labelled collective
specifications has pushouts.

Theorem Pushout in labelled collective specifications
The category LCS of labelled collective specifications has pushouts.

- 7. Modularity

We now examine modularity: preservation of faithfulness or
conservativeness by the pushout  construction.

We endow category -LCS of labelled collective. specifications with a
concept of faithful morphism naturally inherited from category SPEC of
specifications as follows. A labelled collective morphism <p,s>: a—b in
LCS will be called fazthful iff for every label B in L(b) the morphlsm
sBk\a[p(B)]—>b[[3,] is faithful in SPEC (see figure 7.1).

-a pBre L@) ‘ aiph)]

faithfull <p,s> : p T = = faithfull s
) b Be L) bpB; k

F1gure 7.1: Fa1thfu1 labelled collective morphlsm <p,s>: a—)b inLCS

By our’ assumptlons category SPEC of specifications has pushouts. We
shall place a further requirement on category SPEC of specifications: that
its pushout preserves faithfulness. (This requirement is satisfied by the
presentations in classical first-order logic [Veloso '96].)
Modularity of pushouts in SPEC (see figure 7.3)
Given a pushout rectangle 6:I'=>A, :I'—=©, ¢":A—¥ and t:.T'—=¥ in SPEC, if
morphism ¢:I'—A is faithful then so is its pushout c:A—>Y¥.

We now wish to show that the pushouts in the category LCS of labelled
collective specifications preserve faithfulness.. 'Cdnsidér a pushout
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rectangle in LCS: pair of morphisms <p,s>:c—b and <q,t>:c—d with
common source C yielding a pair <'p,s'>:d—a and <'g,t'>:b—a of
morphisms with common target a. Assummg that <p,s>:c—Db is faithful
‘we claim that so is <'p,s'>:d—a.

‘b o {f,;> e’
<p,s> T ,I.CS po T <g,j>
c —_—> d
<g,t>

Flgure 7.2: Pushout rectangle in category LCS

Consider a label o in £(a). By construction, we have a pushout rectangle
in SPEC: a pair of morph1sms Sq(a) :c[y]->b['q(a)] and t-P( :c[yl—=d['p(a)]
with common source C[y], where y:=p('q(a))=q(’ p(a)), and a pair
t'y:bl'q(a)]—ala] and s':d['p(a)]—ala] of morphisms with common target
a. Now, since <p,s>:c+>b is faithful in LCS, morphism s-q(a):c['y]—-)b['q(oc)]
is a faithful interpretation in SPEC, and modularity in SPEC yields the
faithfulness of s'a:d['p(oc)]—-> afa] (see figure 7.3). So, morphism

<'p,s'>:d—a is faithful in LCS.

blg) ] —ta ¥
faithtul T s5.q) SPEC  sS§ 1 faithfw
=
clyl —_— dip ()]
Co (o)

Figure 7.3: Pushout modularity in SPEC

Propos1tlon Preservation of fazthfulness by pushouts inLCS

Pushouts in the category LCS of labelled collectlve spec1f1cat10ns .
preserve faithfulness.

A line of reasoning 51m11ar to the precedmg one shows that the pushouts
in the category LCS of labelled collective specifications inherit
preservation of extensions from the underlying . category SPEC of
specifications. N

We endow category LCS of labelled collective specifications with a
concept of extension naturally inherited from category SPEC of
specifications as before. A labelled collective morphism <p,s>:a—b in LCS
is called an extension iff for every label B in L(b) the 'morphism
sB:a[p(B)]”—>b[B] is an extension SB:‘a[p(B)];b'[ﬁ] in SPEC (see figure 7.4).

a p@BeL@) - alpP)l
L<p,s> J« extension : p T = sg M ext
b : BeLb) - - bp

Figure 7.4: Labelled collective extension <p,s>:a—b in LCS
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We shall now consider a further requirement on category SPEC of
specrfrcatrons that its pushout preserves extensions. (This requirement is
satisfied by the presentations in classrcal first- order loglc [Veloso &
 Maibaum '95].) - ‘ : :
Extension modularzty in SPEC (see figure 75) Lo :
leen a pushout rectangle 6:I'—A, 1:T—©, 6:A— ¥ and t F——)‘I’ in SPEC, if
morphrsm o:I'>A is an extension then so is its pushout 0' A-—>‘~P

We can now argue that the pushouts in the category LCS of labelled
collective specifications preserve extensions. Given a pushout rectangle in

LCS: pair of morphisms <p,s>: c—b and <q,t>: c—d with common source C
yielding a pair <'p,s'>: d—a and <'q,t'>: b—>a of ‘morphisms with common
target a, with <p,s> C—-)b an. extensron we c1a1m that so is <' p s > d-—->a '

b[q’(oc —fa e
ext. U sy Ext. Mod iSPEC S& ‘U”eXt‘-
=
cly] — dip@)]

o)

Figure 7.5: Extension modularity in SPEC

As before, consider a label o in L(a). By construction, we have a pushout
rectangle in SPEC: a pair of morphisms s q(a):€ cly]— b['q(a)] and
t.p(a) :c[y]=d['p(a)] with common source C[y], where v:=p('q(a))=q('p(a)),
and a pair t'; b[q(oc)]—) ala] and s':d['p(a)]—>ala] of morphisms with
common target a. Now, smce <{p,s>: cqb is. an. extension in LCS, morphism

'q(a) :c[y]=>b['q(a)] is an extension in SPEC, and extension modularity in
SPEC yields that s’y :d['p(a)]— ala] is an extension (see frgure 7.5). So,

morphism <'p,s'>: d—ea is an extension in LCS.
Corollary -Preservation of conservative extensions by pushouts inLCS

Pushouts in the category LCS of labelled collective specifications
preserve conservative extensions.

8. The role of labels in modular development

We now examine more closely the role of labels for the modular
development of labelled collective specrf1cat10ns

First of all, labels are a useful tool “for keeping track of the various
versions and for establishing the existence of pushouts.

Now, given a collective specification € there are several ways of labelling
it. A possible way is taking the collection € itself as its label set, with
each specification version e of € as a tag for itself. In general, one may
have other labelling schemes. Let us examine some poss1b1l1t1es

Consider a labelled collective spec1f1catron € with label set L(e) We
regard each label € of L(e) as tagging a specification version e[e] Thus,

17



labelled collective specification ‘e'With’ mapping €[_] describes a collection
of ’speCifications namely its. 1mage e[L(e)] Let us examine their local
behaviour: some spec1f1cat10ns may have no label while others may have
several labels.

A specrficatron version v that is not in the 1mage of the mapprng e[ ] has
no label assigned to. it, and we may v1ew this as an 1ndicat10n that it
need not be developed.

4

Figure 8.1: Specification version without label
A specification version v that has distinct labels assigned to it, say &' and
" in L(e) with e[e']=v=e[e"], may be viewed as having two versions,
Wthh may, or may not, follow distinct development paths along the
corresponding fibres. : .

Le) . - Le)

T % ev T
ln ni o I n nl
elel = ekl ee] = efe"]
Developments ’ " Developments -

Figure 8.2: Development paths for versions with d1st1nct labels

We now consider implementations of labelled collective specifications.

First- recall : that an implementation of collective specifications should
provide an implementation ! triangle: for -each . version  of. the. abstract
spec1ficat10n in the collection. Also, bear in mind that, in 1mplement1ng an
"abstract” a on a ' concrete c, one must produce a mediating
spe01flcat10n | - s '
We now w1sh to explicate labelled collective 1mplementat10ns in terms of
mterpretatrons and conservative extensions, much as in the case of
lmplementatrons of individual specrfications '

Consider labelled collective specrflcations abstract a and "'concre'te" c. To
provide a labelled collective 1mplementat1on of a on c one should
produce a medratmcr labelled collective specrfication b with its own label
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set.. Thus, such a labelled collective implementation would amount to a
labelled ‘collective morphism of a into mediating 1abelled collective
specification b, which is a conservat1ve labelled collective . extensmn of c.
In order to guarantee the above requlrement that this provxdes an
implementation trlangle for each version of the .abstract specification, we
place a constraint on the labelled collective interpretation: that it has a
surjective relabeling. (Notice that this constraint is not so severe, since
we are producing mediating b with with its own label set. Also, this
surjectivity ‘constraint means that each label for the mediating collective
specification comes from a label for the "abstract” collective specification,
and thus each version of the former supports a vers1on of .the latter.) ..

. We thus arrive at .the following formulatlon for. implementation of
labelled collective spec1f1cat10ns Given labelled collectlve specifications a
and C, a labelled collective implementation of a on C cons1sts of a
medlatmg labelled collective object b together with ‘

- a labelled collective morphism <g,t>:a—+b whose underlying ‘
relabelling q:L£(b)— L(a) is a retract in LBL, i. e. there exists a
morphism g*:£(a)— L(b) such that the composite g*;q is the identity
on £(a) in LBL; as well as

- a conservative labelled collective extension <p,s>: b—ac

L) < - £(a)
LCS VvV '<p,s> / q*
, c . /
. /
La)

Flgure 8. 3 Labelled collectlve implementation

Let. us now examine the requlrement that an implementation of
collective ‘specifications should provide an implementation triangle for
each version a, of the abstract specification " in the labelled collective
specification a. leen a label o of L(a) we have a label B:=qg*(a) in L(b)
such that q(q*(a))=oa. We thus have a mediating spemfxcatxon b[q*(a)]
together with N
- a morphism tg: a[q(B)]—éb[B] in SPEC. whose. underlymg translation
‘Zl(tB) is the signature translation t:5(a)— S(b) in SGNT; as well as
- a conservative extension SB C[p(B)]cb[B] in SPEC whose underlymg
translation ‘U(SB) 1s the 51gnature 1nclusxon s: S(C)C.S(b) in SGNT.

aoel@) Ao _.33__> “bB1 a sa) ——  Sb)
T T = SPEE  V 'sgg ——— - S6NT U s
Be Lb) SRRRRNE ClpP)] v S

Figure 8.4: Morphisvm‘s in labelled collective - implementation
Thus, for each label o of L(a), we have an implementation’ triangle “for
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version a, of the abstract specification on a version of the concrete
specification: an interpretation Ly (o)- afa]—b[g*(o)] into a mediating
specification b[q*(a)] which extends conservatlvely C[p(q (a))].

aeL(a)_ alal —iq—ﬂ’——e bia* )]
aq * J, T (o} = SPEC v Sq.*(a)
*(oc eLb ' Clp(g* @)):

F1gure 8.5: Labelled collectlve implementation tr1ang1e

Now, let us examine the compositionality of labelled collective
implementations. o «

Pullbacks ‘are known to preserve retracts, as can easily be seen (see
figure 8.6 and the appendix). ' '

Lb) DA ) Lb)

1o ‘
N s c S
Lb) % L 2 Lp)
p 4 T LBL pb I ~ 1 p
Le) —— Ld) <L L
» . .
| | |

1

Ley —te L)

Figure 8.6: Pullback of label set retract q:L(d)— £(c)

Now, recall that our construction of pushouts in the category LCS of
labelled collective specifications is based on pullbacks in LBL. Now,Thus,
this pushout construction in the category LCS provides a mediating
collective spec1flcat1on for the composxte 1mplementat1on step

Theorem Composmon of labelled collectwe zmplementatwns :
Cons1der labelled collective spec1f1cat1ons a,c and € in the category \
LCS. Given labelled collectlve 1mp1ementat10ns :

(1) of a on C, con51st1ng of. labelled collective: morphlsms <n g> a—>b
~and conservative extension < p s>:c—>b into mediating b in LCS,
(2) of C on €, consisting of labelled collective morph1sms <q t>:c—>d
~and conservatlve extension <r,h>: eed into med1at1ng dinLCS,
form the pushout of morphlsms <p s> b—)c and <q,t>: cod w1th
common source b in LCS, yielding morphisms <'g,t'>:b—m and

<'p,s'>:d—>m with common target m in LCS. We then have a
composite labelled -collective implementation of a on €, consisting

of composite labelled collective morphisms <n,g>;<'q,t'>:a—m and
conservative extension <r,h>;<'p,s'>:€~>m into mediating m in LCS.

Indeed, since <p,s>:c—b is a labelled collective conservative extension,_so
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is.its pushout <'p,s'>:d—>m in LCS, and, since relabelling q:£(d)—> L(C) is a
retract in LBL, so is its pullback 'q: £L(m)—> £(b) in LBL.

Cign g > BN < :
,a ——EEL—e b e—ilzie m
V <p,s> Lo Vo<'p,st>
<qg,t>
'V <rh >
e

Frgure 8 7: Composmon of labelled collectrve 1mplementat10ns

As mentroned labels serv1ng to tag the varrous versmns can also be used.
to keep track of des1gn strateg1es concerning ‘the. development of each
version. A further use of labels in modular software development is,
recording information concerning the structure of a version; for instance,
by 1nd1cat1ng its components and therr subordmat1on For this purpose,
one may use ‘structured labels sets in lieu of 51mp1e ‘sets.” This involves
usmg another category (still with pullbacks) for- labellmg, but our
categoncal approach appears ‘to be adaptable without ‘much drffrculty to
this ‘case as long as we have a functor W(_):LBL—'SET" mappmg the
structured of each structured label into''sets and functions. - '

We would then be dealmg with a category LBL[WS ET] of labels over sets
much as our spec1f1catrons form a category SPEC[‘USGNT] of labels over
sets, and they would give rise to a category LCS[£L BL,SSPEC] ,_of labelled
collective specifications with functors L(_):LCS—LBLP and S(_):LCS—>SGNT.
Our results could be summarised as follows:

if we have pushout transfer from SGNT to SPEC[‘USGNT] and pullback

transfer from SET to LBL[7/SET], then LCS[£LBL,SSPEC] has pushouts;

if SPEC[USGNT] inherits modularity from SGNT, then LCS[LLBL SSPEC] has

modular1ty, ‘
in such case, implementations are composable in LCS[LLBL SSPEC]

9. Conclusions

We have examined internal and external ch01ces and . modulanty in
formal software development by generalising loglcal concepts concerning
specifications to collections of specifications, so as model external choice
along the development (freedom in taking design decisions) and internal
choice of the particular spe01f1catron (program vers1on) within the source
collection.

Internal and external choices are related to demonic and ‘angelic
nondeterminism, respectively. Their interplay mirrors the behaviour of
two agents: a developer (team), responsible for carrying out the
development, and a decision maker, who will select 2 final version.

Our ' formalisation generalises the concept of implementation (as
interpretation into a conservative extension) to colleétive ‘specifications
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(of versions tagged by labels). The categorical approach extends the
pushout construction to labelled collective specifications. Modularity (i.
preservation of faithfulness) is shown :to be inherited from the
corresponding property of the individual specifications, thereby allowing
composition of implementation steps.

It is apparent that we can extend alono these lines the concepts of
parameterised specifications and parameter instantiation to labelled

collective specifications.

Ideas related to internal and external choices (and - to demomc and
angelic nondeterminism, respectively) also appear in other contexts.
Some examples are distributed and parallel computing (where some
execution details are outside the control of the designer) and default logic
[Reiter '80] (where default leaves some choice between alternatrves

giving rlse to several extensrons of a theory).

Labels are being widely used nowadays Some examples of the1r use are
as tags identifying different versions of program (in software
development), as traces of deductions of a formula (in labelled deductive
systems [Gabbay '94]), as time stamps (in temporal logic and temporal
data bases), as numer1ca1 evaluation of data to aggregate confidence in
some conclusions (in probabilistic and fuzzy systems). Moreover, the
structure of a—collection of labelled theories can be mirrored in the label
set. For instance, When all theories in the collection are extensions of a
particular theory, as in default loglc this  structure may be represented

in' the label set as a' tree.

Some ideas of our approach may be expected to be adaptable to these
and other related s1tuat10ns

In this appendlx we present some more detalls concermng some
auxiliary results: that have been used. R v

Lemma Condition for pushout transfer via underlying signature
Consider the categories SGNT and SPEC, as well as the (covanant)
functor underlymg signature U(_ )SPEC—)SGNT o
Assume that category SGNT has pushouts and that the functor
U )SPEC——) SGNT is farthful and satlsfles the’ joint translatlon
transfer condition: :
" given a pa1r of spe01f1cat10ns A and © in SPEC, for each pair of
morphisms s":U(A)— L and t" U(©)—L with common target 'L in SGNT,
there exists a specification ¥ and a pair of morph1sms c' A—-)‘I’ and
T:©—Y¥ in SPEC, such that
(U) U(c")=s' and U(t")=t' with U(¥)=L; ‘
(up) given a pair of morphisms p:A—Z and v:©@—E in SPEC, for each
morphism k:L— U(E) such that t';k=7(p) and s';k=U(v) in SGNT,
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- there exists a morphism %:¥—Z in SPEC such that ‘Zl(x)—k "

Then, functor U(_): SPEC%SGNT has the pushout transfer .
"in SPEC each pair of morphlsms o:’'—= A and 1: r-e w1th common
source T’ has a pushout 6:A— ¥ and t:I'—>¥ with common target ¥, so
that the rectangle U(o): U(T)— U(A), U(t):UT)—> ‘Zl(@) ‘Zl(o) UA)— U(YF)
and U(t"): ‘('.l(l")——) U(¥) is a pushout in SGNT "

Proof (se flgures 6.2, 6.3 and 6.4) 5

Cons1der a pair of morphisms o:I'—A and 1:I’'—>© with source I''in SPEC.

We then have a pair of morphisms ‘Zl(c) ‘ll(F)—) ‘U(A) and U(T): U(T)— U(O)

w1th common source U(T") in SGNT.

A U@

o T  SPEC —-————>ﬂ: '0'"'T N SGNT |
T — @ ‘ (T'] —  U©)
T

Since category SGNT has pushouts, the pair U(c):U(T)—>U(A) and
U(t): UT)— ‘Zl(@) has a pushout s": ‘U(@)—)L and t" ‘Zl(A)—-)L with common
target L.

ap — L

U(o) T .S6NT po T s

By the joint translation transfer condition, we have a specification ¥ and
a pair of morphisms ¢ :A—¥ and 1:0—> VY in SPEI: sausfymg (U) and (up).

ap) —=  UWw) g A v, ¥

SENT T s e—ue SPEC T o
U(e) : . 0

By (U), we have U(c')=s' and U(t")=t' with U(¥)=L. So the rectangle
U(o): U(T)— U(A), U(Tt): UD)— U(©), U(c"):U(A)—L and U(T): UT)—>L is a
pushout in SGNT. ' '
We claim that the rectangle o: r—A, uI—e, c' A—-)‘I’ and 7:0->¥isa
pushout in SPEC.
First, we see that we have the commutativity ¢;t'=c';7 in SPEC.
Indeed, in SGNT we have the commutativity s;t'=t;s', i. e.
U(c);U(TH=U(t); U(s"). So U(c;t")=U(t;c'), and the assumed faithfulness of
functor U(_): SPEC—)SGNT yields the commutat1v1ty o6;1'=0c";7 in SPEC.

an 9, g g oA —Ts 9
Uo) T  seNT T Uo) « o T SPEC T o
u(r‘) —_——— u(@) . faithful T 3 @
U(v) T

For the universal property, consider a pair p:A—Z and v:0—Z of
morphisms with common target E in SPEC such that o;u=1;v.
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We then have a pair of morphisms U(u): U(A)— U(E) and U(v):U(O)— U(E)
with common target U= )m SGNT such that U(o); U(n)=U(T); U(V).
) UE)
ww)

UQA) ——eUY)
- U
SGNT (1"

(C] 4((S)]

By the universal property of the pushout rectangle U(c): UT)— U(A),
U(z): U(M)— U©), U(c"): U(A)— U(Y) and U(T): UM)— U(Y) in SGNT, we
have a unique signature morphism k:U(¥)— U(E) factorlsmg ‘Zl(u) and
UW), i. e. U(t');k=U(n) and U(c');k=TU(v), in SGNT.
So, we have in SGNT a morphism k:U(¥)— U(E) such that t';k=U(u) and
s';k=U(v), whence by the clause (up) of the joint translation transfer
condition, we have a morphism y:¥—>Z in SPEC such that U(x)=k.
We thus have, in SG6NT, U(t"); U(x)=U) and U(c"); U(x)=U(v), i. e.
U(t';x)=U(n) and U(c';x)=U(v). So, faithfulness of functor
2(_):SPEC—> SGNT yields the factorisation 1';x=p and ¢';x=v in SPEC.

CUE)

SPEC

)y — L

uc')
ar) |

SGNT

wuaA

wWO)
To see the uniqueness of such factorisation t';x= u and ¢';x=v in SPEC,
consider a morphism ¢: W E in SPEC such that t';o=p and ¢';0=v..
We then have U(t';9)=U(t");U(e)=U) and U(c';¢)=U(c"); U(p)= ‘Zl(v) in
SGNT. So, the uniqueness of the factorisation U(t');k=U(u) and
U(c");k=U(v), in SGNT, yields U(9)=k=U(y); whence ¢=x in SPEC, by the
assumed faithfulness of functor U(_):SPEC— SGNT.
Therefore, the rectangle 6:T—A, :I'—>©, ¢:A—Y¥ and 1:0—¥ is a pushout
in SPEC such that its image U(c): U(T)— UA), U(t): UT)— U(O),
U(c"): UA)—> UC¥) and U(t"): U(T)—> UCY) under functor U(_):SPEC—>SENT is
a pushout rectangle in SGNT.
OED
Lemma Preservation of retracts by pullbacks of label sets
Consider a pullback rectangle in category LBL: morphisms
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p: L(b)— £(c) and q:£(d)— L(c) with common target L(C) yielding

morphisms 'p: L(m)— £(d) and 'q:L(m)— L(b) with common source

£L(m). If morphism q:£(d)— L(c) is a retract then so is its pullback

'q: L(m)— L(b).

- Proof (se figure 8.6) :

Since morphism q: Ld)— L(C) is a retract, we have a morphism
q*:L(a)—> L(b) such that the composite g ;q is the identity morphism

IL(c) L(c)—-)L(c) on L(C) in LBL. :

We now apply the ‘universal property of the pullback

Cons1der the rectangle in - category “LBL: morphlsms p: L(b)—> L(c) and

q: L(d)% L(c) with common target L(c) and morph1sms 14(b): :L(b)— L4b)

and the composite p;q*:L(b)— L(d) with common source L(b).

It commutes, because p;q*;q= p,lﬂ(c) p= lﬁ(b),p S

Thus, since the rectangle p:L(b)— L(c), q:£(d)— L(c), 'p:£(m )= £(d) and
q L(m)— L(b) is a pullback in LBL, we have a (umque) label ‘morphism
q*: L(b)— L(m) factorising 1 £(b) (and p;q*); so 'q*;'gq=1,,), whence:

morphlsm 'q:L(m)— L(b) is a retract in LBL.

OED
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