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ON FORK RELATIONS FOR PROGRAM DEVELOPMENT

Paulo A. S. VELOSO

{e-mail: veloso@inf.puc-rio.br}
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Abstract

We introduce the question of adequacy of a fork relational framework for
program development. We first argue that the familiar apparatus of
binary relations must be extended to achieve this aim. Then we suggest
that an appropriate extension can be obtained by considering relations on
structured universes together with new operations. |

Key words: Formal specifications, program development, program
derivation, relational calculi, relational algebras, fork algebras.

- Resumo

Introduz-se a questdo da adequacdo de um ambiente relacional estendido
por fork para desenvolvimento de programas. Inicialmente, argumenta-se
que o aparato usual de relacGes bindrias precisa ser estendido a fim de
atingir esta objetivo. Em seguida, sugere-se que uma extensdo apropriada
pode ser obtida considerando-se relagdes .sobre um universo estruturado
com novas operagdes. '

Palavras chave: Especificacdes formais, desenvolvimento de programas,
derivacdo de programas, cdlculos relacionais, 4lgebras relacionais,
algebras de fork.
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invited talk at PRATICA '96 (PRovAs, TIpos e CAtegorias), a workshop
organised by Luis Carlos Pereira that took place at PUC-Rio, Rio de
Janeiro, Brazil, in April 1996. . :
This report is the first one of a series of papers addressing the question of
adequacy of a fork relational framework for progrém development.
Subsequent papers will concentrate on other aspects of this question,
.such as: _

Structured universe and structural operations and constants;
Effectiveness and programming language aspects in fork relations;
Algorithmic™ fork relations and programs.
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1. INTRODUCTION

In this paper we introduce the question of adequacy of a fork relational

framework for program development. We first argue that the familiar

apparatus of binary relations must be extended to achieve this aim. Then

we suggest that an appropriate extension can be obtained by considering
elations on structured universes together with new operations.

We begin in section 2 with some motivation about program construction
and derivation. In section 3 we then recall some basic operations on sets
and relations and briefly review -the role of partial identities for
representing sets as relations. We then present in section 4 a series of
examples, intended to illustrate how one can express programming ideas
in a relational form and to indicate the need for an extension. We outline
some desiderata for a wide-spectrum framework for program
development in section 5. Some other aspects, of importance in the context
of a framework for program development, are briefly commented upon in
section 6. Finally, section 7 presents some concluding remarks and
comments on related aspects. :

This paper is the first one of a series of papers addressmg the question of
adequacy of a fork relational framework for program  development.
Subsequent. papers will concentrate on other aspects of this question.

2. MOTIVATION: PROGRAM CONSTRUCTION AND DEBIVATlON

“First we briefly present some basic ideas about program construction,
which ‘will motivate a relational approach to programming.
Program construction refers to the process of obtaining a program from a
specification of its input-output behaviour in a methodical manner. An
interesting variation is program derivation, where the emphasis is on
~ obtaining the programs by formal manipulations on specifications, one
often says_that the program is to be calculated from its specrflcatlon
[Darlington 78; Broy & Pepper '81; Partsch '90].
For the purposes of program derivation, it is of interest to have a wide-
spectrum formalism, supporting intermediate versions of specifications
and programs as well as the manipulations transforming them [Burstall &
Darlington '77; Bauer & Wossner '82; Sintzoff '85; Partsch '90].
Such a formalism will be appropriate. for these purposes provided it
presents some features such as adequate expressive, deductive and
transformational powers. It should support:

- expression of behavioural specifications and programs,

- reasoning about their properties, '

- transformations on specifications and programs.
These features will be greatly enhanced if one can manipulate and reason
about its expressions, specifications or programs, with having to resort to
individuals. For instance, one would like to manipulate programs without
consideration of traces corresponding to particular inputs [Backus '78].



These considerations,.suggest a formalism with an algebraic flavour, based
mainly on terms and equations between them. We would then reason
about properties in an equational manner and transform expressions in an
algebraic fashion. :

A good candidate for such a Wide-spectrurri' formalism that comes to mind
is a calculus of binary relations. The idea 'is that both specifications and
programs can be naturally viewed as binary relations of input-output
pairs, and the transformations can be guided by properties of the
operations on relations. ' ' S
Indeed, relational approaches to programmlng ideas 'have received
considerable attention for qulte some time [Codd '72; Mili '83;
Berghammer & Zierer '86; Backhouse et al. '90; Berghammer '91; Mbller
'91; Schmidt & Stroéhlein '93]. ) ’ '

Within a wide-spectrum framework based on a calculus of relations, the
process of program derivation would take the following form:

- one expresses behavioural specifications as relational terms,

- one ‘transforms such relational terms into terms describing programs,
A repertoire of transformations based on theorems of the calculus
“provides a sound basis for such transformations [Bauer & Wossner '82;
Sintzoff '85; Partsch '90].

Also, in selecting which transformations to apply, one can use as guidance
several kinds of intuitions. One can use intermediate goals motivated by
programming considerations, such as decreasing nondeterminism or
increasing efficiency. Problem-solving ideas, such as reduction and divide-
and-conquer, can also be brought into play. In addition, one has some
algebraic manipulations, such as factorisation, distribution and
- commutation. , ‘ . .

A basic issue about such a formalism concerns its adequacy for its alleged
purpose. Adequacy, in turn, has - at least - two aspects. On the one hand,
we have formal adequacy. This has to do with limitations in principle, and
can be settled by soundness and completeness results. On' the other hand,
we have less formal and more pragmatic aspects of adequacy, involving
issues such as is intuitive appeal and how easy it is to handle.

In the case of a framework for programmmg, one basic issue is its
adequacy for expressing programs. This is the issue which motivates this

paper.
3. SETS AND RELATIONS

We now briefly recall some operauons on relations and examlne partial
identities as tools for representing sets as relations.
3.1 OPERATIONS ON SETS AND RELATIONS

We first recall some operations on sets and relations [Halmos '63; Tarski
'41; Maddux '91; Schmidt & Stréhlein '93; Veloso '74].

Consider a set S and a (universal) subset VcS. We then have some
operations on subsets of V as well as some distinguished subsets of V.
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We have some set-theoretical, or Boolean, operations and constants.
As Boolean operations we will employ:
set-theoretical union v, intersection M, and
complementation (with respect to universal V: r™:={se V/se¢r}).
We also have the Boolean constants: '
empty relation & and universal subset V. ,
When dealing with sets of ordered pairs, i. e. relations on U, one has some
more operatlons and constants, often called Peircean [Tarski '41; Maddux
'91]. ‘
We will use two Pezrcean operations:
relation transposition (converse) rl:= ={<v,u>e UxU/<u,v>er} and
relation composition (relative product)
tls:={<u,w>e UxU/3ve U [<u,v>er&<v,w>es]},
We will also employ the Peircean constant:
identity (diagonal) relation on U ly= {<u v>e UxU/lu=v}.

Notice that these operations (except Boolean complementatlon ~) are
monotonic with respect to inclusion ¢ [Schmidt & Strohlein '93].

The following operations are monotonic with respect to inclusion c:
Boolean union U and intersection N, and '

Peircean transposition r! and composition I.

In the case of relations on U, the universal subset will also be a relation
VcUxU. One then wishes to have closure: in particular, one wishes to have
1y, VI and VIV included in V. This means that the universal relation
VcUxU must be an ‘equivalence relation on U. For such an equivalence
relation VcUxU on U, its powerset £ (V)={rcUxU/rcV} will be closed under
both operations transposition ‘T and composition | (in view of their
monotonicity). (See, e. g. [Jonsson & Tarski '52; Veloso '74].)

3.2 PARTIAL IDENTITIES

,Let' us now examine partial identities [Haeberer & Veloso '91].

Partial identities are devices for representing sets as relations, they are
useful tools in expressing programs and specifications in a relational
manner. A partial identity behaves as a "filter" on its underlying set; as
such it can also be used to obtain tests for membership as well as for
restricting relations to sets . '
Given a subset ScU, by the partial identity on S we mean the binary
relation lg:={<u,u>e UxU/ue S} on U. From the partial identity 1g one can
recover the set S it represents, since S={ue U/<u,u>e 14}

Partial identity lg behaves as a "filter" on S:

for ue S it behaves identically (<u,v>e lg iff v=u),

whereas for ug S it provides no output.
As a test for non-membership we can use the complement with respect to
the identity: “1g=lynlg, for "1¢={<u,u>e UxU/ueS}.



"y I

S : S
For instance, for the set EcN of even naturals, we have test for evenness
lg={<n,n>e NxN/ne E} and test for oddness 1,="1gz={<n,n>e NxN/nzE}.

These partial identities can be used to express, in relational terms,
restrictions of a relation rcUxU to a set ScU by composition:

pre composition Iglr={<u,v>er/ueS}, and
post composition rllg={<u,v>er/veS}.

U - lu

4. EXPRESSING PROGRAMMING IDEAS

We now illustrate how one can express programs and programming ideas
by means of relations. This will suggest some extensions to the relational
framework to make it more adequate for programming tasks. ‘

We illustrate the expression of programming ideas in relational form by
means of five simple examples: a program, an input-output specification, a
simple unsorted data type specification, a programming method and a
many-sorted data type presentation. ‘



4.1 EXPRESSING PROGRAMS AS RELATIONS .

As example of a program, consider a program for computing ‘the double of
a natural number by relying on successor, predecessor and zero.

A (recursive). formulation ‘in the usual manner can be as follows:

| : ’0 if n=0
D(n) = L
SSDP (n) otherwise

Clearly this formulatlon can be immediately translated into ‘a (recursive)
program in a programming language w1th recursion. We wish to express it
in relational terms.

First, let us examine its input-output behaviour. It can be described as
follows:

n ———> n -1

m =0 ifn =90
n e X 5> k+2 ifn#0
' P ~ D -~ sl|s

Now, the test for zero can be expressed by the part1al identity 1,={<0,0>}
and the case division under test for zero can be expressed by means of 1,
~and  its complement with respect to Iy: L,=1, ;’mlN (since
1, mlN_{<n n>e NxN/n#0}). So, one can express this behav1our in terms of
1ts input-output palrs as follows:

1
. D
ifn=0 :n —@8— m & n —=2L 5 n
ifn#20 :n — m & n > i - > ] >
D P D S |s

We thus have the following formulation of \binary relation DcNxN in terms
of its input-output pairs: '

1.
n —2Ls m
D .
n — m <& or
n > i > 3 > m
P D - Ss

We can thus express bmary relation DcN xN by means of a relational term:
D=1, u(l IPIDISIS)

nzr

1

‘ zr
D = U
(1, mlN)|P|D|S|S
This example illustrates how one can express (some simple) programs in
relational terms. _
4.2 RELATIONAL INPUT-OUTPUT SPECIFICATIONS

As a simple example of an  input-output specification, consider
~palindromes, namely words that read the same forwards or backwards.
So, a palindrome is a word that is equal to its reversal - [Partsch' 90].
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Here, we use a binary relation Reve WxW on the universe W of words,
where <u,v>e Rev iff v is the reversal of u. So, the set of palindromes can
be described as Pal={we W/<w,w>eRev}.

The set Pal of palindromes can also 'be described by a "filter" for
palindromes Ip,={<w,w>e WxW/we Pal}. From filter 1,,, one can recover

the set Pal of palindromes, via Pal={we W/<w,w>e 15,}.

Now, we can describe the behaviour of a "filter" for palindromes by means
of its input-output pairs as follows:

Rev
1 u — v Rev
uw —Pal 5, v o and . 1. =1n
: Pal
u ————> v 1
1 ’ w
i W l

We can thus formulate binary relation 1lp,,cWxW as a relational term:
Now, assume that we have constant relations Tr and Fl, matching every

word to, respectively, true and false. We can then obtain, from the above
expression for the filter, a relational term for the characteristic function of

the set Pal of palindromés. Namely, xPa1=(1i,allTr)u[(_1Pél”m Iy)IFL].

|Tr
. _ P 1
= ]
xPal‘ ~
(1 N1l _)|Fl
Pal W

This example illustrates how one can express input-output specifications
by means of relational terms. »

From such relational input-output specifications we can derive, by
algebraic manipulations, some (recursive and iterative) programs [Partsch
'90] for palindromes [Haeberer & Veloso '91].

4.3 RELATIONAL DATA TYPE PRESENTATIONS

A specification describes properties of the objects involved. We have seen
an example of a relational specification for a program. In a 'similar'spirit
one can also specify data types by presenting their properties .in a
relational style [Berghammer '91].

‘For a simple example, consider the data type of the natural numbers used
in the previous example of a program for computing the double. It has
operations successor s and predecessor P as well as constant zero.

We wish to express some properties of this data type in a relational
manner. For this purpose we may proceed in a manner similar to the one
implicit in the preceding example. Namely, for the operations we use. their
graphs: relations S and P. For the constant 0 we use the constant relation
Z:=Nx{0}={<n,0>e NxN/ne N}. From this constant relation Z we can obtain
the partial identity 1,={<0,0>} (since lzr=(ZTIZ)nlN).‘ So, we also have the



partial identity 1 ,=1,"N1y~ to represent the non-zero naturals).

We can then replace an expression like p(m)=n by <m,n>eP; so p(s(n))=n
becomes equivalent to <n,n>e SIP. Thus, we can express functionality of
relations (e . g. PTIP; 1y for n'=n" whenever <n,n'>,<n,n">eP).

With these ideas, we can express properties of this data type. For instance,
consider some axioms and their expressions in relational terms.

Injectivity of s: _ SISTc 1y,
VX=s(s(x)=x: SISN1N=92,
Vyly=0v3xy=s(x)]: . 1,,,cSTIS or Iyel, u(STIS)
T
Yy S x S vy :1 ¢cs']s
. : ' nzr >
Vy[-y=0-s(p(y))=yl: | 1,/PIScly
1 v
Y nzr , , 2, x5,y .1 |Plsc1
nzr N

This example illustrates how one can present unsorted data types by
means of relational specifications.

4.4 EXPRESSING PROGRAMMING METHODS

As example of a programming method, we consider divide-and-conquer.
We first examine a sorting algorithm based on this method, namely
mergesort. A (recursive) formulation for mergesort is as follows:

srt(s). = s o if 1g(s)<1

srt(frst(s)
srt(s) = merge ;o otherwise
srt(scnd(s)

where frst(s) and scnd(s) provide, respectively, the first and second
halves of sequence s, which are (recursively) sorted and merged into a
sorted version of the original input sequence [Aho et al. '75; Broy '83].
This algorithm is based on the following idea. Given an input sequence:
if it is simple (Ig(s)<1), then its sorted version is directly obtained;
otherwise, split s into its two halves, recursively apply the algorithm and
recombine (by merging) the results. ‘
This process of recursively splitting, until reaching 81mp1e instances, and
recombinations is the idea underlying the problem-solving method
divide-and-conquer [Aho et al. '75: Horowitz & Sahni '78]. It can be
presented as follows: -'

Drct (d) if Smpl (d)
= D_C(Splt (d
D_c(d) Rcmbn , (Sply (d)) otherwise
D_C(Splt, (d))

Now, let us examine its behaviour in terms of input-output pairs. It can be
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described as f0110w5'

if Smpl(d): d———D—S—-—er@d_—DLCE__)r
' ‘ Spl {a, =25,
otherwise: d ———— r & d pit . |%: ) Rembn .

D_C .4 .__DC
d, — h

We can notice two related features of the above description:
process Splt produces from an input d a pair <d;,d,> of outputs;
D_C is applied in parallel to each component of <d;,d,> to produce <r,r,>.

If we use I for the parallel execution on components, this situation can be
represented as:

D_C

< dl dl —_— - rl dl D_C 1::'L

plt .

d —— ‘ ' ' & ' [ ‘
d2 . d2 Lq___) X d -\D_C r

2 2 2
We see that this situation involves two related points:

- the universe U should have pairs <u;,u,> of (some of) its elements;

- we need a new binary operation / on relations '

corresponding to parallel execution on components I
We shall examine them shortly For the moment, let us just proceed with
this example. .
With the parallel product / operatlon we can write an expressmn for
binary relation D_ C

1 |Dret
Smpl
D_C =
D_C
(1 “N1_)|spit|| 7/ ||Rcmbn
Smpl U
D_C |/ y

This example illustrates how one can express programming methods by
means of extended relational terms. Of course, for expressing some
programs, such as mergesort and related sorting algorlthms [Darhngton
'"78; Broy '83], such extension will also be used. :

We should mention that (some) program derivation strategles can be
formulated in a similar manner [Haeberer & Veloso '91]. Their application
relies on a pattern matching procedure, similar to the one involved in
applying an algebraic law, say the binomial expansion, to a particular
instarnce. : :

4.5 RELATIONAL PRESENTATIONS FOR MANY-SORTED STRUCTURES

Data types used in programming often 1nvolve several sorts.
For a simple example of a many-sorted structure, consider the data type



Lists of Elements. It has sorts Lst and Elm, operations head, tail and cons,
as well as unary predicate null, say. :

We wish to express some properties of this many-sorted data type in a
relational manner. For this purpose we may proceed as follows.

The universe U is to consist of the sorts Lst and Elm as well as of their
ordered pairs. For the sorts we use partial identities 1, and lg;,. For the
operations we use their graphs: relations Hd, Tl and Cns. For the predicate
null we use the partial identity 1 ,={<k,k>/kenull} (so, we have partial
identity 1 ;=1 N1~ to represent the non-null lists).

We can then replace an expression like cons(e,l)=k by <<e,l>,k>e Cns; so
head(cons(e,l))=e becomes equ1valent to <<e,l>,I>e CnslHd. Thus, we can
provide information concerning argument and result sorts, e. g.
HdcLstxElm by (HdIHdT)n1,cl;, and (HdTIHd)N 1yclgn.

With these ideas, we can express a (reachability) axiom such as
(Vk:Lst)[null(k)v(Ze:Elm)(31:Lst)k=cons(e,])] in relational terms by one of
the alternative formulations: 1 _,c(CnsT)ICns or 1, < 1,[(CnsT)ICns].

T e .
Cns " Cns

kK — 3| ,| ———— k : lnnl.g(CnsT) |Cns
l .

Also, a properfy like (Vk:Lst)[—null(k)— cons(head(k),tail(k))=k] can be
expressed relationally by 1 ,12;/(Hd/TDICnscly,, where the doubling
relation 2j;:={<u,<u,u>>e UxU/ue U} outputs two copies of the input.

k nnl ., u | ) Cns k
k|)——il
Tl

This example illustrates how one can descrlbe a many -sorted data type by
a relational presentation.

5. A RELATIONAL PROGRAMMING FRAMEWORK

The preceding example_s and comments indicate that the relational
framework, with suitable extensions, appears to be able to express (some):
- programs (as illustrated by double and mergesort);

- input-output specifications (as illustrated by palindrome);

- data type specifications (as illustrated by naturals and lists);

- programming methods (as illustrated by divide-and-conquer).

We have mentioned that (some) program derivation strategies can be
formulated in a similar spirit. Furthermore, as also mentioned, from such
relational input-output specifications one -can derive, by algebraic
mampulatxons (possibly recursive) programs. Moreover, programs,
expressed in these terms, can also be transformed in a similar fashion, say
for obtaining more efficient versions [Haeberer & Veloso '91].
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These remarks stress the desirability of suitably extending the relational
approach aiming at a framework appropriate for expressing programming
ideas and reasoning about them. Some desiderata for this extended
framework are wide expressive, deductive and transformational powers;
we would like to:

- express behavioural spemflcatlons and programs,

- reason about their properties (in an equational manner),

- transform specifications and programs (in an algebraic fashion).
Such a framework would support a wide-spectrum language and calculus
for program derivation. Within it, we would be able to: '

- ‘express input-output specifications, programs and programming

methods by terms (constrained by equations); :

- express data type specifications by equations between terms;

- use such equations to compare and transform terms, for instance for

transforming a specification of input-output behaviour into a program.
6. OTHER ASPECTS'
We now comment on some other aspects, of importance in the context of a
framework for program development. We shall address some. of these
aspects in forthcoming reports.
A basic issue concerning such a programming framework concerns its
adequacy for expressing programs.
The adequacy of such an extended apparatus hinges on havmg an
appropriate expressive power. This can be settled by the identification of
a set of symbols that deserve being called "algorithmic". We can offer two
explanations for this selection, which jointly justify its adequacy. First, the
identification of the proper repertoire will be based on effectiveness,
which will guarantee soundness, in the sense that one does not leave the
effective realm. The second explanation relies on a programming language -
correspondence, which, besides reinforcing the f1rst exphcauon, will show
that we have sufficient expressive power. -
We now consider the role of cartesian product and pair forming.
The structural extension was motivated by the idea of forming pairs and
parallel application. For this reason, we have considered  structured
universes as sets closed under cartesian product. ‘
This is just a simplified manner of presenting the basic ideas. We can
adopt a imore flexible approach based on the concept of pair coding. The
intuition is that, as long as one can recover the given arguments from the
coded pair, one does not care about the particular coding schema adopted
It can be thought of as an internal matter left to the system.
In this sense, we can replace the ideas of pair forming and closure under
cartesian product by an injective function x: : UxU—U. (More generally, we
can even use a coding relation *c(UxU)xU whose restr1ct1on to VcUxU is an
injective function Y V—=U.)

We shall now brlefly comment on expressing properties.

10



It is well known that information concerning domain and range, as well as
functionality, injectivity and surjectivity can be expressed in relational
terms. Also, the introductory examples have indicated that one can
express some first-order properties in the extended relational framework.
In fact, the expressive of the extended relational language is. that. of first-
order logical language. The expressivity theorem [Veloso & Haeberer '91;
Haeberer & Veloso '91] guarantees that every first-order formula can be
(effectively) converted to a closed (partial identity) term "with the same
extension". Thus, the partial identity of each m-ary relation definable by a
first-order formula is binary relation that is definable by a closed
extended relational term. . .
We clearly ‘also have the converse: the. input-output behaviour every of
every closed extended relational term is also definable by a first-order
formula. v

In this sense the extended relauonal language can be regarded as a truly
relational counterpart of first-order logical language. Furthermore, this
expressivity - carries over to any applied first-order logical language. We
can match the repertoire of predicates, operations and constants of such
an " applied first-order logical language with a repertoire of relation
constants, as indicated in the introductory examples. :
Given such a matching, we can translate back and forth between first-
order formulae and closed terms "with the same extension". We also have
a matching between first-order sentences ¢ and equations c¢* between
closed terms. . ’

The expressivity of the extended relational languages allows one to
translate back and forth between first-order formulae and closed terms.
We shall now briefly comment on reasoning about properues expressed in
this manner. :

We can then move back and forth between first-order formulae and
closed terms. Moreover, these back-and-forth translations match first-
order reasoning rules and axioms with equat1ona1 rules and equations
between extended relational terms.

To accomplish a matching of deductive powers, we use as axioms a finite
set of equations between extended relational terms. This finite set of
equations axiomatises the so-called Algebraic Fork Calculus AFC.

As a consequence of the Representation Theorem [Frias et al. '93, '95], we
have the soundness and completeness of this calculus: a sentence of the
extended relational language is durivable within AFC 1ff it holds in all
algebras of extended input-output relations.

"We then have the desired matching of deductive powers. Consider a set
su{t} of first-order sentences and corresponding equations between
closed terms =*U{t*}. Then, sentence 1 is a logical consequence of set X iff
equation c* can be derived by equational reasoning within AFC from X*.

In this sense, the Algebraic Fork Calculus can be regarded as relational
‘counterpart in equational form of first-order logic. So, the Algebraic Fork
Calculus may be said to provide a f1n1tary equatxonal algebraic
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formulation of first-order logic. It may be regarded as being a first-order
analogue of what Boolean algebras are for sentential logic. :

Thus, we can safely replace first-order reasoning by equational reasoning
within our extended relational calculus. But we do not have to; whenever
it is more convenient we can resort to. first-order reasoning, with the
assurance that it can be translated into AFC. Further, representability
provides an added bonus: we can reason by means of individuals, which is
often more intuitive when one wishes to think in an input-output manner
(by resorting to diagrams, for instance); if the conclusion no longer
involves individuals it can be derived within AFC [Veloso & Haeberer '93].

We have been considering mostly unsorted situations and languages. But,
these ideas can be extended to the many-sorted case in a reasonably
straightforward  way. This can be done by a relational version of the
reduction of many-sorted first-order 10°1c to unsorted logic by relying on
relativisation predicates.

It is well-known that one can faithfully reduce many-sorted first-order
languages to their unsorted versions, by employing relativisation
~ predicates that are intended to characterise the sorts. In terms of models,
the universe of the unsorted structure is regarded as the union of all sorts,
which can be recovered by means of the relativisation predicates
provided. (See, e. g. [Enderton '72 van Dalen '39].) ‘ ‘
In the relational setting, we may proceed as suggested in the introductory
examples. The universe U is to consist of the sorted sets U's as well as of
their ordered pairs. For each sort sk we use the partial 1dent1ty 1., which
characterises it. For a predicate p we use the partial identity 1, over its .
extension. For an operation f we use its graph For a constant c We use the
constant relation C:=Ux{c}. ‘ v
From this relational presentation one can recover the original structure.

In this manner, we can mimic many-sorted first-order reasoning by
equational reasoning within our extended relational calculus.

7. CONCLUSIONS

We have presented an extended relatlonal framework for program
development. This extension is motivated by the need to express some
simple programming ideas. We have, accordingly, introduced the question
of its adequacy for programming.

We have first argued that the familiar apparatus of bmory relations must
be extended to be adequate for program development. We have then
suggested that an appropnate extension can be obtained by cons1der1ng
relations on structured universes together with new operations.

We have begun in section 2 with some motivation about program
construction and derivation. In section 3. we have recalled some basic
operations on sets and relations and briefly reviewed the role of partial
identities for representing sets as relations. We have then presented in
section 4 a series of examples, intended to illustrate how one can express
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programming ideas in a relational form and to indicate the need for an
extension. We have "also outlined some desiderata for a wide-spectrum
framework for program development in section 5. Some other aspects, of
importance in the context of a framework for program development have
been briefly commented upon in section 6.

The adequacy of this ‘extended relational framework for program
derivation, with respect to more pragmatic aspects, has been extensively
~ illustrated elsewhere by means of case studies [Durin & Baum '93; Frias
'93; Frias et al. '93; Haeberer & Veloso '91; Viazquez & Elustondo '89;
Veloso & Haeberer '93,'94], where more references and compansons with
other approaches can be found

Related ideas have also been employed in connectron w1th problem
solving as well as with some epistemological aspects of the process of
software development [Haeberer & Veloso '89, '90; Haeberer et al. '89].
We can also argue that this extension does provide an adequate
framework for programming, because we can select. an algorithmic part of
the extension, which turns out to have the approprlate expressive power.
This involves the establishment of two inclusions. On the one hand, our
algorithmic part expresses only computing-like behaviours. On the other
hand, every program, even a nondeterministic one, can be expressed in
this algorithmic part. :

An intuitive explanation for the computmg -like nature of the algorithmic
part can be provided. Namely, a programming language correspondence
substantiates the feeling of adequacy for programming wh11e giving a
more pragmatic support for . it. ,

As a criterion for the selection of the algorithmic symbols, we can conmder
a classification based mainly on effective properties and their
preservation. This classification also provides a theoretical explanation,
relying on effectiveness, for their computing-like nature: all of them
present -or preserve effectively enumerable behaviours. '

This paper is the first one of a series of papers addressing the question of
adequacy of a fork relational framework for program development.
Subsequent papers will concentrate on other aspects of this question.
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