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Abstract

We examine a fork relational framework for program development. We
introduce some structural operations and constants, consider some
interconnections among them, which provide alternative bases for the
extension, and examine some properties of this fork relational 'apparatus.
In a previous report, we have argued that the familiar apparatus of
binary relations must be extended to be adequate for programming; we
have also suggested that an appropriate extension could be obtained by
considering relations on structured universes together with new
operations. In this report we examine more closely the nature of this fork
relational framework.

Key words: Formal specifications, relational calculi, relational algebras,
fork algebras, : structured universe, structural operations.

Resumo

Examina-se. um ambiente relacional estendido por fork para
desenvolvimento de programas. S#o introduzidas algumas operagdes
estruturais, consideradas algumas interconexdes entre elas, as quais
fornecem = bases alternativas para a extensdo, e examinadas algumas
propriedades deste ambiente relacional estendido por fork. Em um
trabalho anterior, argumentou-se que o aparato usual de relacdes bindrias
precisa ser estendido para ser adequado para programacdo; suggeriu-se
também que uma extensdo apropriada poderia ser obtida considerando-
se relagbes sobre um universo estruturado com novas operagdes. Neste
trabalho examina-se mais de perto a natureza deste aparato relacional
estendido por fork.
Palavras chave: Especificacdes: formais, cdlculos relacionais, algebras
relacionais, 4algebras de fork, universo estruturado, operacoes
estruturais.



'NOTE

Research reported herein is part of on-going project. _

Collaboration with Armando M. Haeberer, Marcelo F. Frias and Gabriel
Baum was instrumental in sharpening many ideas. The author would also
~like to ‘thank the following for many fruitful discussions on these and
related topics: Gunther Schmidt, Rudolf Berghammer, Pablo Elustondo and
Juén Durén. '

A preliminary version of some of these ideas was presented as part of an
invited talk at PRATICA '96 (PRovas, Tipos e CAtegorias), a workshop
organised by Luis Carlos Pereira that took place at PUC-Rio, Rio de
Janeiro, Brazil, in April 1996.

This report is the first second of a series of reports addressing the
question of adequacy of a fork relational framework for program
development. Other feports concentrate on distinct aspects of this
question, such as: '

A fork relational framework for program development;

Effectiveness -and programming language aspects in fork relations;
Algorithmic fork relations and programs.
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1. INTRODUCTION

We examine a fork relational framework for program development. We
introduce ‘some structural - operations and constants, consider some
alternative bases for the extension and examine some: propertres of this
fork relational apparatus. :

In a previous report, we have ‘argued that the familiar apparatus of
binary relations must be extended to be appropriate for programming; we
have also suggested that an. appropriate extension can be obtained by
considering relations on structured universes «.-together‘ with new
operations. - v

In this report we examine more closely the nature of this fork relational
framework. We introduce some structural operations. and constants,
consider some interconnections among them, which provide alternative
bases for the -extension, and examine some properties of this fork
relational apparatus. : ' :
We begin in section 2 with some motivation about program construction
and derivation and by recalling some basic operations on relations. Next,
we present of series of examples, intended to illustrate how one can
express programming ideas in a relational form and to indicate the need
for an extension; we also outline some -desiderata for a wide-spectrum
framework for program development. In section 4 we take a closer look
‘at the nature of the proposed extension and the new operations provided.
Some other . aspects, of importance in the context of a framework for
program development are briefly commented upon in section 5. Finally,
section 6 presents some concluding remarks and comments on . _related
aspects. :

This report is the second one of a series of reports addressmg the question
of adequacy of a fork relational framework for program development.
Other reports focus on other aspects of this questlon

2. PRELIMINARIES

We begin with some preparatory -material. First we briefly present some
basic ideas about program construction, which motivate a relational
approach to programming. We then recall some basic operations on
relations as‘sets of ordered pairs.

2.1 MOTIVATION: PROGRAM CONSTRUCTION AND DERIVATION

Program construction refers to the process of obtaining a program from a
specification of its input-output behaviour in a methodical manner. An
interesting version is program derivation, where the emphasis resides on
obtaining the programs by formal manipulations on specifications, one
often says that the program is to be calculated from its specification
[Darlington '78; Broy & Pepper '81; Partsch '90].

For the purposes of program derivation, it is of interest to have a w1de-
spectrum formalism, supporting intermediate versionms. ‘of - specifications



and programs as well as the manipulations transforming them [Burstall &
Darlington '77; Bauer & Wossner '82; Sintzoff '85; Partsch '90].

Such' a formalism will be appropriate for these purposes provided it
presents some features such as appropriate expressive, deductive and
transformational powers. It should support expression of behavioural
specifications and programs, reasoning about their properties,
transformations on specifications and programs.

These features will be much enhanced if one can manipulate and reason
about its expressions , specifications or programs, with- having to resort to
individuals. For instance, one would like to manipulate programs without
having to examine traces corresponding to particular inputs [Backus '78].
These considerations suggest a formalism with an algebraic flavour, based
mainly on terms and equations. We would then reason about properties in
an equational manner and transform expressions in an -algebraic fashion.
A repertoire of transformations based on theorems of the formalism can
provide a sound basis for such transformations [Bauer & Wossner '82;
Sintzoff '85; Partsch '90]. .

A good candidate for such a wide-spectrum formalism is a calculus of
binary relations. The idea is that both specifications and programs can be
naturally regarded as binary relations of input-output pairs, and the
transformations can be guided by properties of the operations on
relations. , ‘ '

Relational approaches to programming ideas have received considerable
attention for quite some time [Codd '72; Mili '83; Berghammer & Zierer '86;
Backhouse et al. '90; Berghammer '91; Moller '91; Schmidt & Stréhlein '93].

Within a wide-spectrum framework based on a calculus of relations, the
process of program derivation would take the following form:

- one expresses behavioural s’pecificat‘i’ons‘as relational terms,

- one transforms such relational terms into terms describing programs,

In selecting which transformations to apply, one can use as guidance
several kinds of intuitions. One can use intermediate goals motivated by
programming considerations, such as decreasing nondeterminism or
increasing efficiency. Problem-solving ideas, such as reduction and divide-
and-conquer, can also be brought into play. In addition, one has some
algebraic manipulations, such as factorisation, distribution "and
commutation.

A basic issue about such a formalism concerns its adequacy for ‘its alleged
purpose. Adequacy, in turn, has - at least - two aspects. On the one hand,
we have formal adequacy. This has to do with limitations in principle, and
~can be settled by soundness and completeness results. On the other hand,
we have less formal and more pragmatic aspects of adequacy, involving
issues such as is intuitive appeal and how easily one can handle it.

In the case of a framework for programming, one basic issue is its
adequacy for expressing programs. This is the issue which motivates this

‘paper.



2.2 SETS AND RELATIONS

We now briefly recall some operations on relations and examine partial
identities as tools for representing sets as relations.

A. Operations on Sets and Relations
We first recall some operations on sets and relations [Halmos '63; Tarski
'41; Maddux '91; Schmidt & Stréhlein '93; Veloso '74].
Consider a set S and a (universal) subset VcS. We then have some
operations on subsets of V as well as some distinguished subsets of V.
We "ha_ve some set-theoretical, or Boolean, operations and constants.
As Boolean operations we will employ:
set-theoretical union U, intersection N, and
complementation (with respect to universal V: r~:={se V/sg¢r}).
We also have the Boolean constants:
empty relation & and universal subset V.
When'" dealing with sets of ordered pairs, i. e. relations on U, one has some
more operations and constants, often called Peircean [Maddux '91].
We will use two Peircean operatzons
relation transposition (converse) r T.={<v, u>e UxU/<u,v>er} and
relation composition (relative product)
rs:={<u,w>e UxU/3ave U [<u,v>er&<v,w>es]},
We will also employ the Peircean constant:
identity (dlagonal) relation on U l={<uy, v>eU><U/u-v}

Notice that these operations (except Boolean complementation ~) are
monotonic with respect to inclusion c [Schmidt & Stréhlein '93].

The following operations are monotonic with respect to inclusion <=
Boolean union U and intersection M, and

Peircean transposition rT and composition |. ‘
In the case of relations on U, the universal subset will also be a relation
VcUxU. One then wishes to have closure: in particular, one wishes to have
1y, VT and VIV included in V. This means that the universal relation
VcUxU must be an equivalence relation on U. For such an equivalence
relation VcUxU on U, its powerset §# (V)={rcUxU/rcV} will be closed under
both - operations transposition T and composition | (in view of their
monotonicity). (See, e. g. [Jonsson & Tarski '52; Veloso '74].)

B. Partial ‘!dentities
Let us now examine partial identities [Haeberer & Veloso '91].

Partial identities are devices for represerting sets as relations, they are
useful tools in expressing programs and specifications in a relational
manner. A partial identity behaves as a "filter" on its underlying set; as
such it can also be used to obtain tests for membership as well as for
restricting relations to sets .

Given a subset ScU, by the partial identity on.S we mean the binary
relation 15.—{<u,u>e UxU/ue S} on U. From the partlal 1dent1ty 1 one can

3



recover the set S it'""r'epresents, since S={ue U/<u,u>e Ig}.
Partial identity lg behaves as a "filter" on S: for ue S it behaves identically
(<u,v>e 1g iff v=u), whereas for ug S it provides no output.

As a test for non-membership we can use the complement with respé‘ct to
the identity: “1g:=1ynlg", for "1 g={<u,u>e UxU/lug S}.

U ly
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These partial identities can be used to express, in relational terms,
restrictions of a relation rcUxU to a set ScU by composition: pre
composition Iglr={<u,v>er/fue S}, and post composition rllg={<u,v>er/veS}.

U‘ ly

3. RELATIONS AND PROGRAMMING

We now briefly illustrate how one can express programs and
programming ideas by means of relations. This will suggest some
extensions to the relational framework in order to make it more adequate
for programming tasks.



3.1 EXPRESSING PROGRAMMING IDEAS ‘ »
We illustrate the expression of programming ideas in relational form by
means of five simple examples: a program, an input-output specification, a
simple unsorted data type specification, a programming method and a
many-sorted data type presentation.

A. Expressing Programs as Relatlons

"~ As example of a program, consider a program for computmg the double of
a natural number by relying on successor, predecessor and zero.

A (recursive) formulatlon in the usual manner can be as follows:

| 0 lf n=20
D(n) = .
SSDP (n) otherwise

The test for zero can be expressed by the partlal 1dent1ty 1,,={<0,0>} and
the case division under test for zero can be expressed by means of 1, and
its complement with respect to 1y: 1,,=1,"nly. So, one can express this
behaviour in terms of its input-output pairs as follows:
b | 1
ifn=0 :n —— m & n —2 >

S

ifn#0 :n —8— m & n — i > 3
D P D sls

We thus have the following formulatxon of binary relation DcNxN in terms
of its input-output pairs:

n —2L 5 m
D \
n —— m < or
n i > 3 m
P D S |s

We can  thus /express binary felation ‘DgN xN ‘by means of a relational term:
D=1,.u(1 IPIDISIS).

nzr

1

. zr
D = )

(L N1 |pID|s|s
Zr

This example illustrates how one can express (some simple) programs in
relational terms.

B. Relational input-output Specifications
As a simple example of an input-output specification, consider
palindromes, namely words: that read the same forwards or backwards.
So, a palindrome is a word that is equal to its reversal.
Here, we use a binary relation Reve W xW on the universe W of words
where <u,v>eRev iff v is the reversal of u.

The set Pal of palindromes can be described by a "f11ter" for palindromes

lpy={<w,w>e WxW/we Pal}. From filter Ip,; one can recover’ the set Pal of

5



palindromes, via Pal={we W/<w,w>e 1p,}.

We can describe the behaviour of a "filter” for palindromes by means of
its input-output pairs as follows:

Rev .
1 u — v ‘ Rev
u —=Eeal , v o and lé i = N
a
U —— v 1
lW : w

We can thus formulate binary relation 1p,,cWxW as a relational term:
lp,;=Revnly,. ’
Now, assume that we have constant relatlons Tr and Fl, matching every

word. to, respectively, true and false. We can then obtain, from the above
expression for the filter, a relational term for the characteristic function of

the set Pal of palindromes. Namely, Xpar=lpy TDO [(1py N 1y)IFL].

|Tx
Pal
= W,
XPal - .
(1 F\l )IFl
Pal

This example illustrates how ome can express 1nput output specifications
by means of relational terms.

From such relational input-output _specifications we can derive, by
algebraic manipulations, some (recursive and iterative) programs [Partsch
'90] for palindromes [Haeberer & Veloso '91].

C. Relational Data Type Presentations

A specification describes properties of the objects 1nv01ved We have seen
an example of a relational spe01f1catlon for a program. Similarly, one can
~also specify data types by presenting their properties in a relational style

For a simple example, consider the data type of the natural - numbers used
in the previous example of a program: for double It has operations
successor s and predecessor p as well as constant zero. -

We wish to express some propertles of this data type in 'a relational
manner. For this purpose, we proceed in a manner similar to the one
implicit in the preceding example. Namely, for the operations we use their
graphs: relations S and P. For the constant 0 we use the. constant relation
Z:=Nx{0}={<ii,0oe NxN/ne N}. From this constant relation Z we can obtain
the partial identity 1,,={<0,0>}. So, we also have the partial 1dent1ty
| - :
With these ideas, we can express properties of this data type. For instance,
consider some axioms and their expressions in relational terms.

= 1,,"N1y~ to represent the non-zero naturals).

~

Injectivity of s: ‘ - SISTcly,
'Vx—;s(s(x)=x: SISN1N=9,
Vyly=0v3xy=s(x)]: 1.,.cSTIS or Iycl zru(S IS)



Yy > % y 1 cs’ s
. nzr ’
Vy[=y=0-s(p(y))=yl= 0 1,IPIScly
1
v nzr _ P < S y : 1 plsc1
o nzr N

This example illustrates how one can present unsorted data types by
~means of relational specifications. -

-D. Expressing Programming Methods

As example of a programming method, we consider divide-and-conquer.

We first examine a sorting algorithm based on this method, namely
mergesort. A (recursive) formulation for mergesort is as follows:

srt(s) S if 1g(s)<1
. srt(frst(s)
_ srt(s) = merge . otherwise
srt(scnd(s))

where frst(s) and scnd(s) provide, respectively, the first and second

halves of sequence s, which are (recursively) sorted and merged into a

sorted version of the original input sequence [Aho et al. '75].

This algorithm is based on the following idea. Given an input sequence:

if it is simple (lg(s)<1), then its sorted version is directly obtained;

otherwise, split s into its two halves, recursively apply the algorithm and
recombine (by merging) the results. :

This process of recursively splitting, until reaching simple instances, and

recombinations is the idea underlying the problem- -solving method

~divide-and-conquer [Horowitz & Sahni '78]. It can be presented as follows

> Drct (d) ‘ if Smpl (d)

—- D_C(Splt (d))
D_C(d) Py ] otherwise

Rcmbn
(D_C(Splt2 (d))

Its behaviour in terms of input-output pairs can be described as follows:

. t
if Smpl(d): d —B—C—> r & d —-EL r
Spl la, == = Rcmb:
otherwise: d — r & d plt 1 1| Remem , p
D_C D_C . ‘
d, > 5

We can notice two related features of this description:
‘process Splt produces‘fro'm an input d a pair <d,,d,> of outputs;
D_C is applied in parallel to each component of <d;,d,> to produce <r;,I,>.

If we use Il for the parallel execution on components, we can represent this
51tuat1on as:



4, a) —— [z a ) (oc) (x

splt 1 1 1 1

d — / ’ Pl = ' M '
d D_C

2 d2 —= 5 |5 d2 D C r,

We see that this situation involves two related points:
- the universe U should have pairs <u,,u,> of (some of) its elements;
- we need a new binary operation / on relations
corresponding to parallel execution on components .
We shall examine them shortly. For the moment, let us just proceed with
this - example. '
With the parallel product / operation, we can write an expression for
binary relation D_C:

1 |Dret
Smpl
D C =
D_C
(1 N1 ) |splt|| / | |Rcmbn
Smpl 8) :
D_C )

This example illustrates how one can express programming methods by
means of extended relational terms. Of course, for expressing some.
~ programs, such as mergesort and related sorting algonthms [Darlington
'78; Broy '83], such extension will also be used.
We should mention that (some) program derivation strategies can be
formulated in a similar manner [Haeberer & Veloso '91]. Their application
relies on a pattern matching procedure, similar to the one involved in
applying an algebraic law, say the binomial expansion, to a particular
instance. )

E. Relational Presentations for many-sorted Structures

Data types used in programming often involve several sorts.

For a simple example of a many-sorted structure, consider the data type
Lists of Elements. It has sorts Lst and Elm, operations head, tail and cons,
as well as unary predicate null, say.

We wish to express some properties of this many-sorted data type in a
relational manner. For this purpose we may proceed as follcws.

The universe U is to consist of the sorts Lst and Elm as well as of their
ordered pairs. For the sorts we use partial identities 1., and lg;,. For the
operations we use their graphs: relations Hd, Tl and Cns. For the predicate
null we use the partial identity 1,={<k,k>/kenull} (so, we have partial
identity 1 =1 ("1~ to represent the non-null lists).

With these ideas, we can express a (reachability) axiom such as
(Vk:Lst)[null(k)v(3e:Elm)(31:Lst)k=cons(e,1)] in relational terms by one of



the alternative formulations: lnnlt;(CnsT)lCns or lLstglnlu[(CnsT)ICns].

T e

.Cns ’ ‘
PN I J SN I 1 .S tns®) |Cns

1
Also, a property like (Vk:Lst)[—null(k)— cons(head(k),tail(k)):k] can: be
expressed relationally by 1 ;12u/(Hd/TDICnscl,, where the doubling
relation  2;:={<u,<u,u>>e UxU/ue U} outputs two copies of the input.

HA
. - K)———(e]
k nnl , U , J Sl —=B5 5 x

k) —— 1
Tl

This example illustrates how one can describe a many-sorted data type by
a relational presentation.

3.2 PROGRAMMING WITH RELATIONS

The preceding examples and - comments indicate that the relational
framework, with suitable extensions, appears to be able to express (some):
programs (as illustrated by double and mergesort);
input-output specifications (as illustrated by palindrome);
data type specifications (as illustrated by naturals and lists);
programming methods (as illustrated by divide-and- conquer)
We have mentioned that (some) program derivation strategies can be
formulated in a similar spirit. Furthermore, from such relational input-
output specifications one can derive, by algebraic manipulations, (possibly
recursive) programs. Moreover, programs, expressed in these terms, can
also be transformed in a similar fashion, say for obtaining more efficient
versions [Haeberer & Veloso '91].
These remarks stress the desirability of suitably extendmg the relat10na1
approach aiming at a framework appropriate for expressing programming
ideas and reasoning about them. Some desiderata for this extended
framework are wide expressive, deductive and transformational powers;
we would like to:

- express behavioural specifications and programs,

- reason about their properties (in an equational manner),

- transform specifications and programs (in an algebraic fashion).
Such a framework would support a wide-spectrum language and calculus
for program derivation. Within it, we would be able to:

- express input-output specifications, programs and programming

methods by terms (constrained by equations);

- express data type specifications by equations between terms;

- use such equations to compare and transform terms, for instance for

transforming a spemﬁcatlon of input-output behaviour into a program.



4. STRUCTURED UNIVERSE AND EXTENDED RELATIONS

The examples and comments in the preceding section suggest that the
relational framework should be extended in order to express
programming ideas. We shall now take a closer look at such extended
relational framework. : :
As mentioned, the universe should have ordered pairs of its elements.
Thus, we. consider the universe U to be closed under cartesian product:
UxUcU. As a consequence, we no longer have an unstructured set of
elements. Instead, we will be dealing with a universe with underlying
structure, having objects such as <u,v>, <u<v,w>>, <<y, v>,w>, and so forth.
We shall use the name structured unzverse for such a set U closed under
cartesian product: UxUcU.

4.1 STRUCTURAL RELATIONS AND OPERATIONS

We shall be dealing with relations on a structured universe; so we can
have some more operations and constants, which we will -call structural.
We shall now introduce them and examine some connections among them.

A. Extended Operations and Constants

As mentioned, we can have new structural operations and constants. We
have already encountered .the parallel product operation / and the
duplication constant 2. S .

Operation parallel product/ ‘corresponds to parallel executlon, as such
r/8:={<<y,u,>, <V, Vo >>E UxU/<y;, v;>er&<u,, v2>es}

r
1 oppe |2 1 1
| | e &

Y2 V2 Uy, =5 V2

Notice that parallel product operation // is monotomc w1th respect to
inclusion ¢ and preserves functionality of relations.

Constant duplication 2y provducesv two copies of j:he input.

u
: o2 _
2yi={<u,<v,w>>e UxUlu=v=w} . u o —E— |,
' u
Notice that constant relation 2 is a total'functio_nal ‘relation.
With this constant 2;; we can construct an equality sieve 2UT.
u 5 o
Equality sieve 2T | | ——— w & u=v=w
o »

Another natural operation on relations comes from the idea of feeding a
common input to two relations. This new operation, called fork, produces
relation r£s:={<u,<v,w>>e UxU/<u,v>er&<u,w>es}.

10



Notice that fork operation £ is monotonic with respect to inclusion < and
preserves functionality of relations; also Dom[r£s]=Dom[r]nDom[s].

This fork operation £ can be defined from the above two structural
operations, since r£s=2;I(x/s).

r r

—_— (v ) u) — (v

u—Zz , & v —E— |, J o,
——-9" w u > s

S . S
B. Alternative Bases for the Extension
In general, the universal relation V may be an equivalence relation
VcUxU on U. We then wish to have both V/V and V£V included in V. For
this purpose we require V to be closed under pair formation: <x,<x,y>>eV
whenever <Xx,y>e V. We shall use the names:
closed equivalence for an equivalence relation VgUxU on U that is closed
under pair formation (<x,<x,y>>eV whenever <x,y>€ V), and
structural equivalence for a structured universe U equipped with a
closed equivalence relation VcUxU on U.

For such a closed equivalence V, its powerset £ (V)={rcUxU/rcV} is closed
under both operations parallel product ~ and fork £ (in view of their
monotonicity).

We then have both 2U,2U cV. So, we can express these constants as:

duplication 2Z;={<u,<v ,Ww>>e V/u=v=w} and

equality sieve 2yT={<<v,w>u>eV/iu=v=w}.

Clearly, duplication constant 2; can be derived from operatlon fork £, via
2y=1y<L 1y _
With the operation fork £ we can construct new constant relations: the
left and right projections Ty:=(1y£V)T and pyi=(Vel)T. '

1 : ' \4
u_(x —_x
T T
T, : X— L p & Py y —— L .
—\Y ' ' —\Y
v 1

We notice that the constant projections Ty={<<x,y>x>eUxU/<x,y>eV} and
py={<<x,y>,y>e UxU/<x,y>e V} are partial functions with domain UxUcU.

We also notice that from fork £ and the projections 7tv=(1U4V)T and
 py=(Vz1y)T one can recover parallel product /, via t/s=(ToyIr) Z(Pyls).

: : T
r v x
- . > (v
Y /" Y b 1
’ // ’ = ’ —"_>£ 7
_ >u —|v
Yo )7 V2 Y2 o 2T g 2
v

11



Also notice that from the transposed projections TCVT=’1U4V and p,T=Vzl
one can recover fork £, via rés:(rInVT)m(slpVT). '

T (v
r
u v \'4 S,
r
—_— Yy
u—”z , = &
‘—9W T X
s S pv
u w ,
)

Therefore, the sets {Z}, {725} and {my,py} are all relationally
interderivable, and either one can be used as a basis for our extension.

Other interesting examples of interdefinability are provided by set-
theoretical intersection and by Peircean transposition of relations.

Boolean operation N can be recovered from fork £ and equality sieve 2T,
since rms=(r£s)I2yT.

u-—v — (X 2T

& & u—”Z L —E
u—>v — 1y

S S

Peircean operation T can be defined from intersection N, parallel product
/#, projections and their transpositions, since rT={[T,TI(1/D)]NpyT}Imy.

1
2T z|—L—(z
z—L— 4 /

r T . ~
r r
&S U2 & Z—Uu

Thus, on such a structural equivalence we can have, in addition to the
Boolean and Peircean apparatus, some structural operations and constants:

structural operations parallel product / and fork £; -
structural constants duplication 2y, left and right projections Ty and py.

As mentioned, as bases for our extension we can use fork < alone, the left
and right projections Ty and Py, or both / and 2.

4.2 PROPERTIES AND DERIVED OPERATIONS

We will now consider some simple properties of this extended relational
framework and some useful derived operations. We will first examine
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some relational properties of this extended apparatus. Then, we will
consider some derived operations and give some more details concerning
the representation of subsets by partial identities. :
A. Properties of the Extended Operations and Constants
We now notice some simple properties of this extended relational
apparatus concerning totality and functionality as well as their
preservation.
With respect to totahty, we see that many constants are total but most
operations fail to preserve this property.
The constants (but the prOJectlons Ty and Py) are total relations:
the constant relations identity l={<u, u>eUxU/ueU} universal V and
duphcatlon 2y={<u,<u,u>>e UxU/ue U} are total relations (included in V).
The operations union U and fork £ p’reServe ‘totality of relations:
the family of total relations (included in V) is closed under the
operatlons but Boolean N and - Pelrcean | and T, and structural /.
As for functionality, we can see that most constants are functlonal and
some operations preserve this property.
The constants (but universal V) are functional relations:
the - constants empty relation @, identity ly={<u,u>eUxU/ueU},
duplication 2;={<u,<u,u>>e UxU/ue U} (and equality sieve '
T={<<u,u>,u>e UxU/ue U}), as well as the projections
Tl',v={‘<<x,y>,x>e UxU/<x,y>e V} and py={<<x,y>,y>€ UxU/<x,y>e V} are
functional relations (included in V).
Operations N, |,/ and £ preserve functionality of relations:
the family of functional relations (included in V) is closed under the
operations except union U, complementation ~ and transposition T.

B. Derived Operatlons and Partial Identities
Of course, one can introduce other operations by definition. We examine a
few examples of derived operations that are often found useful.

An example of derived operation is the operation restricted union. Given
relations p and q on U, we define the binary operation restricted union

over p and dp by Bgs: :=(plr)u(qls).

Complementatlon w1~th respect to the identity is an important derived
operation. Unary operation identity complementation " is defined by
"ti=1gnt™; so “t={<u,u>e UxU/<u,u>g t}. ' '

Another important example of derived operation is the domain
representation. Unary operation domain _ is defined by r:=(rlrT)m 1.
Not1ce ‘that rclU and r={<u, u>e UxU/ue Dom[r]} .

We now comment on the usaoe of partial identities for representmg sets.

First, notice that the family SO(IU).-{p;UxU/pc_:lU} of partial identities
consists of functional relations. We now explicitly introduce a
transformation for representing subsets of U as partial identities, namely
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1 @(U)—)JO(IU) given by the asswnment S lg:={<u,u>e UxU/ue S}.

The family  (1;) of partial identities forms a Boolean algebra (with
identity complementation “p=1l;np~) that is isomorphic to the field of
subsets £ (U) (under the assignments S~ lg and p—~Dom[p]).

Also, the family & (1) of partial identities is closed under. transposition T,
composition | and parallel product / (as well as domain _.)

{Because 1T=lg, I llp=1g r=1n1p and 1¢/l=1g,r)

By considering partial identities, one can obtain interesting versions of
restricted union, namely guarded and branching unions.

The guarded union is simply the union restricted to partial identities:
for partial identities p,qe # (1y) r []qs =1®ys; SO we have ’

p[]qs—{ <u,v>e U><U/(<u U>E PA<U,V>E r)v(<u u>e gA<u,v>es)}.

Given a partial identity te £ (1), the binary operation

branchmg union over tv, is defined by rvs:=r@x; s0 rv,s= =(tir)u( tls)
Notice that one can recover Boolean union from guarded union as a
restricted union over the diagonal lj. Also, branching union preserves
functionality: if r and s are functional then so is rvs for each tcly.

5. OTHER ASPECTS

We now briefly comment on some other aspects, of importance in the
context of a framework for program development We address some of
these aspects in other reports

5.1 ADEQUACY FOR PROGRAMMING.

A basic issue concerning such a programming framework concerns its
adequacy for expressing programs. o
The. adequacy of such an extended apparatus hmges on_ having an
adequate expressive power. This can be settled by 1dent1fy1ng a set of
symbols that deserve being called algor1thm1c We can offer two
‘explanations for this selection, which jointly justify its adequacy. First, the
identification of the proper repertoire will be based on effectiveness,
which will guarantee soundness, in the sense that one does not leave the
effective realm. The second explanation relies on a programming language
correspondence, which, besides reinforcing the first explication, will show
that we have sufficient expressive power.

5.2 CARTESIAN PRODUCT AND PAIR CODING
We now consider the role of cartesian product and pair forming.
The structural operations and constants were motivated by the idea of

forming pairs and parallel application. For this reason, we have considered
structured universes as sets closed under cartesian ‘product. '

This is just a simplified manner of presenting the ‘basic ideas. We can
adopt a more flexible approach based on the concept of pair coding. The
intuition is that, as long as one can recover the given arguments from the
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coded pair, one does not care about the particular coding schema adopted.
It can be thought of as an internal matter left to the system.

In this sense, we can replace the ideas of pair forming and closure under
cartesian product by an injective function #:UxU-—U. (More generally, we
can even use a coding relation *c(UxU)xU whose restriction to VcUxU is an
injective function ,*:V—U.) The preceding considerations carry over to

this more flexible approach based on the concept of pair codmg

5.3 EXPRESSING PHOPERTIES

We shall now briefly comment on expressmg properties.

It is well known -that information concerning domain and range, as well as
functionality, injectivity and surjectivity. can be. expressed in relational
terms. Also, the - introductory ‘examples have indicated that one can
express some first-order properties in the extended relational framework. |
In fact, the expressive of the extended relational language is that of first-
order -logical language." , -

The expressivity theorem [Veloso & Haeberer 915 Haeberer & Veloso '91]
guarantees that every first-order formula ¢ can be (effectively) converted
to a closed (partial identity) term o# "with the same extension". So, the
partial identity of each m-ary relation definable by a first-order formula
¢ is definable by a closed extended relational term ¢¥.

We clearly also have the converse: the input-output behaviour every of
every closed extended relational term is also definable by a first-order
formula. : :

In this sense, the extended relational language can be regarded as a truly
relational counterpart of first-order logical language. ~

Furthermore, this expresswuy carnes over to any applied first-order
logical language. _

We can match the repertoire of predicates ‘operations and constants of
such an applied first-order. logical language with a repert01re of relation
constants, as indicated in the 1ntroductory examples.

Given such a. matching, we can translate back and forth between first-
order formulae and closed terms "with the same extension". We also have
a  matching between first-order sentences ¢ and equatlons c* between
closed terms. :

In this sense, these extended relational languages can be regarded as
relational counterparts of first- order logical languages [Veloso - & Haeberer
'91].

5.4 REASONING ABOUT PROPERTIES

We shall briefly comment on reasoning about properties.

Consider a matching between a repertoire of predicates, operations and a
corresponding relational constants. We can then move back and forth
between first-order formulae and closed terms. Moreover, these back-
and-forth translations match first-order reasoning rules and axioms with
equational rules and equat1ons between extended relational terms.: ‘
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To accomplish a matching of deductive powers, we use as axioms a finite
set of equations between extended relational terms. This finite set of
equations axiomatises the so-called Algebraic Fork Calculus AFC.

The Representation Theorem guarantees that every model of AFC can be
represented as an algebra of extended input-output relations [Frias et al.
'93, '95]. :

As a consequence of the Representation Theorem we have the soundness
and completeness of this calculus: a sentence of the extended relational
language is derivable within AFC iff it holds in all algebras of extended
input-output relations. : :

We then have the desired matching of deductive powers. Consider a set
Tu{t} of first-order sentences and corresponding equations between
closed terms Z*u{t*}. Then, sentence T is a logical consequence of set X iff
equation ¢* can be derived by equational reasoning within AFC from X*.

In this sense, the Algebraic Fork Calculus can be regarded as relational
counterpart in equational form of first-order logic. So, -the "Algebraic Fork
Calculus may - be said to provide a f1n1tary equational algebraic
formulauon of first-order logic. : :

Thus, we can safely replace first-order reasoning by equational reasoning
within our extended relational calculus. But we do not have to; whenever
it is more convenient we can resort to first-order reasoning, ‘with the
assurance that it can be translated into AFC. Further, representability
provides an added bonus: we can reason by means of individuals, which is
often more intuitive when one wishes to think in an input-output manner
(by resorting to diagrams, for instance); if the conclusion no longer
involves individuals it can be derived within AFC [Veloso & Haeberer '93].

As an example, consider a program (segment) s on a data type. Let X be
the specification of this data type by first-order sentences, which can be
formulated relationally. as equations between closed terms Z*. Let I'(s) be
the first-order specification of the program behaviour, which can be
formulated relationally as equations between closed terms T *(s#).
Consider also a first-order sentence t(p) expressing a property of program
s, which has as relational formulation an equation t*(s#). We then have, in -
first-order -logic TuT (s)E1(s) iff w1th1n AFC 1*(s#) can be equatlonally
derived from Z*UTI*(s#). ‘

For instance, consider a specification of 1nput—output behav1our given by
precondition ¢(x) and postcondition y(x,y). This input-output specification
can be formulated relationally by partial identities ¢# and y#, and from
the latter we obtain the input-output relation = :=7 T ly#lp,, Now,
consider an extended relational term r (expressing the input-output
behaviour of ‘program (segment) s). Partial correctness (i. e.
P(X)As(X, )= W (X,y)) is expressed by the inclusion ¢¥lrcy—. Termination (i.
e. o(x)—3ys(x,y)) can also be handled in this framework: it is expressed by
the inclusion ¢#cr (as = lDom[r]‘). For a simple example, consider a relation
r on the naturals and a total precondition ¢(x) holding for  all naturals (as
in the doubling relation in the introductory - example). To - guarantee
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termination in such a case, it suffices to establish the basis lzr;rer and
1nduct1ve step rIScSir. (See, e. g. [Veloso & Haeberer '941.)

55 MANY-SORTED FRAMEWORK

We have been considering mostly unsorted situations and languages. But,
these  ideas can be extended to the many-sorted case in a reasonably
straightforward way. This can be done by a relational version of the
reduction of many-sorted first-order logic to unsorted logic by relying on
relativisation predicates.

It is well-known that one can faithfully reduce many- sorted first-order
languages to their unsorted versions, by employing relativisation
predicates that are intended to characterise the sorts. In terms of models,
the universe of the unsorted structure is regarded as the union of all sorts,
~which can be recovered by means of the relativisation pred1cates
provrded (See, e. g. [Enderton '72; van Dalen '89].)

In the relational setting, we may proceed as suggested in the introductory
examples. The universe U is to consist of the sorted sets U's as well as of

their ordered pairs.

For each sort s we use the partial identity I, which characterises it in the
sense that 1,={<u, u>e U/keU, }. For a predicate p, over sorts s,... Sy We use
- the part1a1 identity ]—{<uu>eUl>< XU_/ue p}. For an operation f, from
sorts $;--8, to sort s;, we use its graph F: {<u v>e (Ux.. XU, )xUO/f(u)—v} For
a constant c, over sort s, we use the constant relatlon C:=Ux{c}.

From this relational _presentation one can recover the original structure.
In this relational presentation, we can express equality = over sort s, by
the partial identity 212y T ={<u,v>e U xU, /u=v}.. We also have, for each
list <s;,....5> ‘of sorts, the partial identity 1,—1// ./1; describing the product
JU —U>< XU, with which we can express information on domains and
ranges We can also express functionality of an operation graph F and the
fact that C is a total constant function. The relational representation for
terms is obtained inductively: the graph of f(t;,....t) being (T;£...LT)IF.
Thus, we can see that expressivity carries over to the many-sorted setting:
each formula @(X...Xx ), Wwith IRTRS being translated to partial
identity o#c1,7../1 '

In -this manner, we can mimic many-sorted first-order reasoning by
equational reasoning within our extended relational calculus.

6. CONCLUSIONS

In a previous report, we' have argued that the familiar apparatus of
binary relations must be extended to be appropriate for programming; we
have also suggested that an approprrate extension can be obtained by
considering relations on structured universes together with new

operations.
In this report we have examined more closely - the ‘naturé of thls fork
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relational framework. We have introduced some structural operations and
constants, considered some interconnections among them, which provide
alternative bases for the extension, and examined some properties of this
fork relational apparatus. - '

We have started in section 2 with some motivation about program
construction and derivation and by recalling some basic operations on
relations. In section 3, we have presented of series of examples, intended
to illustrate how one can express programming ideas in a relational form
and to indicate the need for an extension; we have also outlined some
desiderata for a wide-spectrum framework  for program development.
‘Next, we have taken a closer look at the nature of the proposed extension
and the new operations provided in section 4. Some other . aspects, of
importance in the context of a framework for program development have
been briefly commented upon in section 3. .

The adequacy of this extended relational framework for - program
derivation, with respect to more pragmatic aspects, has been extensively
illustrated elsewhere by means of case studies [Durdn & Baum '93; Frias
'93; Frias et al. '93; Haeberer & Veloso '91; Vizquez & Elustondo '89;
Veloso & Haeberer '93,'94], where more references and comparisons with
other approaches can be found.

Related ideas have also been employed in connection with problem
solving as well as with some epistemological aspects of the process of
software development [Haeberer & Veloso '89, '90; Haeberer et al. '89].
We can also argue that this extension indeed provides an adequate
framework for programming, because we can select an algorithmic part of
the extension, which turns out to have the appropriate expressive power.

'An intuitive explanation for the computing-like nature of the algorithmic
part can be provided. Namely, a programming language correspondence
substantiates - the feeling - of adequacy for programming while g1v1ng a
more pragmatic support for it.

As a criterion for the selection of the algorithmic symbols, we can consider
a classification based mainly on effective properties and their
preservutlon This classification also provides a theoretical explanation,
relying on effectiveness, for their computing-like nature: all of them
present or preserve effectively enumerable behaviours. B |
This report is the second one of a series of reports addressmg the question
of adequacy of a fork relational framework for program development.
Other reports focus on other aspects of this question. :
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