ISSN 0103-9741

Monografias em Ciéncia da Computacdo
| n° 43/96 |

~ On Algorithmic Fork Relations: |
Effectiveness and Program Constructs

Paulo A. S. Veloso

Departamento de Informdatica

‘ PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22453-900
RIO DE JANEIRO - BRASIL

PUC RIO - DEPARTAMENTO DE INFORMATICA

Monografias em Ciéncia da Computagdo, N° 43/96 ISSN 0103-9741
Editor: Carlos J. P. Lucena December 1996

On Algorithmic Fork Relations:
Effectiveness and Program Constructs *

Paulo A. S. VELOSO T

* Research partly sponsored by CNPq.
T On leave at Instituto de Matemética, Universidade Federal do Rio de Janeiro.’

In charge of publications:

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentagdo e Informacéo

PUC Rio — Departamento de Informdatica

Rua Marqués de Sao Vicente, 225 — Gavea

22453-900 — Rio de Janeiro, RJ

Brasil '

Tel. +56-21-529 9386 Telex +55-21-31048 Fax +55-21-511 5645
E-mail: rosane@inf.puc-rio.br

ON ALGORITHMIC FORK RELATIONS:
EFFECTIVENESS AND PROGRAM CONSTRUCTS

‘Paulo A. S. VELOSO

{e-mail: veloso@inf.puc-rio.br}

PUCRiolnf MCC 43/96

Abstract. We examine the adequacy of an extended relational framework for
program development. We argue that we can select, by effectiveness considerations,
a certain set of symbols deserving the name "algorithmic" and we outline a
programming language correspondence, which indicates that this repertoire of
symbols provides adequate power for expressing programs. In previous reports, we
introduced the question of adequacy of an extended relational framework for
program development: we argued that the familiar apparatus of binary relations
should be extended to be appropriate for programming and we examined the nature
of such an extension obtained by considering relations on structured universes with
new structural operations. The adequacy of such an extended apparatus hinges on
having an appropriate expressive power. In this report we address the issue of
adequate expressive power for programming. We offer two explanations for the
selection of the algorithmic part and its computing-like nature, which jointly justify
its adequacy. First, the identification of the proper repertoire is based on
effectiveness, which guarantees soundness, in the sense of not leaving the effective
realm. The second - more intuitive - explanation relies on the programming
language correspondence, which, besides reinforcing the first explication, indicates
that these algorithmic symbols provide adequate power for expressing programs.

Key words: Formal specifications, relational calculi, fork algebras, structural operations,
effectiveness, programming constructs, eXpressive power. ‘

Resumo. Examina-se a adequagdo de um ambiente relacional estendido por fork
para desenvolvimento de programas. Argumenta-se que se pode selecionar, por
consideracbes de efetividade, um certo conjunto de simbolos merecendo o nome
"algoritmico” e esboga-se uma correspondéncia com linguagens de programagcéo, a
qual indica que este repertdrio de simbolos fornece poder adequado para expressar
programas. Em trabalhos anteriores introduziu-se a questdo da adequagdo de um
ambiente relacional estendido por fork para desenvolvimento de programas:
argumentou-se que o aparato usual de relagdes binérias deveria ser estendido para
ser adequado para programacdo e examinou-se a natureza de tal extensdo obtida
considerando-se relacdes sobre um universo estruturado com novas operagbes
estruturais. A adequacdo de tal aparato estendido depende de ter poder expressivo
apropriado. Neste trabalho enfoca-se a questdo poder expressivo adequado para
programacdo. Oferecem-se duas explicagbes para a selegdo da parte algoritmica e de
sua natureza computacional, que conjuntamente justificam sua adequagao.
Primeiramente, a identificacdo do repertdrio apropriado é baseada em efetividade, o
que garante a corretude, no sentido de ndo se sair do dominio do efetivo. A segunda
explicagdo - mais intuitiva - repousa na correspondéncia com linguagens de
programacao, a qual, além de reforcar a anterior, indica que esses simbolos
algoritmicos fornecem poder adequado para expressar programas.
Palavras chave: Especificacdcs formais, cdlculos relacionais, dlgebras de fork, operagdes
estruturais, efetividade. conceitos de programagéo, poder expressivo.

NOTE

Research reported heréin is part of on-going project.

Collaboration with Armando M. Haeberer, Marcelo F. Frias and Gabriel
Baum was instrumental in sharpening many ideas. The author would also
like to thank the following for many fruitful discussions on these and
related topics: Gunther Schmidt, Rudolf Berghammer, Pablo Elustondo and
Juan Durén. ’

A preliminary version of some of these ideas was presented as part of an
invited talk at PRATICA '96 (PRovAs, TIpos e CAtegorias), a workshop
organised by Luis Carlos Pereira that took place at PUC-Rio, Rio de
Janeiro, Brazil, in April 1996. ‘

This report is the third one of a series of reports addressing the question
of adequacy of a fork relational framework for program development.
Other reports focus on other, related aspects of this question. Other
reports concentrate on distinct aspects of this question, such as:

A fork relational framework for program development;

Structured universe and structural operations and constants;

Algorithmic fork relations and programs.

CONTENTS

1. INTRODUCTION
2. BASIC IDEAS: SETS, RELATIONS AND PROGRAMMING

2.1 SETS AND REIATIONS
A. Operations on Sets and Relations
B. Partial Identities

2.2 EXPRESSING PROGRAMMING IDFAS WITH (EXTENDED) RELATIONS
A. Expressing Programs as Relations ’
B. Relational input-output Specifications
C. Relational Data Type Presentations
D. Expressing Programming Methods
E. Relational Presentations for many-sorted Structures

3. STRUCTURED UNIVERSE AND EXTENDED RELATIONS

3.1 STRUCTURAL REIATIONS AND OPERATICONS
A. Extended Operations and Constants
B. Alternative Bases for the Extension

3.2 PROPERTIES AND DERIVED OPERATIONS
A. Properties of the Extended Operations and Constants
B. Derived Operations and Partial Identities

4, PROGRAMMING AND EFFECTIVENESS
4.1 CONCRETE DATA TYPES AND EFFECTIVENESS
4.2 PROGRAMS, PROGRAM CONSTRUCTS AND EFFECTIVENESS
4.3 EFFECTIVE SETS AND PROGRAMS
5. EXTENDED RELATIONS AND EFFECTIVENESS
5.1 EFFECTIVENESS AND EXTENDED OPERATIONS AND CONSIANTS
5.2 EXTENDED RELATIONS AND EFFECTIVE STRUCTURAL EQUIVALENCE

5.3 AIGORITHMIC SYMBOLS AND TERMS
A. Classification of Extended Constants and Operations
B. Algorithmic Constants, Operations and Terms

6. PROGRAMMING LANGUAGE CORRESPONDENCE

6.1 ALGORITHMIC SYMBOLS AND PROGRAM SCHEMAS

6.2 OTHER ALGORITHMIC SYMBOLS AND PROGRAMMING CONCEPTS
7. OTHER ASPECTS ‘

7.1 CARTESIAN PRODUCT AND PAIR CODING

7.2 EXPRESSING AND REASONING ABOUT PROPERTIES

7.3 EXTENDED RELATIONAL FRAMEWORK FOR PROGRAMMING
8. CONCLUSIONS

REFERENCES

NN

(o) 36) B4, I SN &V

1. INTRODUCTION

In this report we examine the adequacy of an extended relational
framework for program development. We argue that we can select, by
effectiveness considerations, a certain set of symbols deserving the name
"algorithmic”. We also outline a programming language correspondence,
which indicates that these algorithmic symbols provide adequate power
for expressing programs.

In two previous reports, we introduced the question of adequacy of an
extended relational framework for program development. We argued that
the familiar apparatus of binary relations must be extended to be
appropriate for programming [Veloso '96a]. We also examined the nature
of such an extension obtained by considering relations on structured
“universes with new structural operations [Veloso '96b].

A basic issue concerning such a programming framework concerns its
adequacy for expressing programs. This adequacy relies on having an
appropriate expressive power. -

In this report we examine more closely the algorithmic part of this fork
relational framework and identify a set of symbols that deserve being
called " "algorithmic". We offer two explanations for this selection, which
jointly justify its adequacy. First, the identification of the proper
repertoire will be based on effectiveness, which will guarantee soundness,
in the sense that one does not leave the effective realm. The second
explanation relies on a programming language correspondence, which,
besides remforcmg the first exphcatlon, will indicate that we have
adequate expressive power.

We begin by rev1ew1ng some of the materlal in the two previous reports.
In section 2 we recall some basic operations on relations ‘and present a
series of examples intended to illustrate how one can express
programming ideas in a relational form. In section 3 we examine the
proposed extension and the new structural operatlons as well as some of
their properties.

In section 4 we examine some considerations connecting algorithms and
program constructs to effectiveness, with the purpose of preparing the
terrain for a classification Of the extended relational symbols. This
classification is presented in section 5 as a basis for the selection of the
algorithmic symbols, which is explained in terms of effective properties
~and their preservatlon We then move on to the programming language
correspondence, which is presented in section 6, indicate that these
algorithmic symbols provide adequate power for expressing programs.
Some other aspects, of importance in the context of a framework for
program development, are briefly commented upon in section 7. Finally,
section 8 presents some concluding remarks and comments on related
aspects. v

This report is the thlrd one of a series of reports addressmg the question
of adequacy of a fork relational framework for:*program- development.

Other reports focus on other, related aspects of this question.

2. BASIC IDEAS: SETS, RELATIONS AND PROGRAMMING

We begin with some preparatory material [Veloso '96a, b]. We first recall
some operations on relations. Next, we briefly illustrate how one can
express programs and programming ideas within an extended relational
framework, which is more adequate for programming tasks.

2.1 SETS AND RELATIONS

We now briefly recall some operations on relations and examine part1al
identities as tools for representing sets as relations.

- A. Operations on Sets and Relations
We first recall some operations on sets and relations [Halmos '63; Tarski
'41; Maddux '91; Schmidt & Stréhlein '93; Veloso '74].
Consider a set S and a (universal) subset VcS. We then have some
operations on subsets of V as well as some distinguished subsets of V.
We have some set-theoretical, or Boolean, operations and constants.
As Boolean operations we will employ:
set-theoretical union v, intersection N, and
complementation (with respect to universal V: r*:={se V/isegr}).
We also have the Boolean constants:
empty relation @ and universal subset V.
‘When dealing with sets of ordered pairs, i. e. relations on U, one has some
more operations and constants, often called Peircean [Maddux '91].
We will use two Peircean operations: |
relation transposition (converse) rl:={<v,u>e UxU/<u,v>er} and
relation composition (relative product) '
rls:={<u,w>e UxU/dve U [<u,v>er&<v,w>es]}, R
We will also employ the Peircean constant: |
identity (diagonal) relation on U l:={<u, v>eUxU/u—v}

Notice that these operations (except Boolean complementation ~) are
“monotonic with respect to inclusion ¢ [Schmidt & Stréhlein '93].

In the case of relations on U, the universal subset will also be a relation
VcUxU. One then wishes to have closure: in particular, one wishes to have
Iy, A and VIV included in V. This means that the universal relation
VcUxU must be an equivalence relation on ' U. For such an equivalence
- relation VcUxU on U, its powerset £ (V)= {chxU/rcV} will be closed under
both operations transposition T and composition | (in view of the1r
monotonicity). (See, e. g. [Jonsson & Tarski '52; Veloso '74].)

B. Partial Identities |

Let us now examine partial identities [Veloso '96a; Haeberer & Veloso '91]‘
Partial identities are devices for representing sets as relations, they are
useful tools in expressing programs and specifications in -a relational
manner. A partial identity behaves as a "filter" on its underlying set; as

2

such it can- also be used to obtain tests for membership as well as for
restricting relations to sets .

Given a subset ScU, by the partial identity on S we mean the binary
relation 1g:={<u,u>e UxU/ue S} on U. From the partial identity 13 one can

recover the set S it represents, since S={ue U/<u,u>e I¢}.

Partial identity 15 behaves as a "filter" on S: for ue S it behaves identically
(<u,v>e lg iff v=u), whereas for ueg S it provides no output.

As a test for non-membership we can use the complemént with respect to
the identity: “lg=lynlg for "1g={<u,u>e UxU/ueS}.

These partial identities can be -used to express, in relational terms,

restrictions of a relation rcUxU to a set ScU by composition: pre
composition lglr={<u,v>er/ue S}, and post composition rllg={<u,v>er/veS}.

1

U : v u C U

2.2 EXPRESSING PROGRAMMING IDEAS WITH (EXTENDED) RELATIONS

We now briefly indicate how one can express programs and programming
ideas in relational terms. We illustrate the expression of programming
ideas by means of (extended) relations with five simple examples: a
program, an input-output specification, a simple unsorted data type
specification, a programming method and a many-sorted data type
presentation [Veloso '96a, bl. o '

A. Expressing Programs as Relations
As example of a program, consider a program for computing the double of
a natural number by relying on successor, predecessor and zero.
A (recursive) formulation in the usual manner can be as follows:
{o if n=0

D(n) = :)
SSDP (n) otherwise

The test for zero can be expressed by the partial identity 1,={<0,0>} and
~the case division under test for zero can be expressed by means of 1, and
its complement with respect to Iy: 1 ,.=1_"Nly.

3

We thus have the foilowing formulation of binary relation DcNxN in terms
of its input-output pairs:

1
n —2E 5 n
D co
n —— m <> or
n i > J - m
P D - s|s

We can thus express binary relatidn DcNxN by means of a relational term:
D=1, u (1, IPIDISIS).

nzr

1

zr
(&

(L, n1)|P|D |s]s

4

o
It

This example illustrates how one can express (some simple). programs in
relational terms.

B. Relational input-output Specifications

As a simple example of an input-output specification, consider
palindromes, namely words that read the same forwards or backwards.
So, a palindrome is a word that is equal to its reversal.

Here, we use -a binary relation ReveW xW on the universe W of words,
where <u,v>e Rev iff v is the reversal of u. The set Pal of palindromes can
be described by a "filter" for palindromes Ip,={<w,w>e WxW/wePal}.

We can describe the behaviour of a "filter" for palindromes by means of
its input-output pairs as follows:

Rev
1 u — Vv Rev
v —Eal s v oo | and Co lP 1= e
. a
U — v : » 1
1 . W
L W i

We can thus express binary relation lp,,cWxXW aslp,=Revnly,.

Now, assume that we have constant relations Tr and Fl, matching every
word to, respectively, true and false. We can then obtain, from the above
expression for 1lp,, a relational term for the characteristic function of the

set Pal of palindromes. Namely, Xpar=(lf,allTr)u[(1Pa‘1’“m1w)IFl].

1 |Tr
Pal
= ’ W)
xPal ~ -
(1 N1)|F1
- Pal w :
This example illustrates how one can express input-output specifications
by means of relational terms. (From such relational input-output
specifications one can derive, by algebraic manipulations, some (recursive
and iterative) programs for palindromes [Haeberer & Veloso '91].)

4

C. Relational Data Type Presentations

For a simple example, consider the data type of the natural numbers with/
operations successor ‘s and predecessor p as well as constant zero.

To express properties of this data type in ‘a relational manner, we proceed
in a manner similar to the one implicit' in the previous example. Namely,
for the operations we use their graphs: relations S and P. For the constant
0 we use the constant relation Z:=Nx{0}. From this constant relation Z we
‘can obtain the partial identity 1,={<0,0>}. So, we also have the partlal

identity 1 =1 "Nl for the non-zero naturals.
Y Tl N

With these ideas, we' can express properties of this data type. For instance,
consider some axioms and their expressions in relational terms.

Injectivity of s: SiSTcly,
Vx—s(s(x)=x: , SISN1N=2,
Vyly=0vaxy=s(x)]: - 1,,cSTIS or 1cl zru(s IS)
' T
y —— x—>5 y :1 cs"|s
‘ } nzr ’
Vy[-y=0-s(p(y))=y]: - 1,,IPIScly
1 .
' nzr 5 2, xS, yv.1 |plsc1
' ‘ nzr N

This example illustrates how one can present unsorted data types by
means of relational specifications.

D. Expressing Programmlng Methods
As example of a programming method, we consider divide- and—conquer
Mergesort is a sorting algorithm based on this method [Aho et al. '75]. This
algorithm is based on the following idea. Given an input sequence:
if it is simple (Ig(s)<1), then its sorted version is directly obtained;
otherwise, split s into its two halves, recursively apply the algorithm and
recombine (by merging) the results.

This process of recursively splitting, until reaching simple instances, and
recombinatiens is - the idea wunderlying the problem-solving method
divide-and-conquer [Horowitz & Sahni '78]. It can be presented as follows:

: Drct (d) ‘ if Smpl (d)
o = D_C(Splt (d
D (d) _ Rcmb - (, plt (d)) otherwise
D_C (Splt2 (d))

its behaviour in terms of input-output pairs can be described as follows:

if Smpl(d): @ —2=5 r & a —2%Ct , o
. . p.C .
. Splt d, —— g Rembn
otherwise : d ————DT—> r & 4d —m—— D e r
- d —_— T

- We can notice two related features of this description:
process Splt produces from an mput d a pair <d;,d,> of outputs;

D_C is applied in parallel to each component of <d1 d,> to produce <r1 r2>

If we use I for the parallel execution on components, we can represent this
situation as:

D_C

al 4) ———— (z) - (aq pc) [z

Splt 1 : 1 1 1 1

d ———— 12 : - . ¢ = ’ I , 1
a . D_C '

"2 4, — \% d,) \B-C $;

With the parallel product / operation, we can write an expression for
binary relation D_C:

1 |Drct -
Smpl
D C = »
D_C
(1 “N1_)|splt|| 7/ ||Rcmbn
Smpl U
- D_C)

This example illustrates how one can express programming methods by
means of extended relational terms. Of course, for expressing some
programs, such as mergesort and related sorting algorithms [Darlington
'78; Broy '83], such extensmn will also be used.

We mention that (some) program derivation strategles can be formulated
in a similar manner [Haeberer & Veloso '91]. Their apphcatlon relies on a
pattern matching procedure, similar to the one involved in applying an
algebraic law, say the binomial expansion, to a particular instance.

E. Relational Presentations for many-sorted Structures

Data types used in programming often involve several sorts.

For a simple example of a many-sorted structure, consider the data type
Lists of Elements. It has sorts Lst and Elm, operatlons head, tail and cons,
as well as unary predicate null, say. To express properties of this many-
sorted data type in a relational manner, we proceed as follows.

The universe U is to consist of the sorts Lst and Elm as well as of their
ordered pairs. For the sorts we use partial identities 1;, and lg;,. For the
operations we use their graphs: relations Hd, Tl and Cns. For the predicate
null we use the partial identity 1 ;={<k,k>/kenull} (so, we have partial
identity 1 ,,:=1; "1~ to represent the non-null lists).

With these ideas, we can express a (reachability) axiom such as
(Vk:Lst)[null(k)v(3e:Elm)(31:Lst)k=cons(e,l)] relationally by one of the
alternative formulations: 1 ,,c(CnsT)ICns or 1} ,c1,;0[(CnsT)ICns].

Also, a property like (Vk:Lst)[-null(k)— cons(head(k),tail(k))=k] can be
expressed relationally - by 1 ,,[2,I(Hd/TD)ICnscl; ,,, where the doubling

6

- relation 2;:={<u,<u,u3>e UxU/ue U} outputs two copies of the input.

. Hd
1 5 k|———fe
% —mal o 2w ||, || Sms

k)—m1|1
Tl

This- eXample illustrates how one can describe a many-sorted data tyPe by
a relatlonal presentatlon '

3. STRUCTURED UNIVERSE: AND EXTENDED RELATIONS

We have 1nd1cated that the relat1onal framework should be extended in
order to express programming ideas. We now take a closer look at this
extended relational framework [Veloso '96b].

As mentioned, the universe should have ordered pairs of its elements.
Thus, we consider the universe U to be closed under cartesian product:
UxUgcU. As a consequence, we no longer have an unstructured set of
elements. Instead, we will be dealing with a universe with underlying
structure, having objects such as <u,v>, <u<v,w>>, <<u,v>,w>, and so forth.
We use the name structured wuniverse for such a set U closed under
cartesian product: UxUcU. :

3‘1 STRUCTURAL RELATIONS AND OPERATIONS ‘ ' .

We shall be dealmg with relations on a structured universe; so we can
have some more operations and constants, which we will call structural.
We shall now examine these structural operations and constants as well as
some interconnections among them.

A. Extended Operatlons and Constants .

Of the new structural operations and constants we have already
encountered the parallel product / and the duplication’ 2.

Operation - parallel product/ corresponds to parallel execuuon as such
r/s:={<<uy, 0,>,<vy,V,>>e UxU/<u,, v, >e r&<u,, v,>€s}.

u v U, —— .
o N ¢ 1 1
| | & &

Y2 V2 A2 "

Notice that parallel product operation / is monotonic with respect to
inclusion ¢ and preserves functionality of relations.

Constant duplication 2%; produces two copies of the input.
2y-={<u,<v,w>>e UxU/u=v=w}" : ' u —— |,

Notice that constant relation 2 is a total functional relation.

With this constant 2; we can construct an equality sieve 2.

7

Equality sieve 2T | —%— w & u=v=w

Another natural operation on relations comes from the idea of feeding a
common input to two relations. This new operation, called fork, produces
relation r£s:={<u,<v,w>>e UxU/<u,v>er&<u,w>es}.

Notice that fork operation / is monotonic with respect to inclusion c and
preserves functionality of relations; also Dom[r£s]=Dom([r]JnDom{s].

Fork £ can be defined from / and 2y, since r£s=2;1(1/8).

r

— (v . (u) —— (v
u—Zz e u —2— |, 4 /
—\w u — |\w

s s

B. Alfernative Bases for the Extension

In general, the universal relation V is an equivalence relation V on U. We
then wish to have V/V and V£V included in V. We thus requlre V to be
closed under pair formation: <x,<x,y>>€ V whenever <x,y>e V.

We use the names closed equivalence for an equivalence relation VeUxU
on U that is closed under pair formation (<x,<x,y>>€V whenever <x,y>e V),

and structural equivalence for a structured universe ‘U equipped w1th a
closed equivalence relation VcUxU on U.

For such a closed equivalence V, its powerset (V)= {reUxU/rcV} is closed
under both operations parallel product / and fork £ (in view of their

monotonicity). We then have both 2,,2,TcV.
Clearly, duplication constant 2y can be derived from fork <, via 2U—1U£1U

With the operation fork £ we can construct new constant relations: the
left and right projections Ty:=(1;2 V)T and py:=(Vz1y)T. :

1 v
—_— s x —(x
T T :
T, : x—— L . & Py r y—— L K
— |y | —
v ‘ : 1U'

We notice that the constant projections nv={<<x,y>,x>eUxU/<x,y>eV} and
py={<<x,y>,y»€ UxU/<x,y>e V} are partial functions with domain UxUcU.

We can also notice that from fork £ and the projections my=(1y«V)T and
pV=(V.41U)T one can recover parallel product /, via i/s=(TlyIr)Z(Pyls).

r) ' ‘nv r
> s(v
Uy |V Y Yy 1
v | // ’ & ’ —'__"94) ’
—_ > sl v
Y, .\ 4, o Y2 T o \V2
U . R

© Also, notice that from the transposed projections TCVT-IUAV and Py —VAU
one can recover fork £, via r£s=(rITyT)N(slpy D).

T
r
: u v A4 ,
r .
— v Y
u — L e &
—_—w pT X\
s
of u w Ty,
w

Hence, the sets {Z£}, {/,ZU} and {Ty,py} are all relationally interderivable,
and either one of them can be used as a basis for our extension.

Other interesting examples of interdefinab"il.ity are provided by set-
theoretical 1ntersect10n and by Peircean transposmon ‘of relations.

Boolean operatlon N can be recovered from fork £ and equality sieve 27,
since rns=(r£s)|2; T

Peircean operation T can be defined from intersection N, parallel product
4, prOJectlons and- their transpositions, since rT—{[anI(IU/r)]mp THr,.

Thus, on such a structural equivalence we can have, in addition to the
Boolean and Peircean apparatus, some structural operations and constants:
structural operations parallel product / and fork £;

structural constants duplication 2y, left and right projections T, and py.
As mentioned, as bases for our extension we can use fork Z alone, the left
and right projections Ty and Py, or both / and 2.

3.2 PROPERTIES AND DERIVED OPERATIONS

We will now con51der some simple propertles of this extended relational
framework’ and some useful derived operations. We will first examine
some relational ‘properties of this extended apparatus. Then, we will -
consider some derived operations and take a closer look at the
- representation of subsets by partial- 1dent1t1es

A. Properties of the Extended Operations and Constants
We now notice some properties of this extended relational apparatus
concerning totality and functionality as well as their preservation
With respect to totality, we notice ihat many constants are total but most
operations fail to preserve this property.
The constants (but the projections T, and py) are total relations:
the constant relations identity ly={<u,u>e UxU/ue U}, universal V and
duplication 2;={<u,<u,u>>e UxU/ue U} are total relations (included in V).
The operations union U and fork £ preserve totality of relations:
the family of total relations (included in V) is closed under the
operations but Boolean' N and ~, Peircean | and T and structural /.

As for functlonahty, we can see that most constants are functional and
some operations preserve this property.

The constants (but universal V) are functional relations:
the constants empty relation &, identity ly={<u,u>e UxU/ueU},

duplication 2y={<u,<u,u>>e UxU/ueU} (and equality sieve
T={<<u,u>,u>e UxU/ue U}), as well as the projections
Ty={<<x,y>x>e UXU/<x,y>€ V} and py={<<x,y>y>e UxU/<x,y>e V} are
functional relations (included in V).
Operations N, |,/ and £ preserve functionality of relations:
the family of functional relations (included in V) is closed under the
operations except union U, complementation ~ and transposition T.
B. Derived Operations and Partial Identities
Of course, one can introduce other operations by definition. We examine a
few examples of derived operations that are often found useful.

An example of derived operation is the operatlon restricted union. Given
relations p and q on U, we define the binary operatlon restricted union
over p and q p®q by 1,88t =(plr)u(qls). ;
Complementauon W1th respect‘ to the identity is an important derived
operation. Unary operation identity complementation " is defined by
t:=1yntT; so t={<u,u>e UxU/<u,u>¢t}. : :
Another important example of derived operation is the domain
representation. Unary operation domain _ is defined by r:=(rlrT)n 1.
Notice that rcly and r={<u,u>e UxU/ue Dom[r]}. ‘
We now comment on the usage of partial identities for representing sets.
First, notice that the family # (1y):={pcUxU/pcly} of partial identities
consists of functional relations. We now -explicitly introduce a
transformation for representing subsets of U as partial identities, namely
1 :2(U)—#(1y) glven by the asmgnment Se 1 ={<u, u>e UxU/ue S}.

The family (1) of partial identities forms a Boolean algebra (with
identity complementation ~“p=1ynp~) that is isomorphic to the field of
subsets § (U) (under the assignments S— lg and p~Dom[p]).

Also, the family XO(IU) of partial identities is closed under transposition T,
composition | and parallel product / (as well as domain _.)

{Because 14T=Iq, lsllT—ISnT—lsnl and 1/1:=1g.r.}

By resorting to parual identities, one can obtain interesting versions of
restricted union, namely guarded and branching unions.

The guarded wunion is simply the union restricted to partial identities:

for partial identities p,qe & (1) rp[]qszzrp@qs.

Given a partial identity te & (1), the binary operation

branching union’ overt v, is defined by rv,s:=r@y; so rvts=(tlr)u("t|s).
Notice that one can recover Boolean union from guarded union as a
restricted union over the diagonal 1j;. Also, branching union preserves

10

\ /functionality: if r and s are functional then so is rvts for each tcly.

4. PROGRAMMING AND EFFECTIVENESS

We have already indicated the desirability of suitably extending the
relational approach for expressing programming ideas [Veloso '96a]. Also,
_the preceding - section indicates that such extended relational framework
provides new operations and constants [Veloso '96b]. Lo

We wish to see that we have an adequate framework for programmlng
We shall argue that a certain set of extended relational operations and

- constants can be regarded as forming a programmmg language.

It turns out that we can single out a certain set of terms, built from some
- of the operatlons and constants, deserving the name "algorithmic". We
shall offer two justifications for the selection of such a subset of
operations ~and constants (and explanations for their computing-like
character): one in terms of effectiveness (preservation of effective
enumerability) and a programming view (programming language
correspondence). '
For this purpose, we first examine some considerations connecting
algorithms and program constructs to effectiveness. These considerations
are based on effective enumerability and the preservation of effective
enumerability. They hinge on the idea that programs on concrete data
types have effective behav1ours which is to be preserved by program
constructs.

4.1 CONCRETE DATA TYPES AND EFFECTIVENESS

‘We first consider effectiveness properties of concrete data types.

The basic predicates and operations of a- concrete data type are
computable and total. So, these predicates and the graphs of these
operations are effectively dec1dable subsets of thelr domains of arguments
~and results. . :

Con81der, for mstance the data type of naturals.

A basic operation like successor s:N— N is a total computable function,
thus its graph is an effectively decidable subset S:={<m,n>e NxN/s(m)—n} of
NxN, so it is effectively enumerable.

A basic predicate such as less than <, being computable and total has as
its extension an effectively decidable subset Lt:={<m,n>e NxN/m<n} of
NxN. Similarly, the extension of the equality test is an effectively
decidable subset Eq:={<m,n>e NxN/m=n} of NxN.

Now, the tests used in program constructs, like if_then_else_, are
Boolean combinations of these basic tests, so they are effectively decidable
subsets of their domains of arguments, as well. For instance, a test like
X<yAa—y=z corresponds to an- effectively decidable subset of NxNxN.

4.2 PROGRAMS, PROGRAM CONSTRUCTS AND EFFECTIVENESS

We now examine effectiveness in the context of programs and program
constructs, first the deterministic and then the nondeterministic case.

11

We first recall some simple remarks on effectiveness [Rogers '67;
Shoenfield '67; Manna '74]. ‘

On the natural numbers, a partial function is computable iff its graph is an
effectively enumerable set of input-output pairs. In other words, the
partial computable functions are those functional relations whose graphs
are effectively enumerable relations. Also, a set of naturals is effectively
decidable iff it and its complement are both effectively enumerable.

Now, let us consider programs and their input-output behaviours.

By the input-output behaviour of program (segment) p we mean the set
<p> consisting of its input-output pair$ <u,z>. This concept of input-output
behaviour is quite familiar for the case of a deterministic program
(segment), and it is naturally used also for possibly nondeterministic
programs.
One usually considers (determlmstlc) programs as descrlptlons of- effectlve
procedures for computing partial functions. So, a binary relation is the
input-output behaviour of a deterministic program (segment) iff it is
functional and effectively enumerable. In this sense, a deterministic
program (segment) p may be regarded as a description of an effectively
enumerable relation: its (functional) input-output behaviour <p>.
For possibly nondeterministic programs we take this idea as basic:
program segments as descriptions of effectively enumerable input-output
relations. ”
We see that a nondeterministic program can be employed as a
(nondeterministic) procedure for enumerating its -input-output pairs. Also,
the input-output behaviour of such a nondeterministic program can be
regarded as the union of deterministic behaviours obtained by selecting
among the various choices left open. ' .
On the other hand, an effectively enumerable b1nary relation can be
"executed", at least by a "British Museum" schema. (The procedure for
effectively enumerating input-output pairs provides a procedure for
transforming (some) inputs to corresponding outputs.) Thus, such an
effectively enumerable input-output relation, being "executable", may be
regarded as the input-output behaviour of a, possibly nondetermlmstlc,
program (segment). . :
Now, let us consider program constructs, such as sequentialisation and
conditionals, as tools for comstructing new program segments.
Program constructs are intended to be applied to appropriate program
segments to produce other program segments. So, they should preserve
effectively enumerable input-output behaviours. : ‘
For instance, consider the sequentialisation construct ;. The compound
statement R ; S is a program segment constructed from program segments
R and S. So, program construct _ ; _ should preserve effectively
enumerable input-output behaviours. ' "
Similarly, for a test t, if t then P else Q is a program segment constructed
from program segments P and Q. So, for an effective decidable test t
l _

12

program construct if t then _ else _ should preserve effectively

‘enumerable input-output behaviours.

Thus, program constructs may be regarded as operations on programs and
program = segments preserving effectively enumerable input-output
behaviours. ‘

4.3 EFFECTIVE SETS AND PROGRAMS

We shall use in the sequel the concept of effective set. We shall say that a
set U is effective when equality between its elements is effectively
decidable relative to U2=UxU, in the sense that there exists an effective
procedure for deciding whether or not u=v for every pair <u,v>e UxU.
Notice that the cartesian product UxW of effective sets U and W is again
an effective set (since the equality <u',w'>=<u",w">reduces to the equalities
between components u'=u" and w'=w" :

With these observations on effectiveness, we can more clearly see why
the input-output behaviour of a program (segment) on an effective set is
an effectively enumerable relation of input-output pairs.

Indeed, consider a program (segment) on an effective set. It is constructed
from basic tests, which are effectively decidable, and functions, which are
effectively computable, by applying program constructs, which preserve
effective enumerability. Thus, we can then see that its input-output
behaviour is an effectively enumerable relation of input-output pairs.
Now, consider a partial function f on an effective set U. When its graph
F:={<u,v>e UxU/f(u)=v} is effectively enumerable we shall call f effectively
computable. The reason for this name is that an effective procedure for
enumerating the graph F of f provides an effective procedure for
computing f. ‘ ' .

One can effectively compute f as follows: given ue U, we effectively
enumerate those <v,w>eF, decide whether u=v and in such case output w.
So, such an effectively computable partial function on an effective set has
an effective procedure for computing results from arguments in its
domain.

5. EXTENDED RELATIONS' AND EFFECTIVENESS

We have already argued for the desirability of suitably extending the
relational approach to make it more adequate for programming. We now
wish to see that this extension does provide an adequate framework for
programming. ‘

We will argue that a certain set of extended relatmnal terms can be
regarded as effective procedures describing programs. For this purpose,
we first make some considerations that will give some guidelines for the
selection of some "algorithmic" symbols and will also provide a first
explanation, in terms of effectiveness, for their computing-like nature.

5.1 EFFECTIVENESS AND EXTENDED OPERATIONS AND CONSTANTS_

We mentioned that we can single out certain ope;c_at,i,ons,_and constants,

13

which deserve being called "algorithmic". We now examine some guidance
towards the selection of such symbols. These criteria will also provide a
first explanation, in terms of effectiveness, for their computing-like
behaviour. '
First, consider subsets of a universal relation‘ V.
Then, the Boolean operations U, n and ~ preserve effective .decidability:

- if r and s are effectively decidable subsets of V, so are rus, rns and r~.
Also, Boolean operations U and N preserve effective enumerability:

- if r and s are effectively enumerable, then so are rus and rns.
Clearly, the empty relation & is an effectively decidable subset of V.
We now assume that the universal relation V is an equivalence relation
VcUxU on U. Then, transposition T preserves effective decidability:

- if r is an effectively decidable subset of V, then so is rT.
We now also assume that set U is an effective set, Whose equahty is
-effectively decidable.
Let us consider the Peircean constant identity and operation composition.
Clearly, the constant identity relation ,lU_{<u,u‘>e UxU/ue U} is an
effectively decidable subset of UxU. Also, 1;; is a functional and total
relation. Thus:

- identity relation ly={<u,u>e UxU/ueU} is

an effectively decidable subset of UxU, and

an effectively computable total . function.
Concerning operation composition, we can then see that, thoughf not
preserving effective decidability, compos1t1on | does preserve effective
.enumerability: : : ‘ .

- if relations r and s are effectively enumerable, then so is ris.

Indeed, if r and s are effectively enumerable, then one can effectively
enumerate- rls by effectively enumerating those <x,y>er and <z,w>e€s,
deciding whether v=z and in such case outputting <Xx,w>.

We consider a special case where composition | does preserve effective
decidability: pre composition by an effectively computable partial
function. We can see that for an effectively computable partial function f

- if s is an effect1vely decidable subset of V, then so is fls.

Indeed, in this case one can effectively decide whether or not <u,w>e fls by
effectively computing v=f(u) and deciding whether or not <u,v>es.
For the structural operations, we assume that set U is a structured
universe U equlpped with a closed equivalence relation VcUxU on U.
Now, consider structural operations fork £ and parallel product /. |
Operat1ons fork < and parallel product / preserve effective enumerabxllty
- if relations r and s are effectively enumerable, then so are r£s and u/s.

For effectively enumerable relations r and s, one can effectively
enumerate rZs by effectively enumerating those <x,v>er and <z,w>es,
deciding ‘whether x=z and in such case forming the ordered pair <v,w> and

14

~ outputting <X,<V,w>>. .
Now, let us consider the remaining extended constants.
We further assume that the universal equivalence relation VcUxU is
effectively enumerable. So:
- universal relation V is total and effectively enumerable.
We now examine the remaining extended constants: the structural ones.
We can also see that the projections Ty={<<X,y>x>eV/<x,y>eV} and
py={<<x,y>,y>e V/<x,y>e V} are effecuvely enumerable They -are also
functional relations. Thus:
- the left and right projections 7y and py are
effectively enumerable subsets of VgUxU, and
effectively computable partial functions.
For. instance, one can effectively compute Ty as follows: given ue U, we
effectively enumerate those <x,y>eV, decide whether u=<x,y> and in such
case ‘output X. '
We can see that the constant duplication 2y={<u,<u,u>>eV/ueU} is
effectlvely enumerable. Also, 2 is a functional and total relation. So:
- duplication 2={<u,<u,u>>eV/ueU}} is
an effectively enumerable subset of VcUxU, and
an effectively computable total function. |
Also, the equality sieve 2;T={<<u,u>,u>e V/ue U} is a functional relation that
is effectively enumerable, as is the empty relation &. Thus:
- equality sieve 2yT={<<u,u>u>e V/ueU} is
an effectively enumerable subset of VcUxU, and
an effectively computable partial function.
We can now examine the structural operations concerning effectlve
computability of partial functions and effective decidability.
Operations fork £ and parallel product / preserve effective computability:
- if r and s are effectively computable, so are r£s and w5s.
We can also see that the structural operations fork « and parallel product
/# transform effective decidable subsets:
- if r and s are effectively decidable subsets of UXW' and U"xW",

respectively, then
their fork rZs is an effectively decidable subset of (U‘nU")x(W'xW")

r/s is an effectively decidable subset of (U'XU")x(W'xW").

Consider effectively decidable -subsets r and s of U'xW' and U"XW",
respectively. Then, given <u,w>e (U'xU")x(W'xW"), one can effectively
decide whether <u,ws>er/s by applying the projections for effectively
computing the components u=my(u)e U' and u,=py(u)e U" of u as well as
w,=Ty(w)e W' and w,=py(w)e W" of w, and deciding whether <u;,w;>er and
<U,, Wy>ES. - '

Finally, let us also examine partial identities for répresenting sets.

15

Given a subset S of U, consider its partial identity lg={<u,u>e UxU/ue S}.
Clearly, partial identity lgcl; is an effectively decidable (respectively

enumerable) subset of UxU iff S is an effectively decidable (respectively
enumerable) subset of U. Thus, for each subset ScU: '

- S is an effectively decidable subset S of U iff
its partial identity lg is-an effectively decidable subset of UxU;
- S is an effectively enumerable subset S of U iff '
its ' partial® identity 15 is effectively enumerable subset of UxU
(i. e. I is a partial computable function).
In other words, the bijective transformation 1_:@(U)—9£0(1U) preserves
effective decidability as well as effective enumerability.

5.2 EXTENDED RELATIONS AND EFFECTIVE STRUCTURAL EQUIVALENCE

By an effective structural equivalence we mean a structural equivalence

whose set U has an effectively decidable equality and whose closed

‘equivalence relation VcUxU is effectively enumerable. With this concept

of effective structural equivalence, we can conveniently summarise our

considerations as follows. ‘ ‘

~All the extended constants are effectively enumerable.

- The universal relation VcUxU is effectively enumerable.

- The extended constants (but V) are effectively computable functions:
relations & and 1; are functional effectively decidable subsets of V;

relations 2, 2UT,1'CV and Py are functional and effectively enumerable.

The extended operations (except ~) preserve effective enumerability:
- the family of effectlvely enumerable subsets of V is closed under
the extended operations U, N, |, T,/ and £.
Operations U, N, ~-and T preserve effective demdablhty of subsets of V:
- the family of effectively decidable subsets of V is closed under
| the Boolean operations U, N and ~ as well as Peircean transposition T.
The extended operations (but ~, U and T) preserve effective computability:
- the family of effectively computable partial functions is closed‘ under
the extended operations N, |, £ and 7.

Let us use Dcd(W) and Enm (W), respectively, for the families of
effectively decidable and effectively enumerable subsets of a given set W.

Concerning the representation of subsets by partial identities, the
transformation 1 :0U)—e(1y) establishes bijections

- between the fam111es Dcd(U) and Ded(1U)chd(V) as well as
- between the families Enm(U) and Enm(lU)cEnm(V)

This means that effective properties are not lost by this representatlon of
subsets by partial identities.

5.3 ALGORITHMIC SYMBOLS AND TERMS
We now have some °u1dance towards selectmg our algorlthmlc symbols.

16

According to the observations on effectiveness and programming, we shall
use as main- criteria effective enumerability and its preservation.

We will first classify the extended relational constants and operations
according to these effectiveness criteria as well as auxiliary ones. Next, we
shall introduce our algorithmic symbols and a first explanatlon in terms
of effectiveness, for their computing-like nature.

A. Classmcatlon of Extended Constants and Operations

Based on what we have seen, we can classify the extended relational
constants and operations according to some properties’ and their
preservation. ' '
We have con51dered the relational criteria of totality and functlonahty For
an effective structural equivalence, consisting of a set U with an
effectively decidable equality and a closed equivalence relation VgUxU
that is effectively enumerable, we have also considered some
effectiveness criteria: effective decidability, enumerability and
computability. |
The transformation 1 :82(U)—>#(ly) represents subsets of U as functional
partial identities. It transforms subsets to partial identities as follows:
subset De Dcd(U) : partial identity 1lpeDcd(UxU)
subset Ee Enm(U) ~partial identity 1ge Enm(UxU)

We have seen that the universal relation V is a total effectively
enumerable relation. ’ ‘

We can classify the remaining extehded ‘relational constants, which are
functional, with respect to totality and effectiveness as follows.

empty relation @ partial ~ Decd(V)
identity relation Iy total = Decd(V)
duplication 2 ~ total Enm(V)
. equality sieve 2T partial Enm(V)

projections Ty and pyT partial Enm(V)

We can also classify the extended operations according to the preservation
of some families of binary relations.

Operation £ (1y) Decd(V) Enm(V)
union U + + +
intersection N + + +
complementation -) + B
composition | T+ - +
transposition : + + +
fork £ - ? +
parallel product / -+ ? +

In a similar spirit, we can also classify some useful derived operations
according to the preservation of some families of binary relations.

17

Derived operation . k #(1ly) . Decd(V) | Enm(V)

domain _. + - +
identity complementation + +

branching union v, + + if te Ded(V) + if t,"te Enm(V)
guarded union rp[]qs + + if p,ge Ded(V) +if p,qe Enm(V)

B. Algorithmic Constants, Operations and Terms
On the basis of the preceding classmcauons, we now introduce the
algorithmic symbols.
We will call _ . N

constants &, 1y, V, 24, 24T, my and py the algorithmic constants, and
operations U, N, |, T,/ and £ the algorithmic operations.
Notice that the algor1thm1c operations are monotomc with respect to
inclusion c. : : <
The algorithmic symbols will be the algorithmic operatibns together with
the algorithmic constants. By an algorithmic relation we mean an extended
relational term built with algorithmic constants and operations.
The reason for these names should now be clear.
Consider an effective structural equivalence, consisting of a set U with an
effectively decidable equality and a closed equivalence relation VcUxU
that is effectively enumerable. We then have:

- the algorithmic constants are effectively enumerable,

(the functional ones (all but V) are effectively computable);

- the algorithmic operations preserve effective enumerability;

- the algorithmic relations are effectively enumerable.
This justification for these names also provides an explanation for their
computing-like nature. With proper allowance for nondeterminism,
algorithmic constants and relations can be regarded as programs, while
algorithmic operations can be viewed as program constructs.
In this sense, we may regard our algorithmic symbols as, possibly
nondeterministic, program schemas.
We now consider a given set Tc # (V) of relanns on U.
The algorithmic closure of set T is the set Alg[T] consisting of the relations
built from algorithmic constants and those in T by means of repeated
applications of algorithmic operations.
We shall call an extended relation t testable over T iff both t and its
complement t are in the algorithmic closure of T: te Tst[T] iff {t,t"}cAlg[T)).
By an algorithmic term over T we mean an extended relational term built
from algorithmic closure of T by algorithmic operations as well as
branching unions over partial identities that are testable over T (i. e. v, for
te £ (1) with {t,t7}cAlg[T]). ‘ i
Since the algorithmic operations are monotomc with respect to 1nclus1on <,
so are the algorithmic terms over a set.

18

Again, the reason.for this terminology should be clear by now. Consider an

effective structural equivalence.

Then, effective procedures for effectively enumerating the relations in T,

prov1de effective procedures for:

- effectively enumerating the relations in the algorithmic closure of T,
- effectively deciding the testable relations over T,
- effectively enumerating the algorithmic terms over T.

So, if the set T consists of effectively enumerable relations, then we have:
- the relations in the algorithmic closure of T are effectively enumerable,
- the testable telatio‘ns over T are effective decidable,

- the algorithmic terms over T are effectively enumerable.

In other words, if TcEnm(V) then Tst[TlcDcd(V) and the “algorithmic

terms over T are in Enm(V).

In this sense, the algorithmic terms over a set of effectlvely enumerable

relations may be viewed as programs, while the algorithmic terms over a’

set may be regarded as program schemas.

6. PROGRAMMING LANGUAGE CORRESPONDENCE

We now reconsider our algor1thmlc symbols and terms and examine a
second explanauon in terms of a programming view, for their computing-
like nature.

The programming view relies on a behavioural correspondence between
these algorithmic symbols and programming language constructs. We shall
consider some concepts and constructs akin tot those found in the usual
programming languages [Ghezm ‘& Jazayeri '82].

6.1 ALGORITHMIC SYMBOLS AND PROGRAM SCHEMAS

Let us consider some concepts and constructs found in the usual
programming languages [Ghezzi & Jazayeri '82]. We notice that we have a
correspondence between the behavxours of some of them and some
algorithmic symbols. B : ‘

We first examine a correspondence betweén some algorithmic constants
and some programming concepts. Notice that the following matchings
preserve behaviours.

Constant relation Behaviour Concept

empty relation @ <u,v>ed abort

identity relation 1j; 1, transfer v:=u

o u—2—v
universal relation V=UxU g2 nondeterministic
: v assignment w:=?

u making .

duplication u __2U_>) two copies

2 : u - of the input

19

X
z=|,| —F— x component
defined projections v, - selection
Ty =(ly< V)T and , < , o xi=zlft
pV:=(V41U)T z=|, P y = y=zagt '
Y

We now examine a correspondence between some algorithmic operations
and some program constructs, also preserving behaviours.

Operation Behaviour Construct
composition q —F v S ’ sequentialisation
rls . : - first r ; then s
v r v parallel
, u, u, —v, vy)
parallel ‘ : processing .
u = ;| & >
product , 3} of =~
u, u, —v, v, : SRR
r/s s components
, oy ' feeding
. u—>v\ v S _
operation _ common input
: u— & —]
fork _— \u w w to both
r£s . : S r-and s

We ‘also notice matchings between some derived algor1thm1c operatlons
and some important program constructs.
The conditional constructs for selection of alternatlves ‘guarded conditional
if_= _[]_= _if and deterministic conditional if_then_else_ have the
following mput-output behaviours) .
- - <if p(u, u). = r(u,z) [] q(uu) = s(u, 7) fi >=

—{ <u,z>e UXZ/(p(u,u)a<u,z>€ <r2)v(q(u,u)a<u,z>e<s>) },
- < if t(u,u) then r(u,z) else s(u,z) >=

={<u,z>e UxZ/(t(u,u)a<u,z>e <r2)v(=t(u,u)a<u,z>e<s>)}.
We thus have the following matchings between some derived algorithmic
ope'ratio‘ns and some program constructs, which preserve behaviours

Operation Behaviour . Construct
(p r nondeterministic
u > U >V 1Y S :
guarded _ selection of
J U >4 \"4 —4or : .
union : alternatives
u—E sy w
rp[]qs | f - {guarded if}
(£ r , deterministic
. u > U >V : ' .)
branching _ v selection of
. u —>9 \4 ——>{0r .
union o , w alternatives
v s .
IVs v —u w {if_then_else_}

We thus see that this programming language viewpoint indicates partial
correspondences |
- between some algorithmic constants and some programming concepts,
- between some algorithmic.opérations and some program constructs,
which preserve their behaviours.

6.2 OTHER ALGORITHMIC SYMBOLS AND PROGRAMMING CONCEPTS

An algorithmic operation that does not explicitly appear in the preceding
correspondence is Boolean union. But,” we know that union U can be
recovered from guarded union as a restricted union over the total 1dent1ty
ly. So, rus corresponds to if true = r [] true = sif. :

Some algorithmic operations - such as intersection and transposition - do
not appear to have a direct programming counterpart. But, as already
noticed, on effective structural equivalences their behaviours preserve
effective enumerability. We can also notice other features.

First, consider the equality sieve 2,;T={<<u,v>,w>e V/u=v=w}. It is an
effectively enumerable relation whose functional input-output behaviour,
corresponds to a conditional program schema, as it is not difficult to see.
Now, operation A preserves effective enumerability as well as
decidability. Moreover, it can be derived from fork Z and equality sieve
2yT via rms:(rés)IZUT." This definition provides an execution schema for
- intersection of relations, albeit a not very efficient one.

Finally, consider operation T. Transposition corresponds to running the
program "backwards": from output to input. This idea fits very well with
the logic programming paradigm, where "execution" relies on unification
matching, and thus the input-output distinction becomes somewhat
blurred [Kowalsk1 '79]. Also, the very argument showmg that transposition
preserves effective enumerability indicates how it can be 31mulated
" indeed operatlon T can be expressed by an algonthmlc term.

Dually, some programming ideas - such as program variables - do not
appear to have a direct algorithmic term counterpart. But, as illustrated in
the examples, we can express at least some programs by means of
algorithmic terms. We shall take a closer look at this point in a
forthcoming report. ' '

7. OTHER ASPECTS

We now comment on some cther aspects, of importance in the context of a
framework for program development. Some of these aspects are
addressed in companion reports. ' : -

7.1 CARTESIAN PRODUCT AND PAIR CODING

We first consider the role of cartesian product and pair forming.

The structural operations and constants were motivated by the idea of
forming pairs and parallel application. For this reason, we- have considered
structured universes as sets closed under cartesian:‘product:- :

21

This is just a simplified manner of presenting the basic ideas. We can
adopt a more flexible approach based on the concept of pair coding.

The idea is that ome does need actual cartesian pairs; some coding for
them is enough. For instance, for the universe U=N of natural numbers,
one might consider a Godel-like coding *:NxN— N, given by, say,
m#*n:=2M (2n+1), coding pair <m,n> of naturals by the single natural
m=*ne N. - | -

The intuition is that, as long as one can recover the given arguments from
the coded pair, one does not care about the particular coding schema
adopted. It can be thought of as an internal matter left to the system.

In this sense, we can replace the ideas of pair forming and closure under .
cartesian product by an 1n3ect1ve function *:UxU—U. (More generally, we
_can even use a coding relation *c(UxU)xU whose restriction to VeUxU is an
injective function y;*:V—U.) :

For effectiveness considerations, we require the funct{ion[v,*“':V—éU to be
effectively computable. One can then see that the previous arguments
carry over to this more general case, simply by replacing expressions like
"forming the ordered pair <u,v>" by "effectively compuung u*v"

Thus, the preceding considerations carry: over to this more flex1ble
approach based on the concept of pair coding y,*:V—>U.

7.2 EXPRESSING AND REASONING ABOUT PROPERTIES

“We have seen that algor1thm1c symbols provide an adequate framework
for expressing programs and program schemas. We shall now br1ef1y
comment on expressmg properties and reasomng about them.

The expressive of the extended relatlonal language is that of first-order
logical language. The expressivity theorem [Veloso & Haeberer 91;
Haeberer & Veloso '91] guarantees that every first-order formula ¢ can be
(effectively) converted to a closed (partial identity) term ¢# "with the
same extension". Thus, the partial identity of each m-ary relation
definable by a first-order formula ¢ is binary relation that is defmable by
a closed extended relational term OF, ‘

We clearly also have the converse: the input-output behaviour every of
every closed extended relational term is also definable by a first-order
formula. ' .

In this sense, the extended relational language can be regarded as a truly
relatlonal counterpart of first-order logical language' '

Furthermore, this express1v1ty carries over to any applied first-order
logical language. In this sense, these extended relational languages can be
regarded as relational counterparts of first-order -logical languages [Veloso
& Haeberer '91]. . v
We can match the reperto1re of predicates, operations and constants of
such an applied first-order logical language with a repertoire of relation
constants. Given such a matching, we can translate back and forth
between first-order formulae and closed terms "with the same extension".

22

We also have a matching between first-order sentences ¢ and equations
c* between closed terms. '

Moreover, these back-and-forth translations match first-order reasoning
rules and axioms with equational rules and equations between extended
relational terms. To accomplish a matching of deductive powers, we use as
axioms a finite set of equations between extended relational terms. This
finite set of equations axiomatises the so-called Algebraic Fork Calculus
The Representation Theorem guarantees that every model of AFC can be
represented as an algebra of extended input-output relations [Frias et al.
'93, '95]. As a consequence of the Representation Theorem, we have the
soundness and completeness of this calculus: a sentence of the extended
relational language is derivable within AFC iff it holds in all algebras of
extended input-output relations.

We then have the desired matching of deductive powers. Thus, we can
safely replace first-order reasoning by equational reasoning within our
extended relational calculus. But we do not have to; whenever it is more
convenient we can resort to first-order reasoning, with the assurance that
it can be translated into AFC. Further, representability provides an added
bonus: we can reason by means of individuals, which is often more
intuitive when one wishes to think in an input-output manner (by
resorting to diagrams, for instance); if the conclusion no longer involves
individuals it can be derived within AFC [Veloso & Haeberer '93].

We have been considering mostly unsorted situations and languages. But,
these ideas can be extended to the many-sorted case in a reasonably
straightforward way. This can be done by a relational version of the
reduction of many-sorted first-order logic to unsorted logic by relying on
relativisation predicates. Thus, we can mimic many-sorted first-order
reasoning by equational reasoning within our extended relational calculus

7.3 EXTENDED RELATIONAL FRAMEWORK FOR PROGRAMMING

'We shall now briefly comment on the role of this extended relational
framework for program development.
We have indicated that within the extended relational framework one can
express programs, input-output specifications, ~ data type specifications,
programming methods. We have mentioned that program derivation
strategies can be formulated in a similar spirit. Furthermore, from such
relational input-output specifications one can derive, by algebraic
manipulations, (possibly recursive) programs. Moreover, programs,
expressed in these terms, can also be transformed in a similar fashion, say
for obtaining more efficient versions [Haeberer & Veloso '91].
This extended relational framework presents wide expressive, deductive
and transformational powers, which are desired in an framework for
program development. Within it one can: '

- express behavioural specifications and programs,

- reason about their properties (in an equational::manner),-

23

- transform specifications and programs (in an algebraic fashion).
This extended relational framework supports a wide-spectrum language
and calculus for program derivation. Within it, we are able to:
- express input-output specxflcatlons programs and programming .
methods by terms (constrained by equations); :
- express data type specifications by equations between terms;
--employ such equations to compare and transform terms, for instance
for transforming a specification of input-output behaviour into a
program.
The pragmatic adequacy of this extended relational framework for
program derivation has been extensively illustrated elsewhere by means
of case studies [Durdn & Baum '93; Frias '93; Frias et al. '93; Haeberer &
Veloso '91; Viazquez & Elustondo '89; Veloso & Haeberer '93,'94]; where
‘more references and comparisons with other approaches can be found.

Related ideas have also been employed in connection with problem
‘solving as well as with some epistemological aspects of the process of
software development [Haeberer & Veloso '89, '90; Haeberer et al. '89].

8. CONCLUSIONS

In two previous reports [Veloso '96a, b], we introduced the question of
adequacy of an extended relational framework for program development.
We argued that the familiar apparatus of binary relations must be
extended to be appropriate for programming and we examined the nature
of such an extension obtained by considering relations on structured
universes with new structural operations.

A basic issue concerning such a programming framework concerns its
adequacy for expressing programs. The adequacy of such an extended
apparatus hinges on having an appropriate expressive power. :

In this report we have examined the adequacy of an extended relatlonal
framework for program development. We have argued that we can select,
by effectiveness considerations, a certain set of symbols deserving the
name ‘"algorithmic". We have then outlined a programming language
correspondence, which indicates that these algorithmic symbols prov1de
adequate power for expressing programs.

This provides two explanations for the selection of the algorithmic part
and its computing-like nature, which Jomtly justify its adequacy. First, the
identification of the proper repertoire is based on’ effectiveness, which -
guarantees soundness, in the sense that one does not leave the effective
realm. The second - more intuitive - explanation relies on the
programming language correspondence, which, besides reinforcing - the
first explication, indicates that we have adequate expressive power.

We have begun by reviewing some of the material of the two previous
reports. In section 2 we have recalled some basic operations on relations
and presented of series of examples, intended to illustrate how one can
express programmmg ideas in a relational form. In section 3 we have
examined the proposed extension and the new structural operations as

24

well as some of their properties.

In section 4 we have examined some considerations connecting algorithms
and program constructs to effectiveness, mainly for preparing the terrain
for a classification of the extended relational symbols. This classification
has been presented in section 5 as a basis for the selection of the
algorithmic symbols, which has been explained in terms of effective
properties and their preservation. We have then moved on to the
programming language correspondence, ‘which has been presented in
section 6, indicating that these algorithmic symbols provide adequate
power for expressing programs. Some other aspects, of importance in the
context of a framework for program development have been briefly
commented upon in section 7.

This. report is the third one of a series of reports addressing the questlon
of adequacy of a fork relational framework for program development.
Other reports focus on other, related aspects of this question.

“REFERENCES

Aho, A. V., Hopcroft, J. E. and Ullman, J. D. (1975) The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading, MA.

Bauer, F. L. and Wossner, H. (1982) Algorithmic Language and Program
Development. Springer-Verlag, Berlin.

Baum, G. A., Haeberer, A. M. and Veloso, P. A. S. (1991) On the
representablhty of the V abstract relational algebra. IGPL
Newsletter, Interest Group on Propositional and Predlcate Logic,
1(3), 3-4. ‘

Berghammer, R. (1991) Relational specificatidn of data types and
programs. Univ. Bundeswehr, Res. Rept., Miinchen.

Berghammer, R., Haeberer, A. M., Schmidt, G. and Veloso, P. A. S. (1993)
Comparing two different approaches to products in abstract relation
“algebras. In Nivat, M., Rattray, C., Rus, T. and Scollo, G. (eds.)
Algebraic Methodology and Software Technology (AMAST' 93),

. Springer-Verlag, London, 169-176.

Berghammer, R. and Zierer, H. (1986) Relational algebraic semantics of
deterministic and nondeterm1n1st1c ~programs. Theor. Computer Sci.,
- 43, 123-147. V

Broy, M. (1983) Program construction by transformations: a family of
sorting programs. In Breuman, A. W. and Gaino, G. (eds) Automatic
Program Construction, Re1de1 Dordrecht.

Burstall, R. M. and Dar_hngton, J. (1977) A transformational system for
developing recursive programs. J. Assoc. Comput. Mach. 24(1), 44-
67. ” o '

Codd, E. F. (1972) Relational completeness of data base sublanguages. In
Data Base Systems. Courant Computer Science Symposium, vol 6.

25

Darlington, J. (1978) A synthesis of several sorting algorithms. Acta
Informatica, 11(1), 1-30. /
Durédn, J. E. and Baum, G. A. (1993) Const_ruccién formal de programas a
partir de especificaciones en ‘un cdlculo de relaciones binarias
extendido. PUC-Rio, Dept. Informa4tica, Res. Rept MCC 5/93, Rio de

Janeiro.

Ebbinghaus, H. D., Flum, J. and Thomas, W. (1984) Mathem_atical Logic.
Springer-Verlag, Berlin.

Enderton, H. B. (1972) A Mathematical Introa’uctzon to Logic. Academic
Press, New York.

Elustondo, P. M., Veloso, P. A. S., Haeberer, A. M. and Vizquez, L. A.
(1989) Program development in the algebraic theory of problems
18 Jornadas Argentinas de Informatzca e Investzgaczon Operatzva
Buenos Aires, 2.2-2.32.

‘Frias, M. (1993) The V-extended relation algebra as a deducuve and
object-oriented database language. Univ. Buenos Aires, Fac. Ciencias
Exactas y Naturales, Res. Rept., Buenos Aires.

Frias, M., Aguayo, N. and Novak, B. (1993) Development of graph
algorithms with the V-extended relation algebra. XIX Conf.
Latinoamericana de Informdtica, Buenos Aires, 529-554.

Frias, M. F., Baum G. A., Haeberer, A. M. and Veloso P. A. S. (1993) A
representation theorem for fork algebras. PUC-Rio, Dept.
Informadtica, Res. Rept. MCC 29/93, Rio de Janeiro. ’

Frias, M. F., Haeberer, A. M. and Veloso, P. A. S. (1995) A finite
ax1omat1zatlon for fork algebras. Bull. of Sect. of Logtc, Univ. Lodz,
24(4), 193-200. _ ,

Ghezzi, C. and Jazayeri, M. (1982) Programmmg Languages Concepts.
Wlley, New York.

Goldblatt, R. (1982). szomatzszng the Logic of Camputer Programmzng
Springer-Verlag, Berlin.

‘Haeberer, A.M., Baum, G. A. and Schmidt, G. (1993) On the smooth
calculation of relational recursive expressions out of first-order non-
constructive specifications involving quantifiers. Intern. Conf. Formal
‘Methods on Programming and its Applzcatzons Springer-Verlag,
Berlin.

Haeberer, A. M. and Veloso P. A. S. (1989) On the 1nev1tab111ty of

program testing: a formal analysis. In Gonnet, G. H. (ed.) IX Conf.
Intern. Soc. Chilena de Ciencia de la Computaczon, vol. I: Trabajos de

Investigacion, Santiago, Chile, 208-240.
Haeberer, A. M. and Veloso, P. A. S. (1990) Why software development is

inherently non-monotonic: a formal justification. In Trappl, R. (ed.)
Cybernetics and Systems Research, World Scientific Publ. Corp.,

| London, 51-58.

26

Haeberer, A. M. and Veloso, P. A. S. (1991) Partial relations for program
derivation: adequacy, inevitability and expressiveness. In Smith, D.
(ed.) Proc. IFIP TC2 Working Conf. Construeting Programs from
Specifications, Pacific Grove, CA, 310-352 {revised version in Moller,
B. (ed.) Constructing Programs from Speczfzcatzons, North-Holland,
Amsterdam, 319-371}.

Haeberer, A. M., Veloso, P. A. S. and Baum, G. A(1989) Formalizacion del
Proceso de Desarrollo de Software Kapelusz, Buenos Aires.

Horowitz, E. and Sahm S. (1978) Fundamentals of Computer Algorithms.
Comp. Sci. Press, Potomac.

Jonsson B. and Tarski, A. (1952) Boolean algebras with operators part IL.
Amer. J. Math, 74, 127-162.

Kowalski, R. (1979) Logzc for Problem Solving. North Holland, New York.

Mad‘dux; ‘R. D. (1991) The origins of relation algebras in the development:
and axiomatization of the calculus of relations. Studia Logica, L(3/4),
421- 455 , .

Manna, Z. (1974) The Mathematical Theory of Computatzon McGraw Hill,
New York. e

Méller B. (1991) Relations as a program development language. In Smith,
D. (ed.) Proc. IFIP TC2 Working Conf. Constructing Programs from
Specifications, Pacific Grove, CA, 353-376 =

Rogers Jr., H. (1967) Theory of Recursive Functions and Effecttve
Computability. McGraw-Hill, New York.

Schmidt, G. and Stréhlein, T. (1993) Relations and Graphs: Discrete
Mathematics for Computer Science. Springer-Verlag, Berlin.

Sintzoff, M. (1985) Desiderata for a design calculus. Univ. Louvain, Unité
- d’Informatique, Memo, Louvain.

Shoenfield, J. R. (1967) Mathematical Logic. Addison-Wesley, Reading.

Tarski, A. (1941) On the calculus of relations. J. Symb. Logic, 6(3), 73-89
[MR 3(5), 130-131, May 1942].

Tarski, A. and Givant, S. (1987) A Formalization of Set Theory without
Variables. Amer. Math. Soc. {Colloquium Publ. vol. 41}, Providence,
RIL _

van Dalen, D. (1989) Logic and Structure (2nd edn, 3rd prt). Springer-
Verlag, Berlin.

Vargas, D. C. and Haeberer, A. M. (1989) Formal theories of problems."
PUC-Rio, Dept. Informética, Res. Rept. MCC 6/89, Rio de Janeiro.

Vézquez, L. A. and Elustondo, P. (1989) Towards program construction in
the algebraic theory of problems. I8 Jornadas Argentinas de
Informdtica e Investigacion Operativa, Buenos Aires.

Veloso, P. A. S. (1974) The history of an error in the theory of algebras of
relations. MA thesis, Univ. California, Berkeley.

27

Veloso, P. A. S. (1996a) On fork relations for program developmenT. PUC-
Rio, Dept. Informitica, Res. Rept., November 1996, Rio de Janeiro.

Veloso, P. A. S. (1996b) Fork relational frameworks on structured
universes. PUC-Rio, Dept. Informitica, Res. Rept., November 1996,
Rio de Janeiro. o _ ‘

Veloso, P. A. S. and Haeberer, A. M. (1989) Software development: a
problem-theoretic analysis and model. In Shriver, B. D. (ed.) 22nd
Hawaii Intern. Conf. System Science, vol. II: Software Track, Kona,
HI, 200-209. _ :

Veloso, P. A. S. and Haeberer, A. M. (1991) A finitary relational algebra
for classical first-order logic. Bull. of Sect. of Logic, Univ. Lodz, 20(2),
52-62. ' ' | ‘

Veloso, P. A. S. and Haeberer, A. M. (1993) On fork algebras and program
“derivation. PUC-Rio, Dept. Informatica, Res. Rept. MCC 29/93, Rio de

~ Janeiro. : - Ny T

Veloso, P. A. S. and Haeberer, A. M. (1994) On fork algebras and
reasoning about programs. PUC-Rio, Dept. - Informidtica, Res. Rept.
MCC 01/94, Rio de Janeiro. v .

Veloso, P. A. S., Haeberer, A. M. and Baum, G. A. (1992) On formal
program construction. within an extended calculus - of binary
relations. PUC-Rio, Dept. Informitica, Res. Rept. MCC 19/92, Rio de
Janeiro.

28

