ISSN 0103-9741

Monografias em Ciéncia da Computacdo
n° 35/98

A Framework Design and Instantiation
Method Based on Viewpoints

Marcus Felipe M. C. da Fontoura
Edward Hermann Haeusler
Carlos José Pereira de Lucena

Departamento de Informdatica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22453-900
RIO DE JANEIRO - BRASIL

PUC RIO - DEPARTAMENTO DE INFORMATICA ISSN 0103-9741

Monografias em Ciéncia da Computagdo, N°35/98
Editor: Carlos J. P. Lucena ‘ October, 1998

A Framework Design and Instantiation Method
Based on Viewpoints *

Marcus Felipe M. C. da Fontoura
Edward Hermann Haeusler
Carlos José Pereira de Lucena

* This work has been sponsored by the Ministério de Ciéncia e Tecnologia
da Presidéncia da Republica Federativa do Brasil.

In charge of publications:

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentago e Informacao

PUC-Rio - Departamento de Informatica

Rua Marqués de Sdo Vicente, 225 - Gavea

22453-900 Rio de Janeiro RJ Brazil

Tel. +55 21 529-9386 Telex + 55 21 31048 Fax +55 21 511-5645
E-mail bib-di@inf.puc-rio.br

A Framework Design and Instantiation Method Based on Viewpoints

Marcus Felipe M. C. da Fontoura, Edward H. Heausler, and Carlos José P. de Lucena
Departamento de Informatica, Pontificia Universidade Catdlica do Rio de Janeiro
Rua Marqués de Sio Vicente, 225, 22453-900 Rio de Janeiro, Brazil
e-mail: [mafe, hermann, lucena] @inf.puc-rio.br

PUC-RioInf MCC35/98 Outubro, 1998
ABSTRACT

This paper describes a viewpoint-based design and instantiation method for object-oriented frameworks. Case
studies have shown that high levels of software reuse can be achieved through the use of object-oriented
frameworks. Although, analysis and design methods such as design patterns, meta-object protocol, refactoring,
class reorganization, and behavior of modification for framework have been proposed to support framework
development there are still problems related to these approaches. The method proposed in this paper uses the
concept of viewpoints and the hot-spot relationship in object-oriented design to guide the designer on the
identification of hot-spots in the structure of the framework and in the generation of the design patterns that
implement each hot-spot. The paper also shows how the use of domain specific languages (DSLs) can help in the
framework instantiation process. The domain specific language captures domain concepts and helps the
framework user to create an application in an easier way, without concerning for implementation decisions while
remaining' focused on the problem domain. The specification written in the DSL is then translated to the
framework instantiation code through the use of transformational systems. A case study in the Web-based
Education domain is presented to illustrate the method utilization. A formal specification of the design method
using the Z specification language is also presented. Through this formalization it is possible to precisely
describe each method’s step and to highlight its most important properties.

KEY WORDS: object-oriented frameworks, framework design, framework instantiation, viewpoints, hot-spot
relationship, design pattern essentials, hot-spot cards, domain specific languages, Web-based Education domain,
Z specification language.

RESUMO

Este artigo descreve um método para design e instanciagdo de frameworks baseado em viewpoints. Pesquisas
anteriores tém mostrado que altos niveis de reutilizacdo de software podem ser alcancados através do uso de
frameworks. Apesar de métodos como design patterns, meta objetos, refactoring, reorganiz¢do de classes e
modificacdo de comportamento terem sido propostos para auxiliar o desenvolvimento de frameworks, ainda
existem problemas associados a esses métodos. O método proposto neste artigo usa o conceito de viewpoints € a
relagdo de hot-spot para ajudar o designer na identificagdo dos hot-spots na estrutura do framework e na geragéo
de design patterns para cada um dos pontos de flexibilizacdo. Este artigo também descreve uma técnica que
captura os conceitos do dominio em linguagens de dominio (DSL), ajudando o usudrio do framework a criar
aplicagBes especificas de maneita mais simples, sem se preocupar com decisdes de implementagdo e
permanecendo focado no dominio do problema. A especificacdo escrita na DSL é entdo transformada no c6digo
de instancia¢do do framework através de sistemas transformacionais. Um estudo de caso em Educagdo baseada
na Web ¢ apresentado para ilustrar a utilizagio do método. Uma descrigio formal do método de design usando a
linguagem Z também € apresentada. Através dessa formaliza¢io & possivel descrever precisamente cada um dos
passos do método e provar suas propriedades mais importantes.

PALAVRAS CHAVES: frameworks orientados a objetos, design, instanciagdo, viewpoints, relagdo hot-spot,
meta-patterns, hot-spot cards, linguagem especifica de dominio, ambientes para educacéo baseados na Web, Z.

1. INTRODUCTION

Prior research has shown that high levels of software reuse can be achieved through the use of object-oriented
frameworks [15]. An object-oriented framework captures the common aspects of a family of applications. It also
captures the design experience required while producing applications, and thus, it allows designers and
implementers to reuse their experience at the design and code levels.

Although object-oriented software development has experienced the benefits of using frameworks, a thorough
understanding of how to identify, design, implement, and change them to meet evolving requirements is still
object of research [36]. Techniques such as design patterns [10, 23], meta-object protocols [17], refactoring [16],
and class reorganization [4] have been proposed to support framework development and cope with some of the
challenges.

This paper presents a design method for object-oriented software that combines frameworks and viewpoints. The
method uses viewpoints and the hot-spot relationship as key design concepts for building the framework. The
hot-spot relationship supports the integration of frameworks and design patterns, a new and challenging issue
[29].

The framework instantiation process is also presented. The basic idea behind it is to capture the domain concepts
in a domain specific language (DSL) [12], which will help the framework user build the instantiation code in an
easier without concerning for implementation decisions while remaining focused on the domain specific problem.
The specification written in the DSL is then translated to the framework instantiation code through the use of
transformational systems [19, 5].

A case study in the Web-based Education domain is presented to illustrate the method utilization.

The method formalization is achieved through the specification of each artifact and process involved. The
specifications, presented as Z schemas [32, 33], are used to precisely describe each of the method’s steps .and to
highlight its most important properties.

2. FRAMEWORK DESIGN METHOD

A framework [15, 24] is defined as generic software for an application domain. It provides a reusable semi-
finished software architecture that allows both single building blocks, and the design of sub-systems to be reused.

The approach to framework design presented in this paper is based on the idea that any framework design can be
divided into two parts: the kernel sub-system design and the hot-spot sub-system design. The kernel sub-system
design is common to all the applications that the framework may generate, and the hot-spot sub-system design
describes the different characteristics of each application that can be supported by the framework. The hot-spot
sub-system uses the method and the information provided by the kernel sub-system and may extend it.

Figure 1 illustrates the viewpoint-based design method through the identification of its artifacts and processes.
The following sub-sections describe each of the elements involved.

Viewpoints

Legend:

Viewpoint
Unification
Process

Template-Hook....
Framework [
Model

Flexibility
Properties

Hot-spot .
tnstantiation
Process

Design
Patterns
Essentials

Pattern-based |,..

Figure 1. Viewpoint-based development method process

21 VIEWPOINTS

The development of complex software systems involves many agents with different perspectives of the system
they are trying to describe. These perspectives, or viewpoints [9], are usually partial or incomplete. Software
engineers have recognized the need to identify and use this multiplicity of viewpoints when creating software
systems [1, 14].

The first input artifact in the framework design method is a set of design diagrams that are developed based on
perspectives, where a perspective defines a possible different use of the framework. In this way, a different
system design associated with each different perspective is produced (Figure 2). In this paper the term viewpoint
will be used to represent a standard object-oriented design associated with a framework perspective. The design
is represented through the use of object-oriented diagrams, which can be developed using any OOADM (object-
oriented analysis and methods) notation. This paper uses OMT [27] to illustrate the examples presented.

Viewpoint 1 Viewpoint 2

Viewpoint n

Figure 2. Different viewpoints of the same framework

In [25] Roberts and Johnson state that “Developing reusable frameworks cannot occur by simply sitting down
and thinking about the problem domain. No one has the insight to come up with the proper abstractions.” They
propose the development of concrete examples in order to understand the domain. Our strategy is quite similar,
analyzing each one of the viewpoints as a concrete example and deriving the final framework from this analysis.

22 THE VIEWPOINT UNIFICATION PROCESS

Once all the relevant viewpoints are defined the kernel design structure can be found by analyzing the viewpoints
design representations and obtaining a resulting design representation that reflects a structure common to all
viewpoints. This common structure is the “unification” of the viewpoints. This part of the design method is based

3

on the domain-dependent semantic analysis of the viewpoints design diagrams to discover the common features
of the classes and relationships present in the various viewpoints. The common part will compose the kernel
design sub-system.

The elements that are not in the kernel are the ones that vary, and depend on the use of the framework. These
elements define the framework hot-spots [23, 28] that must be adaptable to each generated application. Each hot-
spot represents an aspect of the framework that may have a different implementation for each framework
instantiation.

The unification process can not automatically generate the final framework design since the viewpoints represent
concrete applications, and for this reason the semantics of how to define the flexible part of the final framework
is not present in their design. The design patterns essentials proposed by Pree [24] provide the appropriate
semantics to the framework flexibility, where the software engineer can select the best design pattern constructor
for each of the framework’s hot-spots, considering their flexibility requirements.

A new relationship in object-oriented design, called hot-spot relationship, is used in the unification process to
represent the relationships between kernel and hot-spot objects. The semantics of this new relationship is given
by the design patterns essentials. This implies that the hot-spot relationship is in fact a meta-relationship that is
implemented by a design pattern that is generated taking into account the hot-spot flexibility requirements.

A more detailed description of the viewpoint unification process is now presented. This process imposes some
pre-conditions on the viewpoints that are going to be unified:

e The viewpoints need to have name consistency, which means that classes and methods with different names
represent different concepts, and for this reason are not unified;

e The viewpoints® structure must be consistent. In this way, two classes with same name and signature can not
be related by different kinds of relationships in different viewpoints, as shown in Figure 3.

Viewpoint 2

Viewpoint 1

Figure 3. Viewpoint inconsistency

In some cases class restructuring approaches [4, 16] can handle the inconsistency. When the set of viewpoints is
consistent they can be unified. The result of the unification process is the template-hook framework model'. The
unification process is based on the following rules:

1. Every class that belongs to the set of viewpoints has a corresponding class, with same name, in the template-
hook framework model; '

2. If a method has the same signature and implementation in all the viewpoints it appear it has a corresponding
method, with same name, signature, and implementation?, in the template-hook framework model;

3. If a method exists in more then one viewpoint with different signature it has a corresponding hook method in
the template-hook framework model, with same name but undefined signature and implementation;

4. If a method exists in more then one viewpoint with different implementation it has a corresponding hook
method in the template-hook framework model, with same name and signature but undefined
implementation;

! Which is based on template and hook classes [24].

? This check cannot be automatically performed, but some approximation techniques can help.

5. All the methods that uses hook methods are defined as template methods. There is always a hot-spot
relationship between the class that has the template method and the class that has its correspondent hook
method;)

6. All the existing relationships in the set of viewpoints that do not have a corresponding hot-spot relationship
are maintained in the in the template-hook framework model.

Figure 4 shows an example of two consistent viewpoints that are to be unified.

GetData]

recordset = getData(db, query)

Viewpoint 1

Report

report(db, query, file)

GenerateReport FomatReport

generateReport(recordset, htmifile) |., format(file)

GetData 1
recordset = getData(db, query)

Viewpoint 2
Report

report(db, query, file)

GenerateReport FomatReport
format(file)

generateReport(recordset, rififile)

Figure 4. Viewpoint unification example

Viewpoint 1 shows a design diagram of a simple report generator. Its main class is Report, which uses the classes
GetData to access the information required by the report and GenerateReport, to generate the final report in an
HTML file. The class GenerateReport uses the FormatReport class to configure the layout of the generated
HTML file.

Viewpoint 2 follows basically the same structure. The classes Report and GetData have the same methods, with
same signature and implementation. The method generateReport (in class GenerateReport) has different
signatures in the two viewpoints, since one asks for an HTML file while the other asks for a RTF file. In this case
rule 3 implies that it is a hook method. The method format (in class FormatReport) has different implementations
in the two viewpoints, since one configures HTML files while the other configures RTF files. Rule 4 defines this
method as another hook method in the template-hook framework model. Rule 5 says that all the methods that use
hook methods are marked as template methods. So, in this example, the template methods are report and
generateReport.

The design presented in Figure 5 is the result of the unification of viewpoints, defined as the template-hook
framework model. The dashed arrow represents the hot-spot relationship. Note that the signature of method
generateReport is UNDEFINED, as established by rule 3, and the implementations of methods generateReport
and format are also UNDEFINED (rules 3 and 4), although not shown in the diagram.

The undefined signatures and implementations are defined latter on, in the method instantiation process (Section
3).

Report GetData I
recordset = getData(db, query)

report(db, query, file)

P E—

GenerateReport I FormatReport
formatfile)

generateReport{UNDEFINED)

Figure 5. Template-hook framework model

2.3 THE TEMPLATE-HOOK FRAMEWORK MODEL

The template-hook framework model design semantics is given by the set of analyzed viewpoints, or in other
words, it copes with all the requirements specified in the original viewpoints. It uses the hot-spot relationship to
provide the flexibility semantics, not specified in the original set of viewpoints.

The hot-spot relationship is a new relationship in object-oriented design that combines template and hook classes
through the use of the design patterns essentials. We are now working in the formalization of the semantics of
this new relationship using category theory [11] and object calculus [8]. Through this formalization we expect to
proof the correction of the flexibility properties showing that they can be implemented through the design
patterns essentials.

In the template-hook framework model the hook methods can be defined as components [15] that may be
plugged into the hot-spots.

24 THE HOT-SPOT INSTANTIATION PROCESS

This process uses the artifacts template-hook framework model, flexibility properties, and design patterns
essentials as inputs and generates the pattern-based framework model as output. It is responsible for eliminating
all the hot-spot relationships from the template-hook framework model, replacing then by the appropriate design
pattern. The hot-spot cards guide the generation of an appropriate design pattern that will implement each hot-
spot relationship, providing a systematic way for generating design patterns based on flexibility properties.

Figure 6 shows the hot-spot card layout, which is a variation to the one presented in [24]. The two flexibility
properties used in the method are shown in the card: adaptation without restart and recursive combination.

Figure 6. Hot-spot card

The following table shows the mappings between the hot-spot card flexibility properties and the appropriate
meta-pattern (or design pattern essential). In the unification meta-patterns the template and hook methods belong
to the same class and adaptations can be made only through inheritance, which requires the application restart for
the changes take effect. In the separation meta-patterns the template and hook methods appear in different classes
and adaptations can be made at run time through the use of object composition.

The recursive combinations of template and hook methods allow the creation of direct object graphs, like the
composite design pattern present in the GoF catalog [10].

Recursive Separation

Table 1. Mappings between flexibility properties and meta-patterns

As an example, let us consider the hot-spot relationships in the template-hook framework model shown in Figure
5. Suppose that it is necessary that new generateReport methods be defined in the system at run time. Also
suppose that the format method do not need to be redefined at run-time. Since neither of these relationships
requires a recursive combination the hot-spot cards that represent their flexibility properties are presented in
Figure 7.

GenerateReport

GenerateReport FormatReport

Figure 7. Hot-spot card utilization example

The result diagram after the generation of the appropriate design pattern for each hot-spot relationship is
presented in Figure 8, which is the pattern-based framework model.

GetData]
recordset = getData(db, query)

Report

report(db, query, file)

GenerateReport I

generateReport(UNDEFINED)
format(file)

Figure 8. Pattern-based framework model

Since the design pattern generated for the hot-spot relationship between the classes GenerateReport and
FormatReport unifies the template and hook methods in the same class and the FormatReport class only have the
format method, this class is not needed in the pattern-based framework model. A very important property of the
design method is the control of the design complexity, leading to a simple and readable design. Note that, in this
example, the generated pattern-based framework model has less classes than each of the original viewpoints.

25 THE PATTERN-BASED FRAMEWORK MODEL

The hot-spot instantiation process generates as a result a class diagram based on design patterns, which provide
all the flexibility required for the framework’s hot-spots. These patterns are the best implementation of each hot-
spot relationship present in the template-hook framework model. Section 3 describes the framework instantiation
process, showing how the pattern-based framework model is used in the generation of a specific application.

3. FRAMEWORK INSTANTIATION METHOD

The most common way to instantiate a framework is to inherit from some abstract classes defined in the
framework hierarchy and write the code that is called by the framework itself. However, it is not always easy to
identify which code and where it should be written since frameworks class hierarchies can be very complex,
especially for non-expert users.

Therefore, the “common” instantiation process is not always the ideal way to describe a particular application.
This happens because of several facts:

o the language used to build and use the framework is a wide spectrum language, where it is not always easy to
express the user intentions [31]. A short example would be the definition of event handlers in Microsoft
MFC. The user has to write a macro to register her methods that will be called when a button is pressed or a
list is scrolled. With an interface definition language [20], this task becomes easier and more intuitive;

e the complexity of framework class hierarchies and the difficulty of finding the points where the code should
be written, that are the framework hot-spots or flexible points.

Our method proposes a different process for framework instantiation, where a particular application is described
by domain specific languages (DSLs) [3, 7, 12, 22] that are designed precisely for the framework domain. The
use of the DSLs allows the designer to develop quickly and effectively a complete software system [12]. In this
way, the technique basic idea is to capture domain concepts in a DSL, which will help the framework user to
build code in an easier way, without worrying about implementation decisions and remaining focused on the
problem domain. The specification written in the DSL is translated to the framework instantiation code through
the use of transformational systems [19, 5].

31 DOMAIN SPECIFIC LANGUAGES

A domain specific language is used to formally specify software designs [12]. It is a formal language that is
expressive over the abstractions of an application domain. Common examples of DSLs are:

e Tex and Latex, text formatting languages;

e YACC, a parser generator;

e Mathematica, an extensible language for mathematical modeling;
e Schema description and query languages for databases.

An advantage of using DSLs is that the domain expert can express domain specific concepts directly, rather than
encoding them. This allows the domain expert to formalize the specification of a software solution immediately
instead of communicating the specification informally to a software specialist who may be less familiar with the
intended application domain. When designing DSLs two important criteria should be kept in mind:

e The DSL must be intelligible to a domain expert;

e The semantics must allow a specification expressed in a DSL to be translated into effective procedures that
realize the specification.

Typically, such specification will provide static and dynamic constrains on an artifact of the application domain,
or will specify its dynamic behavior. Often, a syntax driven editor can be used to help an application designer to
formulate an application in a DSL.

3.2 THE FRAMEWORK INSTANTIATION PROCESS

This section shows how DSLs can be used to instantiate frameworks in a straightforward manner, making
possible the use of complex frameworks by regular developers. To achieve this goal the Draco-PUC [19]
transformational system is used to generate framework instantiation code from programs written in the DSLs.

The proposed instantiation process uses the following elements: DSLs, the pattern-based framework model, and a
transformational system. The DSLs and the pattern-based framework model gather the domain main concepts.
The transformational system is used to map the specification written in the DSLs to framework instantiation code.
A customized application is the combination of the pattern-based framework model with its instantiation code.
Figure 9 presents a flow diagram of this process.

As a precondition, this process requires the DSLs definition. The Draco-PUC allows the definition of new
languages by the specification of its grammar, in @ BNF like notation, and a set of transformation rules to
generate the framework instantiation code. The domain designer performs these steps. To generate a specific

8

application a regular user needs to write a specification in DSL and then apply the set of transformation rules
over it.

Legend:

DSL s
Transformation |
Process

Pattern-based |,,,

Application

Process

Application |

Figure 9. Framework instantiation process

Let us consider again the report generation example, where instantiation code needs to be generated for the
generateReport and format methods. Analyzing the initial set of viewpoints we see that variation in the
generateReport signature is due to the variation of the report files types that can be generated, HTML and RTF.
The variation in the implementation of the format method is also generated by the necessity of configuring the
layout of various kinds of report files. Thus, the DSL used in the instantiation process has to have operators to
deal with these file type variations. As an example consider the following program written in a DSL for the report
generation domain.

ReportType := HTML

GenerateReportSpec := {ColMaxLength = 8; ColsPerRow = 10}

FormatLayoutSpec := {UseFrames; Font = “Times”; BackgroundColor = “White” }

Through the transformation of this code all the signatures and implementations in the pattern-based framework
model that are UNDEFINED can be specified. The DSL operator ReportType is used to complete the
generateReport method signature, while the code generated by the transformation of the other two operators are

used in the implementation of the methods generateReport and format. Figure 10 shows the design structure of
the generated application.

GetData |
recordset = getData(db, query)

Report

report(db, query, file)

GenerateReport

generateReport(recordset, himifile)

format(file) ’

Figure 10. Instantiated application

The functionality provided by the DSL constructors vary according to the selected meta-pattern. Table 2

summarizes this dependency.

Meta-pattern. . | DSL Semantics

Unification Must provide the appropriated semantics to generate the code for the hook method.

Separation Must provide the appropriated semantics to generate the code for the hook method and
to specify how the hook method varies during run-time. This DSL type must generate
code that will create concrete subclasses from the pattern-based framework model
hook class to hold each of the method variations, similar to the Strategy design pattern
described in the GoF catalog [10].

Recursive Unification | Similar to the Unification meta-pattern but must also allow the recursive composition.

Recursive Separation Similar to the Separation meta-pattern but must also allow the recursive composition.

Table 2. DSLs and meta-patterns

Note that in some domains, like geometry and civil engineering, a visual [30] domain oriented language can
produce better results than a textual language.

4. A CASE STUDY IN WEB-BASED EDUCATION

This section presents an example of deriving a framework for the Web-based Education domain. The following
subsections present the models of the analyzed WBE environments. Each of these models was considered as a
different viewpoint of the final object-oriented WBE framework, and the viewpoint unification process was used
to define the framework kernel structure.

Two aspects must be considered when analyzing the following models. First, except for AulaNet [21] and
LiveBOOKs, we do not know the exact object-model of the analyzed environments. The models presented here
were specified by the use of these environments. Second, when the models are similar we just refer to the figure
that describes it in order to avoid presenting similar models twice.

Since the objective of our comparison of WBE environments is the definition of a framework, we were not
interested in a feature by feature analysis of the environments. We only need to analyze of the core entities of the
WBE domain. A useful concept adopted throughout all the elicitation process was the concept of services. We
define a service as functionality provided by the environment. Examples of services are discussions groups,
course news, quizzes, and bulletin boards.

4.1 AULANET

AulaNet [21] (http://www.les.inf.puc-rio.br/aulanet) is a WBE environment developed in the Software
Engineering Laboratory, at PUC-Rio. AulaNet allows several institutions to use the same environment
simultaneously. Each institution may have several departments. The courses are related to institutions and each
course has assigned actors. A course consists of a selection of services. This design structure is presented in
Figure 11.

Institutions

B

Figure 11. AulaNet OMT class diagram

The AulaNet environment is composed of two sites: a learning site and an authoring site. The students use the
learning site to attend a specific course, while the authors use the authoring site to create and maintain the
courses. The class structure that implements both sites is shown in Figure 12, where the class idioms represent the
support to multiple languages (English, Portuguese, etc).

10

- : > 3
Idioms Courses

Figure 12. AulaNet site class structure

4.2 LIVEBOOKS

The LiveBOOKs distributed learning/authoring environment is a computer-based teaching/learning and authoring
system that has supports learning and authoring activities. LiveBOOK class structure is very similar to AulaNet’s,
except of two main differences: it is does not support the definition of many institutions and departments and the
actors types are not restricted to student and author, as show in Figure 13.

4) I
Courses B Services
% L
Actors - Actor Types

Figure 13. LiveBOOKs class diagram

4.3 WEB COURSE IN A BOX

Web Course in a Box (WCB) (http://views.vuc.edu/wcb/into/webintro.html) is a course creation and management
tool for Web-based or Web-assisted delivery of instruction. The main difference of this environment and the
other two previously presented is that in WCB the final user can modify the visual representation (interface) for
each one of its entities as shown in Figures 14 and 15.

V
Interface |

Courses

Idioms

Figure 15. WCB site class structure

4.4 WEBCT

WebCT (http://homebrew.cs.ubc.ca/webct/) is a tool that facilitates the creation of sophisticated WBE
environments. The Web-CT class structure can be seen as an extension of the LiveBOOKSs. The new concept is

11

that each service can be of two different types: internal, which is implemented by the environment, and external,
which is a WWW application not implemented by the environment (elsewhere in the Internet). Examples of
external services are chat applications, CU-SeeMe, e-mail, and list servers. This design structure is presented in

Figure 16.
' !
3 External |
V
2 Internal

Services

Courses £
V .
Actors {

Figure 16. Web-CT class diagram

Actor Types i

4.5 LEARNINGSPACE AND VIRTUAL-U

These two environments are put together here because they have similar class structures. Lotus Education and
IBM are responsible for the research and development of Lotus LearningSpace
(http://www.lotus.com/home.nsf/welcome/learnspace), an educational technology with supporting services for
distance education.

The LearningSpace and Virtual-U (http://virtual-u.cs.sfu.ca/vuweb/) class structures are essentially the same as
the one presented in Figure 16. However, they additionally introduce the concepts of documents and tasks
(Figure 17). The services are based on documents, and each document may have various tasks assigned to it. In
LearningSpace documents and tasks can be classified in categories (Figure 18).

7 ’ 7
Categories B Documents |

Figure 18. LearningSpace tasks, categories, and documents

4.6 AN OBJECT-ORIENTED FRAMEWORK AND DOMAIN SPECIFIC LANGUAGES FOR
WBE

We have tried to capture the core functionality of the analyzed WBE environments to define an object-oriented
framework, called ALADIN. We have used the viewpoint unification process to define the framework’s kernel
structure and it’s hot-spots.

Figure 19 illustrates (in an abstract way) how we used each one of the analyzed environments as a viewpoint of
the final framework. The basic idea was to identify a kernel that could provide all the functionality required for
generating, at least, the six analyzed environments.

12

C_weo 2
(s Timsoors)
(e s

LearningSpace

Framework
Kernel

Figure 19. Viewpoints unification (abstractly)

The classes institutions, departments, courses, actor types, and services are responsible for accessing their
correspondent information in a database system. To provide this functionality gets and sets methods are present
in each of these classes. However the attributes that define these entities vary in each analyzed environment, and
therefore all the access methods are marked as hot-pots through the use of the unification rules.

An example of a usual execution of the framework is shown in Figure 20, where the object course asks for the
students actors that attend it.

\igetActors(student, current)

Figure 20. Framework execution example

Since the ALADIN framework allows flexible definitions of the actor’s attributes, the method getActors is not
defined until the framework is instantiated.

The interface and site classes, used to define the visual representation and navigational structure, are also defined
as hot-spots. The interface class depends on the layout structure (usually defined by an interface designer) while
the site class may have various implementations to the methods that generate the output HTML files.

Note that the concepts of tasks, documents, and categories that are present in the LearningSpace and Virtual-U
environments are not present in the template-hook framework model, although the unification rules define that
these classes should be present. This is why these concepts can be implemented through the service class in a
more elegant way. This decision was creative, and cannot be formalized.

In the hot-spot instantiation process the separation meta-pattern was selected to implement all the hot-spot
relationships in the template-hook-framework model. The structure of the final pattern-based framework model
generated by the hot-spot instantiation process is now shown in Figures 21, 22, and 23. The signature and
implementation for all hook methods will be defined only in the instantiation process, as described in the method.

Departments

External

Courses Services £

Internal

Figure 21. ALADIN OMT class diagram

13

7
Interface

Institutions Courses Services

Figure 22. ALADIN interface class structure

ALADIN generates one WWW site for each type of actor defined. Normally two sites are always present in the
existent WBE environments: a learning site and an authoring site. However, the ALADIN framework allows that
others actor types defined in the system have their own WWW site. As an example we could define a site for the
monitors and other site for the secretaries. All the sites generated by the ALADIN framework can define many
navigational structures. Figure 23 shows the design representation that defines the navigational structure for the
generated sites.

V
Interfaces

Figure 23. ALADIN site class structure

There are two DSLs used in the ALADIN instantiation process:

Educational Language: used in the definition of the educational components (courses, actors, services,
institutions and departments);

Navigational Language: used in the definition of the language (e.g. English, French), interface (e.g. background
images, buttons), and navigational structure.

4.6.1 EDUCATIONAL LANGUAGE

The Educational Language code is transformed in two framework instantiation codes: one in Microsoft Access
Basic, which is used for defining the database structure that will be used by the environment, and other in Lua
and CGlLua [13], which provides the access methods for accessing the database. Figure 24 illustrates this
architecture. The transformations are made through the use of the Draco-PUC transformational system.

Database

Definition
Educational 3 . L, Code
Language K ; ™

Program

Database
Access

Educational
Language
Description

Figure 24. Educational language architecture

The following program code is written in the Educational Language.
Institution "PUC-RIO", ™Pontificia Universidade
Catolica - Rio de Janeiro", "PUC.gif";
Department "CETUC", "TELECOMUNICATIONS",
"CETUC.GIF";
Department "CS", "COMPUTER SCIENCE", "CS.GIF";
Actor Type Teacher, "Teacher"
{ name String;

14

description Memo;
Photo Image; };
Actor Type Student, "Student"

{ name String;
description Memo;
period Integer;
address String;
average Real; };

Course

{ name String;
code String;
syllabus Memo;
description Memo;
image Image; };

Service "CourseNews"

{ news Memo;
initialDate Date;
finalDate Date; }

read = [Student]

write = [Teacher];

Note that each language constructor has not only the data used by the environment, but also the meta-information
about the structure of these data. The definition of the course attributes in the operator Course is an example.

The execution of the Microsoft Access basic code, generated by the transformation of the above Educational
Language program, creates the Microsoft Access database used by the WBE environment that is being
instantiated from the ALADIN framework. As described above, the transformation of the Educational Language
also generates the database access methods. The following methods interfaces, written in Lua, define the

methods generated to access course definitions from the previously shown Educational Language program.
luaTable = getCourse(name, code, syllabus,
description, image)
addCourse (name, code, syllabus, description,
image)
updateCourse (oldName, name, code, syllabus,
description, image)
deleteCourse (name)

These methods encapsulate the SQL commands, allowing ALADIN users to generate WBE environments without
having any knowledge in manipulating relational databases.

4.6.2 NAVIGATIONAL LANGUAGE

The Navigational Language code is transformed (also using Draco-PUC) into HTML and Lua files that define the
WBE environment interface and navigational structure. These files also have the embedded CGILua access
methods above described. Therefore, the transformation of the Navigational Language generates the WBE
environment site structure.

An example of the Navigational Language is provided next.
Language "English"
Language "Portuguese"

Text "titlel", " English", "Resources"
Text "titlel", "Portuguese", "Recursos"
Image "imgl", " English", "c:\ing\img.gif"

Image "imgl", "Portuguese", "c:\port\img.gif"

a := template("c:\templates\templ.html")
b := template("c:\templates\temp2.html")
¢ := template("c:\templates\temp3.html")
b.next := ¢

b.previous := a

This language provides an operator for defining the languages supported by the environment (language). The
texts and images used by the environment are defined in the various languages. Note that the HTML files are in
fact templates, which have special tags for the texts and images. In this example the tag <ALADIN-
TEXT>title1</ALADIN-TEXT> would be replaced by the string “Resources”, if the selected language had been
English, and by the string “Recursos”, if the selected language was Portuguese.

The same is valid for the hypertext links (navigational structure). In the above example, the tag <ALADIN-
LINK>previous</ALADIN-LINK> in the template temp2.html would be replaced by the string previous, while the tag <ALADIN-LINK>next</ALADIN-LINK>
would be replaced by the string next. This approach allows the
definition of all the navigational links in a separated file, providing more readability and flexibility.

15

4.7 ALADIN UTILIZATION Example

This section describes how the AulaNet authoring site was developed using the ALADIN framework. The
general structure of the authoring site is shown in Figure 25.

Service
Configuration

Service
Selection

Course General

identification Information

i

Figure 25. AulaNet authoring site: global view

In the identification step the author has to provide an userid and password to the system. In the course general
information step all the basic information about the course must be completed, such as course name, description
and syllabus®. Then the author has to inform the system about the services necessary for the course. Finally, in the
service configuration phase, each internal service available in the course must be configured. Once all these steps
have been completed the course is ready and the learning site can be generated. The structure and HTML code
(with embedded CGILua) generated by the ALADIN framework for the resource selection step is shown below.

assign service to |.
couse
(assign.lua)

show available
services
(resourses.html)

Figure 26. Resource selection: detailed structure

LR RS RS TR RS SRS R EE SR AR EEEREREREEEEES]

* services.html *
R R R R R R R R R R R R R SRR E R
<HTML><HEAD>

<TITLE>Show Available Services</TITLE>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000"
topmargin=0 leftmargin=0>
<H1> Please select the services you want to use in your course </H1>
<FORM NAME="data" TARGET="_top" METHOD="post" ACTION="assign.lua">
<!--%3
-- Select all the services availabe to the
-- current intitution. The result of this
-- selection is stored in a Lua table.
table = getService(currentInstitution)
while (table ~= nil) do
write(’<td valign=middle>’)
write (’<INPUT TYPE="Checkbox"
NAME="'..table[0]..'" VALUE="'..table[0].." ">")
write(’</td>’)
moveNext (table)

end

$$-->

<INPUT TYPE="Submit" VALUE="Next">
</FORM></BODY></HTML>

kkkhkhkhkhhkhk bk hrrhhhhhhhhrdrdhakrhdbhhrrdk

* assign.lua *
R R R R R R R R R E R R R RS RS R RN

table = getService(currentInstitution)
while (table ~= nil) do
-- check if the resource is select or not
-- if true add the resource to the course
if (cgi.table[0] = "ON") then
has (course, table[0])
moveNext (table)
end

The generated HTML and Lua files are very simple and easy to be understood since they use high-level methods,
which compose the Database Access Code.

5. THE DESIGN METHOD FORMALIZATION APPROACH

The framework design method formalization is presented here using the Z specification language [32, 33]. The
artifacts meta-model (Figure 27) was defined to precisely describe the object-oriented concepts necessary for the
method specification. This meta-model was based in the OMT formalization presented in [37], where all the

3 The information of which are the fields to be completed in the course general information step is provided by
the Course operator (Educational Language).

16

artifacts necessary for that design method were presented through Z schemas. In this section the meta-model is
formally presented and Sections 6 and 7 present the formalization of the two processes: viewpoint unification and
hot-spot instantiation.

Hotspot
Intantiation
Process

Viewpoint
Unification
Process

Viewpoints &
Hot-spot
Relationship

Standard OO
Design Meta-
Mode!

Meta-Model

Artifacts Meta-Model
Figure 27. Formalization architecture

Classes, methods, and relationships are modeled as given sets of unelaborated entities in Z.
[CLASS, METHOD, RELATIONSHIP]

The schema DesignData defines the sets of classes, methods and relationships needed by each one of the
artifacts: the set of viewpoints, the template-hook framework model, and the pattern-based framework model.

— . DesignData

class: P CLASS

method: P METHOD
relationship: P RELATIONSHIP
vClass: P CLASS

vMethod: P METHOD
vRelationship: P RELATIONSHIP
thClass: P CLASS

thMethod: P METHOD
thRelationship: P RELATIONSHIP
pkClass: P CLASS :
pbMethod: P METHOD
pbRelationship: P RELATIONSHIP

vClass z @

thClass » ¢

pbClass » @

vClass ~ thClass = g
vClass ~ pbClass = g
thClass pbkClass = g
vMethod ~ thMethod = g
vMethod ~ pbMethod = g
thMethod ~ pbMethod = @
vRelationship ~ thRelationship
vRelationship ~ pbRelationship =
thRelationship ~ pbRelationship = @

class = vClass (thClass pbClass

method = vMethod (thMethod , pbMethod

relationship = vRelationship thRelationship U PbRelationship

1)
1]

Schema DesignData defines:

e aset of all the classes in the meta-model (class);

e aset of all the methods in the meta-model (method);

e aset of all the relationships in the meta-model (relationship);

17

e aset of all the classes in the set of viewpoints (vClass);

e aset of all the methods in the set of viewpoints (vMethod);

e aset of all the relationships in the set of viewpoints (vRelationship);

e aset of all the classes in the template-hook framework model (thClass);

e aset of all the methods in the template-hook framework model (thMethod);

e aset of all the relationships in the template-hook framework model (thRelationship);
e aset of all the classes in the pattern-based framework model (pbClass);

e aset of all the methods in the pattern-based framework model (pbMethod);

e aset of all the relationships in the pattern-based framework model (pbRelationship);
e arestriction that the number of classes in each of the artifacts is at least one;

e arestriction that all the sets of classes, methods, and relationships are disjoint;

e adefinition that the sets class, method, and relationship contain all the classes, methods, and relationships in
the meta-model, respectively.

Each class in the model has a unique name. In order to formalize the class names a given is introduced.
[CLASS_NAME]

— ClassName

DesignData
className: P CLASS_NAME
nameOfClass: CLASS ey CLASS_NAME

nameOfClass ¢ class - className
v cl, c2: thClass o

nameOfClass (cl) x nameOfClass (c2)
v cl, c2: pbClass e

nameOfClass (cl) z nameOfClass (c2)

Schema ClassName defines:
e asetof class names (className);
e atotal surjection function (=) from classes to class names (nameOfClass);

e a restriction that if two classes belong to the template-hook framework model they must have different
names;

e arestriction that if two classes belong to the pattern-based framework model they must have different names.
Each class in the model also has a set of methods, as defined by the following schema.

—— MethodClass

DesignData
classOfMethod: METHOD e CLASS

classOfMethod ¢ method - class

Schema MethodClass defines:

e a total surjection function from methods to classes (classOfMethod). Note that the specification of this
function implies that every class must have at least one method.

Each method has a unique name. In order to formalize it a given set is introduced.
[METHOD_NAME]

18

MethodName

—

DesignData

MethodClass

methodName: P METHOD_ _NAME
nameOfMethod: METHOD ey METHOD_NAME

nameOfMethod ¢ method « methodName
VY ml, m2: method |
classOfMethod (ml) = classOfMethod (m2) o
nameOfMethod (ml) # nameOfMethod(m2)

Schema MethodName defines:

* aset of method names (methodName);

¢ atotal surjection function from methods to method names (nameOfMethod);

* arestriction that if two methods belong to the same class they must have different names.

Each method in the model also has a signature, which specify its parameters and return value and type, and an
implementation. In order to formalize these concepts given sets for all possible signatures and implementations
are introduced.

[SIGNATURE, IMPLEMENTATION]

MethodSignature

DesignbData
methodSignature: P SIGNATURE
signatureOfMethod: METHOD s SIGNATURE

signatureOfMethod ¢ method e+ methodSignature

Schema MethodSignature defines:
e aset of method signatures (methodSignature);

* atotal surjection function from methods to method signatures (signatureOfMethod).

F___ MethodImplementation

DesignData
methodImplementation: P IMPLEMENTATION
implementationOfMethod: METHOD ey IMPLEMENTAT ION

implementationOfMethod ¢ method - methodImplementation

Schema MethodImplementation defines:
¢ aset of class implementations (methodImplementation);

* atotal surjection function from methods to method implementations (implementationOfMethod).

The set RELATIONSHIP_TYPE defines all the possible types of relationship [26].
RELATIONSHIP_TYPE == {Aggregation, Association, Inheritanée)

—— RelationshipType

DesignData
typeOfRelationship: RELATIONSHIP — RELATIONSHIP TYPE

dom typeOfRelationship = relationship

Schema RelationshipType defines:

19

e atotal function (=) from relationships to types of relationships (typeOfRelationship);

e arestriction that all the relationships in the system must have type.

Each relationship in the model is related to two classes. One class is the source of the relationship while the other

is the target.

RelationshipSourceTarget

DesignData
sourceOfRelationship: RELATIONSHIP — CLASS
targetOfRelationship: RELATIONSHIP — CLASS

sourceOfRelationship €
vRelationship — vClass U
thRelationship — thClass U
pbRelationship — pbClass
targetOfRelation €
vRelationship — vClass v

thRelationship — thClass U
pbRelationship — pbClass

Schema RelationshipSourceTarget defines:

e atotal function from relationships to sources of relationships (sourceOfRelationship). The definition of this

function implies that the source class must belong to the same artifact to which the relationship belongs;

e a total function from relationships to targets of relationships (targetOfRelationship). The definition of this

function implies that the target class must belong to the same artifact to which the relationship belongs;

The given set VIEWPOINT is used to formalize the set of viewpoints used as input for the viewpoint unification

process.
[VIEWPOINT]

___ ViewpointDesignData

DesignData
viewpoint: p VIEWPOINT

viewpoint x ¢

Schema ViewpointDesignData defines:
o aset of viewpoints (viewpoint};

e arestriction that the model must have at least one viewpoint.

Each class in the model belongs to a viewf)oint, as described by the ClassViewpoint schema.

—— ClassViewpoint

DesignData

ClassName

ViewpointDesignData
viewpointOfClass: CLASS w»+ VIEWPOINT

viewpointOfClass ¢ vClass - viewpoint
VY cl, c2: vClass |
nameOfClass (cl) = nameOfClass(c2) o
viewpointOfClass (cl) x viewpointOfClass (c2)

Schema ClassViewpoint defines:

e a total surjection function from viewpoint classes to viewpoints (viewpointOfClass). Note that the relation
between CLASS and VIEWPOINT is only a partial surjection function (=), since not all the classes in the

model have a viewpoint, just the ones that belong to the set vClass;

20

* arestriction that if two classes belong to the same viewpoint they must have different names.
As the function viewpointOfClass is a total surjection, every viewpoint must have at least one class.

Like the classes, each relationship in the model also belongs to a unique viewpoint, as described by the
Relationship Viewpoint schema.

—— RelationshipViewpoint

DesignData

RelationshipSourceTarget

ViewpointDesignData

ClassViewpoint

viewpointOfRelationship: RELATIONSHIP -, VIEWPOINT

viewpointOfRelationship ¢ vRelationship - viewpoint
v r: vRelationship; ¢: vClass |
sourceOfRelationship(r) = c o
viewpointOfRelationship(r) = viewpointOfClass (c)
v r: vRelationship; c: vClass |
targetOfRelationship(r) = c
viewpointOfRelationship(r) = viewpointOfClass (c)

Schema RelationshipViewpoint defines:

 atotal function from viewpoint relationships to viewpoints (viewpointOfRelationship). Note that the relation
between RELATIONSHIP and VIEWPOINT is only a partial function (—), since not all the relationships in
the model have a viewpoint, just the ones that belong to the set vRelationship;

* arestriction that if a relationship belongs to the a viewpoint, their source and target classes must belong to
the same viewpoint.

As the result of the viewpoint unification process is a framework model that utilizes the hot-spot relationship
(template-hook framework model), this kind of relationship must be formally defined, so a given set for all
possible hot-spot relationships is introduced.

[HOT_SPOT_RELATIONSHIP]

Each hot-spot relationship, like the others relationships previously formalized, has a source and a target class as
defined by the HotSpotSourccTarg_et schema.

~— HotSpotSourceTarget

DesignData

hsRelationship: p HOT_SPOT_RELATIONSHIP
sourceOfHotSpot: HOT SPOT_RELATIONSHIP —» CLASS
targetOfHotSpot: HOT_SPOT RELATIONSHIP — CLASS

sourceOfHotSpot ¢ hsRelationship — thClass
targetOfHotSpot ¢ hsRelationship -+ thClass

Schema HotSpotSourceTarget defines:

* aset of hot-spot relationships (hsRelationships);

¢ atotal function from hot-spot relationships to sources of hot-spot relationships (sourceOfHotSpot);
* atotal function from hot-spot relationships to targets of hot-spot relationships (targetOfHotSpot);
6. THE VIEWPOINT UNIFICATION PROCESS SPECIFICATION

This section presents Z schemas that describe the set of consistent viewpoints and the viewpoint unification
process. It also proves that the semantics of the template-hook framework model is the same of the initial set of
viewpoints.

21

—— ConsistentViewpoints

DesignData

ClassName
MethodClass
MethodName
MethodSignature
MethodTImplementation
RelationshipType
RelationshipSourceTarget
ViewpointDegignbData
ClassViewpoint
RelationshipViewpoint

¥ rl, r2: vRelationship; cl, c2, c3, c4: vClass |

sourceOfRelationship(rl) = cl A
targetOfRelationship(rl) = c2 A
sourceOfRelationship(r2) = ¢3 A

targetOfRelationship(r2) = c4 A
nameOfClass (c1l) = nameOfClass(c3) A
nameOfClass (¢2) = nameOfClass(c4d)
e typeOfRelationship (rl) = typeOfRelationship (r2)

The schema ConsistentViewpoints defines the set of consistent viewpoints by the restriction that the relationships
between classes with same names, in different viewpoints, must have the same type.

To improve the specification readability the viewpoint unification process specification was divided in several
schemas: one that specifies the artifacts used in the process and one for each of the unification rules.

ViewpointUnificationBasic

ConsistentViewpoints

Hot SpotSourceTarget
templateMethod: P METHOD
hookMethod: P METHOD

templateMethod ~ thMethod

hookMethod thMethod

Schema ViewpointUnificationBasic defines the artifacts used in the viewpoint unification process:

the set of consistent viewpoints (ConsistentViewpoints);

the pattern-based framework model (composed by the schemas defined in the ConsistentViewpoints schema
and by the schema HotSpotSourceTarget);

a set of template methods (templateMethod);
a set of hook methods (hookMethod);

a restriction that the template and hook methods are sub-sets of the set thMethod, which contains all the
methods present in the template-hook framework model.

Rulel

ViewpointUnificationBasic

VY vc: vClass e
3 thc: thClass |
nameOfClass (the) = nameOfClass (vc)

22

Rule2

—

ViewpointUnificationBasic

V vml: vMethod |
—3 vm2: vMethod |

nameOfMethod(vml) = nameOfMethod (vm2) A
nameOfClass (classOfMethod (vinl)) = nameOfClass (classOfMethod(vm2)) A
(signature0ofMethod (vml) # signatureOfMethod(vm2) -

implementationOfMethod(vml) x implementationOfMethod (vin2))
3 thc: thClass; thm: thMethod |

nameOfClass (the) = nameOfClass (classOfMethod (vml)) A
nameOfMethod(thm) = nameOfMethod(vml) A

signatureOfMethod(thm) = signatureOfMethod (vml) A
implementationOfMethod(thm) = implementationOfMethod(vml) A
classOfMethod (thm) = thc

Rule 1 says that every class that belongs to the set of viewpoints has a corresponding class, with same name, in
the template-hook framework model. Schema Rulel defines that stating that for every class (vClass) in the set of
viewpoints there is one corresponding class (thClass) in the template-hook framework model that has the same
name.

Schema Rule2 defines that:

e if a method (vml) has the same signature and implementation in all the viewpoints it appear it has a
corresponding method (thm), with same name, signature, and implementation, in the template-hook
framework model.

Rule3

ViewpointUnificationBasic

vy vml: vMethod |
3 vm2: vMethod |

nameOfMethod(vml) = nameOfMethod (vm2)

A
nameOfClass (classOfMethod (vml)) = nameOfClass (classOfMethod(vm2))

signatureOfMethod(vml) » signatureOfMethod (vm2) o
3 the: thClass; thm: thMethod |

. nameOfClass (the) = nameOfClass (classOfMethod (vml))
nameOfMethod(thm) = nameOfMethod (vml)
signatureOfMethod(thm) = UNDEFINED A
implementationOfMethod(thm) = UNDEFINED A
classOfMethod (thm) = thc

. thm ¢ hookMethod

A

A
A

A

Schema Rule3 defines that:

o if a method exists in more then one viewpoint with different signature (vml and vim2) it has a corresponding

hook method (thm), which belongs to the set hookMethod, in the template-hook framework model, with
same name but UNDEFINED signature and implementation.

23

L~ -]
Ruled

ViewpointUnificationBasic

y vml: vMethod |
3 vm2: vMethod |

nameOfMethod(vml) = nameOfMethod(vm2) A

nameO£fClass (classOfMethod (vml)) = nameOfClass (classOfMethod(vm2)) A

signatureofMethod(vml) = signatureOfMethod(vm2) A

implementationOfMethod(vml) z implementationOfMethod (vm2) o

3 the: thClass; thm: thMethod |

nameOfClass (thc) = nameOfClass (classOfMethod(vml))
nameOfMethod (thm) = nameOfMethod (vml) A
signatureOfMethod(thm) = signatureOfMethod(vml)
implementationOfMethod(thm) = UNDEFINED A
classOfMethod (thm) = thc
thm ¢ hookMethod

A

A

A

Schema Rule4 defines that:
e if a method exists in more then one viewpoint with different implementation (vinl and vm?2) it has a
corresponding hook method (thm), which belongs to the set hookMethod, in the template-hook framework
model, with same name and signature but UNDEFINED implementation.

Rule5

ViewpointUnificationBasic

v vml, vm2: vMethod; vr: vRelationship |
(vml, vr, vm2) ¢ uses
(3 hm: thMethod |

hm ¢ hookMethod A

nameOfMethod (vm2) = nameOfMethod(hm) A

nameOfClass (classOfMethod (vm2)) = nameOfClass (classOfMethod (hm)))

3 tc: thClass; tm: thMethod; hsr: hsRelationship |

nameOfClass (tc) = nameOfClass(classOfMethod (vml))
nameOfMethod (tm) = nameOfMethod (vml)
classOfMethod (tm) = tc
tm ¢ templateMethod A
sourceOfHotSpot(hsr) = tc A
targetOfHotSpot (hsr) = classOfMethod (hm)

A

A
A
A

Schema Rule5 defines that:

e all the methods that uses hook methods (hm) are defined as template methods (tm). For guarantying that a

relation between viewpoint classes and viewpoint relationships is defined. This relation, called uses, defines
that if (c1, r, c2) belongs to the relation class c1 uses class c2 through the relation r. Note that if the template

and hook methods belong to the same class the relationship will be UNDEFINED in the relation uses, e.g.
(template, UNDEFINED, hook) ;

there is always a hot-spot relationship (hsr) between the class that has the template method (tc) and the class
that has its correspondent hook method (classOfMethod(hm)).

24

Rule6

—

ViewpointUnificationBasic

v vml, vm2: vMethod; vr: vRelationship |
(vml, vr, vm2) g uses A
(-3 hm: thMethod |
hm ¢ hookMethod A
nameOfMethod(vm2) = nameOfMethod(hm) A
nameOfClass (classOfMethod (vm2)) = nameOfClass (classOfMethod(hm))) e
' 3 thr: thRelationship |
nameOfClass (sourceOfHot Spot (thr)) = nameOfClass(classOfMethod (vml))
nameOfClass (targetOfHot Spot (thr)) = nameOfClass(classOfMethod(vm2))
typeOfRelationship (thr) = typeOfRelationship(vr)

V vml, vm2: vMethod; vr: vRelationship |
(vml, vr, vm2) ¢ uses A
typeOfRelationship (vr) = INHERITANCE .
3 thr: thRelationship |
nameOfClass (sourceOfHotSpot (thr)) = nameOfClass(classOfMethod (vml))
nameOfClass (target OfHotSpot (thr)) = nameOfClass(classOfMethod (vm2))
typeOfRelationship (thr) = INHERITANCE

>

Schema Rule6 defines that:

¢ all the existing relationships (vr) in the set of viewpoints that do not have a corresponding hot-spot
relationship are maintained in the in the template-hook framework model (thr);

» all the INHERITANCE relationships are maintained, since they can never be transformed into hot-spot
relationships. This is because inheritance relationships can not be used to access methods (like association
and aggregation). For this reason none of the relationships that belong to the relation uses is an inheritance
relationship.

The ViewpointUnificationProcess schema can be defined as the conjunction of all the rules schemas, as shown
bellow.

ViewpointUnificationProcess = Rulel A Rule2 A Rule3 A Rule4 A Rule5 A Rule6
Soundness of the Viewpoint Unification Process

Since the process is completely specified it is possible to prove that it is correct by showing that the generated
template-hook framework model has the same semantics of the initial set of viewpoints. To prove that it is
necessary to prove that all the methods, relationships and classes present in the initial set of viewpoints are also
present in the template-hook framework model.

Rulel assures this correspondence is valid for the classes. Let us suppose that there is a class vc in the initial set
of viewpoints that do not belong to the template-hook framework model.

3 ve: vClass | (=3 the: thClass | nameOfClass(ve) = nameOfClass(thc))
Rulel says that

V ve: vClass ¢ 3 the: thClass | nameOfClass(the) = nameOfClass(vc)
Which happens that

(—3 thc: thClass | nameOfClass(vc) = nameOfClass(thc)) A

(3 the: thClass | nameOfClass(vc) = nameOfClass(thc))

That is a contradiction, and thus the class correspondence is proved to be valid. Rules 2, 3, and 4 assure the
method correspondence. Let us suppose that there is a method vm in the initial set of viewpoints that do not
belong to the template-hook framework model.

3 vml: vMethod | (—3 thm: thMethod | nameOfMethod(vml) = nameOfMethod (thm))

Since vl belongs to the initial set of viewpoints there are only there options that can occur to it:

25

1. Rule2: there is no other method (vm2) in the set of viewpoints with same name but different signature or
implementation:

-3 vm2: vMethod |
nameOfMethod (vinl) = nameOfMethod(vm2) A
nameOfClass (classOfMethod(vml)) = nameOfClass (classOfMethod(vm2)) A
(signatureOfMethod(vml) # signatureOfMethod(vm2) v
implementationOfMethod(vml) # implementationOfMethod (vm2))

2. Rule3: there is other method (vm2) in the set of viewpoints with same name but different signature:

3 vm2: vMethod |
nameOfMethod(vml) = nameOfMethod(vm2) A
nameOfClass (classOfMethod(vml)) = nameOfClass(classOfMethod(vm2)) A
signatureOfMethod (vml) # signatureOfMethod (vm2)

3. Rule4: there is other method (vm2) in the set of viewpoints with same name and signature but different
implementation:

3 vm2: vMethod |
nameOfMethod (vml) = nameOfMethod(vm2) A
nameOfClass (classOfMethod(vml)) = nameOfClass(classOfMethod(vm2)) A
signatureOfMethod(vml) = signatureOfMethod(vm2) A
implementationofMeﬁhod (vmml) # implementationOfMethod{vim2)
But all the three schemas (Rule2, Rule3, and Rule4) state that:
3 thm: thMethod | nameOfMethod(thm) = nameOfMethod (vml)
Since one of the three schemas is always valid, it happens that
(=3 thm: thMethod | nameOfMethod(vml) = nameOfMethod(thm)) A
(3 thm: thMethod | nameOfMethod(thm) = nameOfMethod (vml))

That is a contradiction, and thus the method correspondence is proved to be valid. Rules 5 and 6 assures the
relationship correspondence. Since the association and aggregation relationships function is to allow classes to
use methods defined in other classes, all the association and aggregation relationships present in the initial set of
viewpoints are also present in the uses relation.

V vr: vRelationship | typeOfRelationship(vr) = ASSOCIATION vV
".typeOfRelationship(vr) = AGGREGATION e
3 vel, ve2: vClass | (vel, vr, ve2)

Let us suppose that there is a relationship vr (association or aggregation) in the initial set of viewpoints that do
not belong to the template-hook framework model.

3 vr: vRelationship |
(typeOfRelationship(vr) = ASSOCIATION Vv
typeOfRelationship (vr) = AGGREGATION) A
(=3 thr: thRelationship |
nameOfClass (sourceOfRelationship(vr)) = nameOfClass(sourceOfRelationship(thr)) A
nameOfClass (targetOfRelationship(vr)) = nameOfClass(targetOfRelationship(thr))) A
(=3 hsr: hsRelationship |

nameOfClass (sourceOfRelationship(vr)) = nameOfClass(sourceOfHotSpot(hsr)) A

nameOfClass (targetOfRelationship(vr)) = nameOfClass(targetOfHotSpot (hsr)))

Since vr belongs to the uses relation there are only two options that can occur to it:

26

1. Rule5: itis transformed in to a hot-spot relationship in the template-hook framework model.
V vml, vm2: vMethod; vr: vRelationship |
(vmi, vr, vin2) € uses A
(3 hm: thMethod |
hm € hookMethod A
nameOfMethod (vm2) = nameOfMethod (hm) A
nameOfClass (classOfMethod (vm2)) = nameOfClass(classOfMethod (hm)))
2. Rule6: its relationship type is maintained in the template-hook framework model:
Vvml, vm2: vMethod; vr: vRelationship |
(vinl, vr, vm2) € uses A
(=3 hm: thMethod |
hm € hookMethod A
nameOfMethod (vin2) = nameOfMethod (hm) A
nameOfClass (classOfMethod(vm2)) = nameOfClass (classOfMethod (hm)))
But schema Rule5 states that:
3 tc: thClass; tm: thMethod; hsr: hsRelationship |
nameOfClass (tc) = nameOfClass(classOfMethod(vml)) A
nameOfMethod (tm) = nameOfMethod{vml) A
classOfMethod(tm) = tc A
tm € templateMethod A

sourceOfHotSpot (hsr) = tc A

targetOfHotSpot (hsr) = classOfMethod (hm)

Which implies that:
J hsr: hsRelationship |
nameOfClass (sourceOfHotSpot (hsr)) = nameOfClass (sourceOfRelationship (vr)) A
nameOfClass (targetOfHotSpot (hsr)) = nameOfClass (targetOfRelationship (vr))

And schema Rule6 states that:

3 thr: thRelationship |

nameofclass(soﬁ}ceofHotSpot(thr)) = nameOfClass(classOfMethod (vml)) A
nameOfClass(targetOprtSpot(thr)) = nameOfClass(classOfMethod(vm2)) A
Which implies that: ‘
3 thr: thRelationship |
nameOfClass (sourceOfHotSpot (thr)) = nameOfClass (sourceOfRelationship{vr)) A
nameOfClass (targetOfHotSpot (thr)) = nameOfClass ((targetOfRelationship (vr))

Since always one of the two schemas will be valid, we have that:
3 vr: vRelationship |
(typeOfRelationship (vr) = ASSOCIATION v
typeOfRelationship (vr) = AGGREGATION) A

(=3 thr: thRelationship |

nameOfClass (sourceOfRelationship(vr)) = nameOfClass (sourceOfRelationship(thr)) A

nameOfClass (targetOfRelationship(vr)) = nameOfClass (targetOfRelationship(thr))) A

(-3 hsr: hsRelationship |

27

nameOfClass (sourceOfRelationship(vr)) = nameOfClass{sourceOfHotSpot(hsr)) A
nameOfClass (targetOfRelationship(vr)) = nameOfClass(targetOfHotSpot (hsx))) A
({3 hsr: hsRelationship |
nameOfClass (sourceOfRelationship(vr)) = nameOfClass (sourceOfHotSpot (hsr)) A
nameOfClass (targetOfRelationship(vr)) = nameOfClass(targetOfHotSpot(hsr))) v
(3 thr: thRelationship |
nameOfClass (sourceOfHotSpot (thr)) = nameOfClass(sourceOfRelationship(vr)) A
nameOfClass (targetOfHotSpot (thr)) = nameOfClass((targetOfRelationship(vr))))

That is a contradiction, and thus the method correspondence is proved to be valid for the all the association and
aggregation relationships. For the inheritance relationship the correspondence can be proved through the use of

rule 6. Let us suppose that there is an inheritance relationship vr in the initial set of viewpoints that do not belong
to the template-hook framework model.

31 vr: vRelationship |
typeOfRelationship(vr) = INHERITANCE A
(=3 thr: thRelationship |
nameOfClass (sourceOfRelationship(vr)) = nameOfClass (sourceOfRelationship(thr)) A
nameOfClass (targetOfRelationship(vr)) = nameOfClass (targetOfRelationship(thr)))
But schema Rule6 states that:
V vml, vm2: vMethod; vr: vRelationship |
typeOfRelationship(vr) = INHERITANCE e
3 thr: thRelationship |
nameOfClass (sourceQfHotSpot (thr)) = nameOfClass (classOfMethod(vml)) A

nameOfClass (targetOfHotSpot (thr)) = nameOfClass{classOfMethod(vm2)) A
typeOfRelationship(thr) = INHERITANCE

Which implies that:
3 thr: thRelationship ¢
nameOfClass (sourceOfHotSpot (thr)) = nameOfClass(sourceOfRelationship(vr)) A

nameOfClass (targetOfHotSpot (thr)) = nameOfClass((targetOfRelationship(vr))
So we have that:

3 vr: vRelationship |
typeOfRelationship(vr) = INHERITANCE A
(=3 thr: thRelationship |.
nameO£Class (sourceOfRelationship(vr)) = nameOfClass(sourceOfRelationship(thr)) A
nameOfClass (targetOfRelationship(vr)) = nameOfClass(targetOfRelationship(thr))) A
(3 thr: thRelationship |
nameOQfClass (sourceOfHotSpot (thr)) = nameOfClass(sourceOfRelationship(vr)) A
nameOfClass (targetOfHotSpot (thr)) = nameOfClass{ (targetOfRelationship(vr)))

That is a contradiction, and thus the method correspondence is proved to be valid for the all the inheritance

relationships. Since the correspondence is proved for all the classes, methods, and relationships the viewpoint
unification process is proved to be correct.

7. THE HOT-SPOT INSTANTIATION PROCESS SPECIFICATION

This section presents Z schemas that describe the hot-spot instantiation process. It also proves that the method

assures the design properties of loose coupling and design complexity. To improve the specification readability
the hot-spot instantiation process specification was divided in several schemas:’

28

* one for each combination of the two flexibility properties, this means that a different schema is defined for
each different row present in Table 1;

* one to handle the class correspondence between the template-hook and the pattern-based framework models;

* one to handle the method correspondence between the template-hook and the pattern-based framework
models;

¢ one to handle the relationship correspondence between the template-hook and the pattern-based framework
models.

Note that the schema ViewpointUnificationProcess is included in all the schemas in this section since it uses all
the artifacts needed by the hot-spot instantiation process.

Unification

ViewpointUnificationProcess

V hsr: hsRelationship; tm, hm: thMethod |
nameOfClass (sourceOfHotSpot (hsr)) = nameOfClass(classOfMethod (tm)) A
nameOfClass (targetOfHot Spot (hsr)) nameOfClass(classOfMethod (hm)) A
designPattern (hsr) = UNIFICATION
3 pbc: pbClass; pbml, pbm2: pbMethod |

nameOfClass (pbe) = nameOfClass (sourceOfHotSpot (hsr)) A

classOfMethod (pbml)= pbc A

classOfMethod (pbm2)= pbc A

nameOfMe thod (pkml) nameOfMethod (tm) A

nameOfMe thod (pbm2) nameOfMethod (hm)

]

n

nn

Schema Unification defines that:

* if a hot-spot relationship (hrs) has to be implemented through the use of the unification meta-pattern
(designPattern(hsr) = UNIFICATION) the template (pbm1) and hook (pbm2) methods belong to the same
class (pbc) in the pattern-based framework model.

29

Separation
—

ViewpointUnificationProcess

V hsr: hsRelationship; tm, hm: thMethod |

nameOfClass (sourceOfHotSpot (hsr)) = nameOfClass(classOfMethod (tm)) A

nameOfClass (target OfHot Spot (hsr)) = nameOfClass(classOfMethod (hm)) A

classOfMethod (tm) gz classOfMethod (hm) A

designPattern (hsr) = SEPARATION o

3 pbcl, pbc2: pbClass; pbml, pbm2: pbMethod; pbr: pbRelationship |

nameOfClass (pbcl) = nameOfClass(sourceOfHotSpot (hsr)) A
nameOfClass (pbc2) = nameOfClass(targetOfHotSpot (hsr)) A
classOfMethod (pbml)= pbcl A
classOfMethod (pbm2)= pbc2 A
nameOfMethod(pbml) = nameOfMethod (tm) A
nameOfMethod(pbm2) = nameOfMethod (hm) A
sourceOfRelationship(pbr) = pbcl A
targetOfRelationship(pbr) = pbc2 A
typeOfRelationship (pbr) = AGGREGATION

¥ hsr: hsRelationship; tm, hm: thMethod |

nameOfClass (sourceOfHot Spot (hsr)) = nameOfClass(classOfMethod (tm)) A

nameOfClass (targetOfHot Spot (hsr)) = nameOfClass(classOfMethod (hm))

classOfMethod (tm) = classOfMethod (hm) A

designPattern (hsr) = SEPARATION o

3 pbcl, pbc2: pbClass; pbml, pkm2: pbMethod; pbr: pbRelationship]

nameOfClass (pbcl) = nameOfClass(sourceOfHotSpot(hsxr)) A
nameOfClass (pbc2) = concat(nameOfMethod(hm), “Class”) A
classOfMethod (pbml)= pbcl A
classOfMethod (pbm2)= pbc2 A
nameOfMethod(phml) = nameOfMethod (tm) A
nameOfMethod(pbm2) = nameOfMethod (hm) A
sourceOfRelationship(pbr) = pbcl A
targetOfRelationship(pbr) = pbc2 A
typeOfRelationship (pbr) = AGGREGATION

A

Schema Separation defines that:

e if a hot-spot relationship (hrs) has to be implemented through the use of the separation meta-pattern
(designPattern(hsr) = SEPARATION) the template (pbm1) and hook (pbm2) methods belong to the separate
classes (pbcl and pbc2) in the pattern-based framework model, which are related through an aggregation
relationship (pbr);

¢ note that if the hot-spot relationship (hsr) has the same source and target classes a new class has to be
defined in the pattern-based framework model to hold the hook method. This class is defined with same
name of the hook method concatenated with the string “Class”. The concat function is not defined here but
can be easily implemented through any programming language.

30

RecursiveUnification

ViewpointUnificationProcess

V hsr: hsRelationship; tm, hm: thMethod |

nameOfClass (sourceOfHotSpot (hsr)) = nameOfClass (classOfMethod (tm)) A

nameOfClass (targetOfHotSpot (hsr)) = nameOfClass (classOfMethod (hm)) A

designPattern (hsr) = RECURSIVE_UNIFICATION o

3 pbe: pbClass; pbml, pbm2: pbMethod; pbr: pbRelationship |

nameOfClass (pbc) = nameOfClass (sourceOfHotSpot (hsr)) A
classOfMethod (pbml)= pbc A
classOfMethod (pbm2) = pbc A
nameOfMethod(pkml) = nameOfMethod (tm) A
nameOfMethod (phm2) = nameOfMethod(m) A
sourceOfRelationship(pbr) = pbc A
targetOfRelationship(pbr) = pbc A
typeOfRelationship (pbr) = AGGREGATION

Schema RecursiveUnification defines that:

» if a hot-spot relationship (hrs) has to be implemented through the use of the recursive unification meta-
pattern (designPatternthsr) = RECURSIVE_UNIFICATION) the template (pbm1) and hook (pbm2)
methods belong to the same class (pbc) in the pattern-based framework model, and there is an aggregation
relationship between this class and itself.

Schema RecursiveSeparation defines that:

e if a hot-spot relationship (hrs) has to be implemented through the use of the separation meta-pattern
(designPattern(hsr) = RECURSIVE_SEPARATION) the template (pbm1) and hook (pbm2) methods belong
to the separate classes (pbcl and pbe2) in the pattern-based framework model, which are related through an
aggregation relationship (pbr1). There is also an inheritance relationship (pbr2) between the template (pbcl)
and hook (pbc2) classes;

¢ like in the Recursive schema, if the hot-spot relationship (hsr) has the same source and target classes a new
class has to be defined in the pattern-based framework model to hold the hook method.

31

RecursiveSeparation

ViewpointUnificationProcess

V hsr: hsRelationship; tm, hm: thMethod |

nameOfClass (sourceOfHotSpot(hsr)) = nameOfClass(classOfMethod (tm))

nameOfClass (targetOfHotSpot (hsr)) = nameOfClass(classOfMethod (hm))

classOfMethod (tm) x classOfMethod (hm) A

designPattern (hsr) = RECURSIVE_SEPARATION o

3 pbcl, pbe2: pbClass; phbml, pbm2: pbMethod; pbrl, pbr2: pbRelationship |

nameOfClass (pbcl) = nameOfClass(sourceOfHotSpot(hsr)) A
nameOfClass (pbc2) = nameOfClass(targetOfHotSpot (hsr))
classOfMethod (pbml)= pbcl 4
classOfMethod (pbm2)= pbc2 A
nameOfMethod(pbml) = nameOfMethod (tm) A
nameOfMethod (pbm2) = nameOfMethod (hm) A
sourceOfRelationship(pbrl) = pbcl A
targetOfRelationship(pbrl) = pbc2 A
typeOfRelationship (pbrl) = AGGREGATION A
sourceOfRelationship (pbr2) = pbcl A
targetOfRelationship(pbr2) = pbc2 A
typeOfRelationship (pbr2) = INHERITANCE

A
A

A

V hsr: hsRelationship; tm, hm: thMethod |
nameOfClass (sourceOfHotSpot (hsr)) = nameOfClass(classOfMethod (tm)) A
nameOfClass (targetOfHotSpot (hsr)) = nameOfClass(classOfMethod (hm))
classOfMethod (tm) = classOfMethod (hm) A
designPattern (hsr) = RECURSIVE_SEPARATION
3 pbcl, pbc2: pbClass; pbml, ptm2: pbMethod; pbrl, pbr2: pbRelationship |
nameOfClass (pbcl) = nameOfClass(sourceOfHotSpot(hsr)) A
nameOfClass (pbc2) = concat (nameOfMethod(hm), ®“Class”) A
classOfMethod (pbml)= pbcl A
)

A

classOfMethod (pbm2)= pbc2 A
nameOfMethod(pbml) = nameOfMethod (tm) A
nameOfMethod (pbm2) = nameOfMethod (hm) A

sourceOfRelationship(pbrl) = pbcl A
targetOfRelationship(pbrl) = pbc2 A
typeOfRelationship (pbrl) = AGGREGATION
sourceOfRelationship(pbr2) = pbcl A
targetOfRelationship(pbr2) = pbc2 A
typeOfRelationship (pbr2) = INHERITANCE

ClassCorrespondence

ViewpointUnificationBasic

V the: thClass | .
— 3 thml: thMethod; hsr: ‘hsRelationship |
thml ¢ hookClass A
classOfMethod (thml) = thc A
(o 3 thm2: thMethod | thml » thm2 , classOfMethod(thm2) = thc)
targetOfHotSpot(hsr) = thc A
(designPattern(hsr) x UNIFICATION .,
designPattern (hsr) x RECURSIVE_UNIFICATION) e
3 pbc: pbClass |
nameOf£Class (pbc) = nameOfClass (thc)

A

Schema ClassCorrespondence defines that:

e for every class (thc) in the template-hook framework model there is a correspondent class (pbc) in the
pattern-based framework model, except in the cases where the class is a hook class, with only one method

(that is the hook method) and that for every hot-spot relationship that uses it the unification patterns are
generated.

32

MethodCorrespondence

—

ViewpointUnificationBasic

VY thm: thMethod o
3 pkm: pbMethod
nameOfMethod(pbm) = nameOfMethod(thm) A
signatureOfMethod(pbm) = signatureOfMethod (thm) A
implementationOfMethod(pbm) = imp lemen tationOfMe thod (thm)

V thm: thMethod | thm ¢ templateMethod , thm ¢ hookMethod
3 pkm: pbMethod
nameOfClass (classOfMethod (pbm)) = nameOfClass (classOfMethod(thm))

Schema MethodCorrespondence defines that:

* for every method in the template-hook framework model (thm) there is a correspondent method in the
pattern-based framework model (pbm), with same name, signature, and implementation;

¢ for every method in the template-hook framework model that is nor a template neither a hook method its
containing class in the in the pattern-based framework model does not chance. Note that the definition of
classes for the template and hook methods is provided by the meta-pattern schemas (Unification, Separation,
RecursiveUnification, and RecursiveSeparation.

RelationshipCorrespondence

ViewpointUnificationProcess

v thr: thRelationship
3 pbr: pbRelationship |
nameQfClass (sourceOfRelationship(pbr)) =
nameOfClass (sourceOfRelationship(thr)) A
nameOfClass (targetOfRelationship(pbr)) =
nameOfClass (targetOfRelationship(thr))

Schema RelationshipCorrespondence defines that:

.

s for every relationship in the template-hook framework model (thr) there is a correspondent relationship in
the pattern-based framework model (pbr).

The HotSpotInstantiationProcess schema can be defined as the conjunction of all the rules schemas, as shown
bellow.

HotSpotInstantiationProcess = Unification A Separation A RecursiveUnification
. A RecursiveSeparation A ClassCorrespondence
A MethodCorrespondence A RelationshipCorrespondence

Proof of the Design Loose Coupling Property

The separation meta-patterns lead to the design loose coupling, where the template and hot-spot classes are
disjoint. To prove this property let us suppose that a hot-spot relationship is implemented through a separation
meta-pattern and that the template and hook classes are the same.

J hsr: hsRelationship; tm, hm: thMethod |
nameOfClass (sourceOfHotSpot (hsr)) = nameOfClass (classOfMethod (tm)) A
nameOfClass (targetOfHotSpot (hsr)) = nameOfClass(classOfMethod (hm)) A
(designPattern(hsr) = SEPARATION v (designPattern(hsr) = RECURSIVE_SEPARATION e
3 pbc: pbClass; pbml, pbm2: pbMethod |
nameOfClass(pbc) = nameOfClass (sourceOfHotSpot (hsr)) A

nameOfClass (pbc) = nameOfClass(targetOfHotSpot(hsr)) A

33

classOfMethod (pbml)= pbc A
classOfMethod (pbm2)= pbc

But schemas Separation and RecursiveSeparation define that

V hsr: hsRelationship; tm, hm: thMethod |
nameOQfClass (sourceOfHotSpot (hsr)) = nameOfClass{classOfMethod (tm)) A
nameOfClass (targetOfHotSpot (hsr)) = nameOfClass(classOfMethod (hm)) A
(designPattern(hsr) = SEPARATION v (designPattern(hsr) = RECURSIVE_SEPARATION e
(3 pbel, pbc2: pbClass; pbml, pbm2: pbMethod |
nameOfClass (pbcl) = nameOfClass(sourceOfHotSpot (hsr)) A
nameOfClass (pbc2) = nameOfClass (targetOfHotSpot(hsr)) A
classOfMethod(pbml}= pbcl A
classOfMethod (pbm2)= pbc2)) v
(3 pbcl, pbc2: pbClass; pbml, pbm2: pbMethod |

nameOfClass (pbcl) = nameOfClass (sourceOfHotSpot (hsr))

>

nameOfClass (pbc2) = concat (nameOfMethod (hm), “Class”) A
classOfMethod (pbml)= pbcl A
classOfMethod (pbm2)= pbc2))
So we have that
(classOfMethod (pbml)= pbc = classOfMethod (pbm2)) A
(classOfMethod (pbml)= pbcl # pbc2 = classOfMethod (pbm2))

Which is a contradiction and thus the design loose coupling is proved to be assured by the separation meta-
patterns.

Proof of the Design Complexity Property

The unification meta-patterns lead to a simpler design, where the template and hot-spot classes are the same. To
prove this property let us suppose that a hot-spot relatlonshlp is implemented through a unification meta-pattern
and that the template and hook classes are disjoint.

3 hsr: hsRelationship; tm, hm: thMethod |
nameOfClass (sourceOfHotSpot (hsr)) = nameOfClass(classOfMethod (tm)) A
nameofclass(targetOqupSpot(hsr)) = nameOfClass(classOfMethod (hm)) A
(designPattern(hsr) = UNIFICATION Vv designPattern(hsr) = RECURSIVE_UNIFICATION e
3 pbcl, pbc2: prlags; pbml, pbm2: pbMethod |
nameOfClass (pbcl) = nameOfClass(sourceOfHotSpot(hsr)) A
nameOfClass (pbc2) = nameOfClass(targetOfHotSpot(hsr)) A
classOfMethod (pbml)= pbcl A
classOfMethod (pbm2)= pbc2
But schemas Unification and RecursiveUnification define that
3 hsr: hsRelationship; tm, hm: thMethod |
nameOfClass (sourceOfHotSpot (hsr)) = nameOfClass(classOfMethod (tm)) A
nameOfClass (targetOfHotSpot (hsr)) = nameOfClass(classOfMethod (hm)) A
(designPattern (hsr) = UNIFICATION Vv designPattern(hsr) = RECURSIVE_UNIFICATION e
3 pbc: pbClass; pbml, pbm2: pbMethod |
nameOfClass (pbc) = nameOfClass (sourceOfHotSpot (hsr)) A

classOfMethod(pbml)= pbc A

34

classOfMethod (pbm2)= pbc
So we have that
(classOfMethod(pbm1)¥ pbcl # pbc2 = classOfMethod(pbm2)) A
(classOfMethod (pbml)= pbc = classOfMethod(pbm2)) A

Which is a contradiction and thus the design complexity properties is proved to be assured by the unification
meta-patterns.

8. CONCLUSIONS AND FUTURE WORK

In this paper a viewpoint-based framework design method has been presented in a formal way and its most
important properties have been highlighted. Another interesting work in formalizing and proving properties about
objects using the Z language can be found in [34], where the information hiding property is described for the
COM architectural standard.

This paper shows how viewpoints and the hot-spot relationship can be used as the main design driving force to
reusable framework construction. The method provides mechanisms that help the framework developer with the
identification of the kernel structure and the flexible parts. The hot-spot card feature is presented here as an
approach that can help us to bridge the gap between frameworks and design patterns [29].

The unification step is responsible for harmonically combining the various viewpoints. The use of the hot-spot
relationship in this step helps the definition of the framework flexibility requirements. Other approaches to
unification of viewpoints can be found in [6].

The proof of the correction of the hot-spot instantiation process using category theory [11] and object calculus
[8] is another point of interest that is now being investigated. Some examples of formalization of design patterns
using this formalism can be found in [18].

This paper also presents an approach to integrate frameworks with domain specific languages (DSL). We argue
that DSLs allows the domain expert to formalize the specification of a software solution immediately without
worrying about implementation decisions and the framework complexity. To implement this approach a
transformational system (Draco-PUC) is used to transform DSLs specifications into framework instantiation
code. It is important to note that DSLs could be transformed into other DSLs, thus creating a domain network, in
a way similar with described in [22], providing an easy implementation path for new DSLs.

The method seems to be useful in situations where the frameworks are very complex to build and difficult to use.
It will be tested in important and innovative domains, in which we also expect to contribute with the design and
development of real frameworks. Two domains that we plan to study soon are electronic commerce and
computational biology.

We are now working in the derivation of domain specific languages from problem theory [35], which seems to be
an interesting approach not yet been exploited in literature.

Since the Web-based Education (WBE) domain is still not completely understood the need for a framework that
supports fast development of alternative WBE environments by non-programmers is a desirable goal. The
ALADIN framework presented in this paper as a method case study seems to be an environment where teachers
and education researchers can develop their own environments, with little help from software engineers.

A new version of the AulaNet™ environment (http://www.les.inf.puc-rio.br/aulanet) [21] is now being developed
with the ALADIN framework. This experiment has two main purposes: the development of a more flexible
version of AulaNet™ and further validation of the ALADIN framework.

9. REFERENCES
1. M. Ainsworth, A. H. Cruickshank, L. J. Groves, and P. J. L. Wallis, “Viewpoint specification and Z”,
Information and Software Technology, 36(1), 43-51, 1994.

2. P. Alencar, D. Cowan, S. Crespo, M. F. Fontoura, and C. J. Lucena, “Using Viewpoints to Derive a
Conceptual Model for Web-Based Education Environments”, MCC17/98, Monografias em Ciéncia da
Computagio, Departamento de Informética, PUC-Rio, 1998 (also submitted to Journal of Systems and
Software, http://www.les.inf.puc-rio.br/~mafe).

3. J. Bell et al, “Software design for reliability and reuse: A proof-of-concept demonstration”, TRI-Ada’94
Proceedings, 396-404, ACM, 1994.

35

10.

11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.
25.

26.

27.

E. Casais, “An incremental class reorganization approach”, ECOOP’92 Proceedings, volume 615 of Lecture
Notes in Computer Science, 114-132, 1992.

J. Cordy and I. Carmichael, “The TXL Programming Language Syntax and Informal Semantics”, Technical
Report, Queen’s University at Kinkston, Canada, 1993.

J. Derrick, H. Bowman, and M. Steen, “Viewpoints and Objects”, Technical Report, Computing Laboratory,
University of Kent, Canterbury, UK, 1997.

E. W. Dijkstra, “The humble programmer”, Communications of the ACM, 15(10), 1972.

J. Fiadeiro and T. Maibaum, “Sometimes ‘Tomorrow” is ‘Sometime’”’, Temporal Logic, volume 827 of
Lecture Notes in Artificial Intelligence, 48-66, Springer-Verlag, 1994.

A. Filkelstein, J. Kramer, B. Nuseibeh, L. Filkelstein, and M. Goedicke, “Viewpoints: A Framework for
Integrating Multiple Perspectives in System Development”, International Journal of Software Engineering
and Knowledge Engineering,2, 1, 31-58, 1993,

E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, “Design Patterns, Elements of Reusable Object-
Oriented Software”, Addison-Wesley, 1995.

R. Goldblatt, “Topoi — The Categorial Analysis of Logic”, North-Holland Publishing Company, 1979.
P. Hudak, “Building Domain-Specific Embedded Languages”, Computing Surveys, 28A(4), ACM, 1996.

R. Iersalimschy, R. Borges, and A. M. Hester, “CGILua A Multi-Paradigmatic Tool for Creating Dynamic
WWW Pages”, SBES’97 (Simpésio Brasileiro de Engenharia de Software), 1997.

ITU Recommendation X.901-904 — ISO/IEC 10746 1-4, “Open Distributed Processing — Referring Model
Parts 1-4”, July 1995. .

R. Johnson, “Frameworks = (Components + Patterns)”’, Communications of the ACM, 40, 10, 1997.

R. Johnson and W. F. Opdyke, “Refactoring and aggregation”, In Object Technologies for Advanced
Software, First JSSST International Symposium, volume 742 of Lecture Notes in Computer Science, 264-
278, Springer-Verlag, 1993.

G. Kiczales, J. des Rivieres, and D. G. Bobrow, “The Art of Mataobject Protocol”, MIT Press, 1991.

K. Lano, J. C. Bicarregui, S. Goldsack, “Formalizing Design Patterns”, Technical Report, Dept. of
Computing, Imperial College, London, UK, 1997.

J. C. S. P. Leite, M. Sant’anna, and F. G. Freitas, “Draco-PUC: a Technology Assembly for Domain
Oriented Software Development”; Proceedings of the 3rd IEEE International Conference of Software Reuse,
1994,

C. Levy, D. Cowan, C. J. Lucena, M. Gattass, and L. H. Figueiredo, “TUP/LED: A Portable User Interface
Tool”, Software Practice and Experience (accepted for publication).

C. Lucena, H. Fuks, R. Milidiu, L. Macedo, N. Santos, C. Laufer, M. Ribeiro, M. Fontoura, R. Noya, S.
Crespo, V. Torres, L. Daflon, and L. Lukowiecki, “AulaNet™ - An Environment for the Development and
Maintenance of Courses on the Web”, International Conference on Engineering Education, Rio de Janeiro,
Brazil, 1998.

J. M. Neighbors, “The Draco Approach to Constructing Software from Reusable Components”, IEEE
Transactions on Software Engineering, 10, 5, 1984.

W. Pree, “Design Patterns for Object-Oriented Software Development”, Addison-Wesley, 1995.
W. Pree, “Framework Patterns”, Sigs Management Briefings, 1996.

D. Roberts and R. Johnson, “Evolving Frameworks: A Pattern Language for Developing Object-Oriented
Frameworks” in “Pattern Languages of Program Design 3", Addison-Wesley, 1997.

J. Rumbaugh, “Relational Database. Design Using an Object-Oriented Methodology”, Communications of
the ACM, 31, 4, 1988.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, “Object-Oriented Modeling and
Design”, Prentice Hall, Englewood Clifs, NJ, 1991.

36

28

29.
30.
31.

32.

33.
34.

35.

36.

37.

. H. A. Schmid, “Systematic Framework Design by Generalization”, Communications of the ACM, 40, 10,
1997.

D. Schmidt, M. Fayad, and R. Johnson, “Software Patterns”, Communications of the ACM, 39, 10, 1996.
N. Shu, “Visual Programming”, Van Nostrand Reinhold, New York, 1988

C. Simonyi, “The Death Of Computer Languages, The Birth of Intentional Programming”, Technical Report
MSR-TR-95-52, 1995.

J. M. Spivey, “Understanding Z: A Specification Language and Formal Semantics”, Cambridge University
Press, 1988.

J. M. Spivey, “The Z Notation: A Reference Manual”, Prentice Hall, Hemel Hempstead, 1989.

K. J. Sullivan, J. Socha, M. Marchukov, “Using Formal Methods to Reason about Architectural Standards”,
ICSE’97, 503-513, Boston, 1997.

W. Turski and T. S. E Maibaum, “The Specification of Computer Programs”, Addison-Wesley Publishing
Company, 1987.

R. Wirfs-Brock and R. Johnson, “Surveying current research in object-oriented design”, Communications of
the ACM, 33, 9, 1990.

X. Zhang, “A Rigorous Approach to Comparison of Representational Properties of Object-Oriented Analysis
and Design Methods”, Ph. D. Dissertation, Department of Computing and Information Science, Queen’s
University, Ontario, Canada, 1997.

37

