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ON THE KIND OF DATA NEEDED FOR A THEORY OF PROOFS

G, Kreisel

Part |1 of this article responds to the guestion implicit
in the title: there are reasonably adequate data for a
natural history of proofs, but not for a systematic
science. The distinction between natural history and
systematic or fundamental science is elaborated in the
Introduction to Part 1i. Part | {861-3) prepares for
Part 1} by listing some striking successes of early proof
theory and the diminishing returns of later elaborations.
The present article complements recent publtications
(Kreisef (1976) and (in press)) which stress negative
aspects of current proof theory.

JNTRODUCTION

Over the last half century proof theory has made a good deal of progress of per-
manent interest., One need only compare what we know now with the impressions
current in the twenties concerning such general issues as Hilbert's programme;

cf. 51 below for two extreme examples. Also quite specific questions raised by
mathematicians about the content of their own nroofs, have been answered with the
help of early work in proof theory; cf. §2. This was considerably elaborated in
the sixties, both w.r.t. the analysis of various informal notions of proof in the
foundational literature and w.r.t. the mathematical techniques used. Some of the
elaborations show unquestionable logical or mathematical wit, but none has excited
broad {(active) interest in the silent majority of logicians; or, perhaps, a little
more pointedly, what authors regarded as interesting about their elaborations,
that is, the results stated, left the silent majority unimpressed. 0f course,
every science produces some dull stuff; the point here is that the harder results
in proof theory are so to speak systematically dull-- with reason (cf. §3 and below).

The common-place view of the {sociological) facts just described is that the silent
majority lacks the philosophical sensibility needed to appreciate the full inward-
ness of those elaborations. It can hardly be expected that the silent majority
expresses its sensibility very well. But -- and this is perhaps the main point of
Part 1 of this article -~ there is also another side to the matter. The elaborate
results are stated in language proper to (philosophical) aims which themselves
make dubioug ¢ vtions. For example, the aim of Hilbert's programme was to
eliminate abstract methods because it assumed that these methods are unreliable or
otherwise 'unjustified’ (or, at least, more so than elementary methods). Now,
expectations derived from this assumption have been refuted explicitiy by work on
Hilbert's programme, and implicitly by general mathematical experience. This has
corrected false first impressions, and thus constitutes phil gophical progress.
Recognition of such progress {by the silent majority) would show philosophical
acumen, not insensibility.

Put differently, the concepts which ¢ ‘7 foundational schemes (suggested by
first impressions) consider to be basic are simply off the mark.

Jo get some perspective on future work, it is natural to look at the past of some

successful sciences, and to match up the early stages in their development with
those of proof theory over the last 50 years. Two old branches of physics,
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kinematics and the mechanics of continuous media, illustrate the kind of thing

that has happened in the history of several sciences. Initially only qualitative
impressions of the world are available, but this is often sufficient to speculate
on the frwe nature of the phenomena involved. In the branches of physics mentioned,
those early ideas were expressed by phrases like perject ghape or ideal fluid, and
made more explicit by use of the corresponding branches of mathematics (Euclidean
geometry, Laplace's partial differential equations). As time went on, these ideas
or conceptions of the world were elaborated by more advanced mathematics -~ or
else radically revised.

Sometimes a conception can be rejected on purely mathematical grounds simply by
developing it to a point where it conflicts with very general qualitative or
otherwise familiar experience. In such cases, the literature speaks of imagined
{Gedanken) experiments: they need only be mentioned, not carried out since their
outcome is not in -- genuine -- doubt. In the theory of ideal fluids the standard
example is the result that a steady current exerts no drag (on objects of
arbitrary shape). For similar negative examples in logic see §1; for positive
ones, see 2, and successful applications of elementary geometry or mechanics. As
to the elaborations of §3 they may perhaps be compared to the notorious applied
mathematics of the Cambridge Tripos at the turn of this century; cf. Littiewood
(1953). This comparison is of course immensely optimistic: present-day geometry
and mechanics have gone well beyond the level of the Cambridge Tripos.

The parallel above will be continued in the introduction to Part I1. -~ In Pant I
the main use of the parallelconcerns the passage from (informal) proofs to
adequate formalizations; for example, it can no more be agsumed that mathematical
texts provide exactly those data which are significant for proofs than that de-
scriptions by sailors of waves in the sea provide the data which are hydrodynam-
ically significant.

EARLY SUCCESSES: FORMAL SYSTEMS AND FORMALIZATION

. About 50 years ago there was widespread interest in the need for analytic
methods in number theory; cf. Ingham (1932). Opinions varied. In accordance

with Hilbert's programme some thought that references to reals, sets of reals,
etc., were mere shorthand for appropriate approximations, and straightforwardly
eliminable. Others thought that the opposite was true. And, above all, both
sides thought that it was a matter of 'opinion' that would never be settled. Work
in proof theory showed that they were especially wrong where they agreed.

(a) RN o) theorem, and especially his interpretation of it
in footnote 483 of Godel corrected the assumgtion about the general inno-
cence, that is, eliminability of set theoretic methods, even for proving number
theoretic results. Incidentally the assumption was widespread even among those
who did not know its precise formulation in the form of Hilbert's programme.

-~ NB. The correction was d7 epred in connection with Hilbert's proof theoretic
programme. Today it is best to use different results, splitting the notion of
formal system into 2 parts: (definability in a) formal language and formal ryles
(for the consequence relation). The results for the restriction to formal opera-~
tions are corollaries of general results in recursion theory; (invariant) defin-
ability and the consequence relation are best studied in model theory without

this restriction. Also the implications of axioms of infinity asserting the
existence of sets of high type (in Godel's footnote 483) are valid without any
restriction to formal systems; cf. p. 182, £.-10 to £.-6 of Kreisel and Krivine

(1971).
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(b) dctual m , in contrast to the possibilities pointed
out by Godel, turned out not to use analytic methods in an essential way. As
early as 40 years ago, Gentzen pointed out that number theoretic practice did
not use the full force of first order arithmetic {and so his consistency proof
was not needed to 'justify' actual, only possible number-theoretic reasoning) .
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original proof for 7) of a
Historical Rem To be prec , the ideas involved in the general proof
theoretic procedure were applied, not the procedure itself. For one thing, such a
procedure operates on a formalized proof, and, of course, Littlewood's original
proof was not. But also, at the time the relevant procedures had not been worked
cut for formal svstems v&ry close to the language of ordinary analysis. It turned
out that what were obviously the only critical steps in Litt!ewood’s proof could
be transcribed into ’“e formalism of first order predicate logic, Wbsch the
current proof theory app 3 fes; cf., Remark 5.2 p. 171 of Kreisel (I} QSS) A sig-
nificantly more systemat use of proof theory here would have to make tH@ passage
from informal proocfs to h:sr formalizations a principal object of study: this
was premature before the advent of high-speed computers (at Teast, if the general
impression is right that formalizations of such proofs as Littlewood's are too
complex for humans}; cf. 5h4{b).

. A, Baker brought up the following point

in a Roth'’s theorem:

wbere & ranges over the irrational algebraic numbers {and the other variables over
he ﬁatardi numbers). Ba felt morally certain that the proof in Roth (1955)

cauzd be 'unwound' to yie bound for the of exceptionally close

approximations to that the number of the set En§% {of rationals r):

ri where r = p/q {in its lowest terms),
the bound depending on n and the height of . But he also felt that this bound
would be insufficient for the use he made in Baker (1964) of the bound by
Davenport and Roth (1955}, which requires a 'further idea.’

unwinding had been considered in the literature, in
s an application of Herbrand's analysis of logical

wh the terms t; do not contain any This applies in an
obvious way to Roth's theorem for fixed 1 and the
pair {g,p) in place of y. lInspection then a bound on the
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Historical Remark. In seminars Artin had raised the problem of finding bounds, ever
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mentioned in the Introduction. This theory =~ or, as one says, this 'idealiza-
tion' -~ is simply not adequate for its original aim, for hydrodynamics, But the
ideas that came from the development of the theory, especially in the two-dimen-
sional case, have permaient value provided they are suitably s I ] from the
original aim (functions of a complex variable or harmenic functions, used to

describe the potential and the flow of -- hydrodynamically pretty useless ~- jdea!
fluids).
After these illustrations concerning the alternative between (i) and (ii;, avove

we return to our principal concern, proofs. Here, as promised, is evidence for
(ii), both w.r.t. {a) the particular hierarchies mentioned at the beginning of &4,
and (b) traditional proof theoretic aims in general.

(a) Two ztrat gie assuny; 18 in the construction of hierarchies. The first
concerns justifications {of principles P of proof), and is restrictive: P should
be justified "from below', via a hierarchy, by some kind of reduction to more ele-
mentary principles than P. The second is permiseive: with any (reduction) step,
an arbitrary finite iteration is taken to be ‘given' too; in short, w-iterations
are not counted, nor their w~iteration, and so forth; for a fairly, but by no means

absurdly broad sense of 'and so forth', cf. Girard's lecture, -- NB. Trivialiy,
idealizations are involved here. This is not the issue at all., What is question-
able is the implicit assumption that they are even approximately adequate, for
example, for studying reliability of proofs. In fact, there is a radical alter-
native:

Don't we do better by reversing the strategy altogether?

specifically, by not building up P from below at all, but by reducing length, the
(finite) number of iterations of any one step. For example, suppose that, for
some given P, the passage, in 32, from derivations d to explicit realizations
ty becomes complicated. What use is then the possib{lity of such a passage? One
would actually look for P* which permit -- realistically -- simpler proofs than P,
at the -~ realistically negligible -- cost of losing that possibility altogether.
A less extreme example is familiar enough from elementary arithmetic, where it is
certainly futile to reduce numerical terms to numerals {0, s0, ssO, ...); instead
one looks for new, more efficient notations; for an instructive application in
'advanced' arithmetic, cf. Feferman (1971) and its review where the aspect rele-

vant here is pointed out. == For reference in &4: Statman (1974) reverses the
== usual ~- gim of eliminating cuts in order to reduce not length, but g s. More
generally, one might try to mechanize a good deal of the related, familiar routine

of introducing suitable lemmas for ‘cleaning up proofs': after all, we learn to
do this sort of thing almost automatically.

£
Viewed in the light of the considerations above, the successes of §2 may well con-
stitute a kind of limit to useful appltications of the guiding ideas of current
proof theory; a kind of optimal value for the ratio:

additional information/additional efforr

in a traditional proof theoretic analysis. To be a little more specific, we con-
clude Pant T of this article with some generalities about proof theoretic aims.

7 8 o

(b} Hathematizal reasoning and mathematical ob 8ra very. Trivially,
the moment we make it our business to be self-conscious abour our knowledge (of
anything!), the so-called subjective elements of this knowledge become most prom-

inent: they are thought of as particularly close to the thinking subject. in the
case of mathematical knowledge, definitions and proofs -- as opposed to the objects
defined or to the theorem proved -- are among those elements. As a matter of his~

torical fact, whenever some branch of mathematics began to be analyzed, the first
distinctions that came to mind concerned methods: projective and metric methods
in geometry, algebraic and differential ones in analysis, and the like. It was a
azscovery that the particular differences mentioned were more profitably interpreted
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by reference to the different, possibly novel notions or structures for which
results proved by different methods are valid.? in other words, we have discovered
an unexpected adequacy of ‘objectivist' analysis.

Historical Remark. Traditionally, and more dramatically, one speaks he
flicting views of the nature of (mathematical) reality, of a grand
tween: objective and subjective. This becomes much less dramatic when wpeC)a\
ized to familiar examples: after all, there are projective and metric planes on
the one hand, there are projective and metric methods on the other. Far from
being presented with a conflict, with a choice between different views on what
there is, we have a very close relation between methods and objects, so close that
the objects concerned can be characterized in terms of the methods; ¢f. the dis~
tinction between those physical objects which are, and those which are not visi-
ble to the (idealized) naked eye. The distinction is objective enough ({and not

particularly hard to make precise). But -- on present evidence -- it is weak
simply because visibility is not a significant factor in most physical phenomena
at alt (for which we have viable theories). In short, there is a very real issue

here, but much more subtle than the hackneyed business of reality.
Do the reservations (a) and {b) above finish the subject?

(of proof theory). Surely not, provided we look for phenomena of mathematical
reasoning in which proofs are -~ likely to be -- principal factors; in short, if
proofs are to be p i e i; if we do not insist on standing on
our heads, and thlnk of proofs prxnC|pally as a means, for example to analyze the
‘meaning' of theorems.

PART 11. A FRESH START

INTRODUCT 1ON

To continue the view of scientific progress presented in the Introduction to

Parit 1, readers should recall that, at least in existing sciences, the mathe~
matlcal elaboration of early conceptions and the restriction fo imagined experi-
ments soon reached a point of diminishing returns. Generally -- this seems to be
a fact of scientific life -- progress in the successful sciences really picked up
only when striking laws were discovered which had been in doubt or had not even
been suspected. in other words, they were found by genuine, not merely imagined
experiments. For the present purpose it is not necessary to distinguish between
such experiments and what are called observations: the latter concern phenomena
that turn up in the course of nature, while experiments involve observations of
phenomena in specifically designed situations. Of course, as in all matters of
knowledge, observers are not passive: in experiments the external circumstances
are manipulated (so to speak 'interfered with' before the observation),in obser-
vations a & ton is made among the raw dats. This selection involves, in
effect if not by intention, .the notions to which early speculations, discussed in
the Introduction to Paat Z, had drawn attention; in particular, in the branches of
physics considered there, one looks for phenomena exhibiting 'perfect' shapes,

For readers interested in constructive mathematics, the corresponding reinter-
pretation concerns the particular {new) species of operations for which the theorems
hold -- as opposed to the methods of proof used to establish that the identities
hold which the operations are claimed to satisfy. =-- Occasionally, there are
candidates for the reverse procedure, for example, when Brouwer came up with a
characterization of functions F on choice sequences f in terms of his 'fully
analyzed' proofs of ¥fidn R(f,n), and F satisfies the identity VFfR[f F(f)]. As
at the end of (a) above, one expects only a narrow class of cases where the

Lity of ’thract;nq Fis useful: in general F must be so simple that
is worth writing out a definition in ful

tE
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planar and non-planar deductions. The job would be formidable If instead written

homework for an ordinary course had to be prepared for the computer.

Far from being a drawback, (ii) seems (to me) promising, granted that genus is a
significant factor at all. For one thing, since computers are ew, only a short
while ago it would have been simply premature to study our subject empirically at
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Tiable to / - clov; in con ciences
where of course the influence of such knowledge on the absvrver, not on the object
of the observation, can be cr't’ca’, and where one needs safeguards against con-
scious or unconscious faking (by the chserver). a theo involves notions 1ike
r n that the subjects will

genus, which are hard to cale ulate, there is a
not even try -- and so simply will g
they know the theoretical

aws;

tests is reduced in the case of su
superficially -~ the phenomena (of reasoni nﬁ; consi dered Fcr
so if a tboor; uses superficial (pf nenological) noti ons fike
scurlity would go with a diffic in actda¥ly appliyi
data}; cf. also st paragraph troduction to

e actual csmﬁuLatioﬁs of gent FpUsS uT orocfs
mentioned earlier, were not pa 1 ) i ; at least
whole material was just a bit to t to present any real

ences to start with.,

ient to show that
whenever we

far is quite suff
istory of proofs;

-
@
el
ot

measure for
that there
way by lGentzen's
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Y s ysis in ob] vist terms (in the sense of §3). The role
of explicit definitions discussed above is of course only one of many such phe-
n As observed in the last paragreph§ the presentation of those phenomena
retical treatment, that is, the ¢ of data, is quite critical, espec~
notions tike genus are involved which are so hard to compute that only
i i e

P;p/ } A

Though Statman (1974) to Kreisel {1973}, tacitly, p. 267, his
treatment followed t ferent lines from what | intended at
t is, at the congress at Bucharest in 1971. My idea was that the

?i 1

ioms for expli t def sould be made with essential help of
traditional ¢ of the meaning of the defined
the combinatorial side would look after itself as it were. Indeed,
explicitly on p. 258 and in the PS, | was looking for sustained
analysis, incontrast to its use in current foundations where it Is
vershadowed by the mathematics (needed to develop the one-liners ex-
se analyses). Stafrnn concentrates on combinatorial, not philosophical
tnci

Fi fve years ago i did not think {consciously) of Bourbaki
bz on with explicit definitions, though | had read
dittgenstein in the forties. Actually, even today |
his talking GbGuL the topic in my presence. Evidently he must have
done this ¥n view of the quotations from Wittgenstein (1976) given earlier, and
equally evidently, | was not ripe to profit from those remarks.

{b)

] . Trivially, the effectiveness of an
explicit definition of a given notion will depend on the choice of ; (to be
used in the ). What seems to be less well-known 1s that the familiar
foundational languages tend to introduce artifacts, in particular, when notions
from geometry including descriptive set theory are defined in the usual way in the
tanguage of The examples below come from my own
judgments.

{1} There are o standard ofs of the theorem of Cantor-Bendixson: one iden-

tifies the perfect kernel of a {(closed} set F (of reals) with its set of con-

densation points, the other wi{i the limit of its derived sets one insists on
<

tic, when F s coded by its

h
ond order arit

ot

transcribing those proots int
set of complementary intervals {with rational end points), then the difference
ween the proo;s is most obvious fy expressed in mode!l theoretic terms: the
- comprehension (applied to the predicate of be;nﬁ a condensation
ter uses only 1,7 - comprd'ension; cf. Kreisel (1959A).5 This
Husory inasmuch as a so-to-speak more geometric formalization of
itional primitives for real numbers, etc.) can be modelled

Z
3

N

&
difference is i
the first proof

n exposition based on normalization where the
and so a ‘reduction’ must preserve normalization

in contrast
data include normalization ru
sfeps, (oo,

’
MAQ
u“ [

difference
and of {any seco




in recent

- comprehension too. Thi a
t ons in Friedman

s
hird order theories) of

fogician's {so far D!aCL T?;
a

not be
introduced by
those in the oric
for the natural

(11} Many thecrems which are n f in tf nguage of first order logic (and
therefore, by campietwﬂeae, rules of
culus}, are in fact proved by use of analytic methods. An obvious
problem for the natural hi re these thematical methods
needed to make the proofs mana f length, genus or whatever)?
in Kreisel {(1976) a cand‘date m the thegr, QF reai closed f ds was suggested:
the theorem established and van derWaerden (1953} in their soluti ion of
Newton's proo% m of the (en the surface of the unit sphere}. My spe-

i

o
W
i
s
o
=l
vl

their sa?ution in tyeory where, in
Tic

ype
tly defined. Bu

particuiar éragonometr' ons are exp ut closer nSpLLT
shows that elementary f om ic zd tono" tion f
spherical triangles, or heoren te ur

proofs in the Iabquac“ i had in mi sent tht

tanguage introduces com
Newton's problem.

tion of

It cannot be assumed that to every solution of Newton's problem in a suit-
able geometric language there corresponds a particular proof in first order
predicate calculus {in contrast to solutions in type the cory where such a corres-
pondence is provided by normali zat’an); cf$ the ?fans ripti of Artin's o
on sums of squares into F%r'
the 'instinctive resistance
is relevant.

WO

Lib}, as an issue where
to foundational Tanguag

Remarks. Mu
superseded

was preoccup es
ninerals in odd f the globe.
E, ngs ot 1f to
g more topical
spired
much con languages
do not and even
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eas in the parts of natarai hi
more successful ones)
C ky's on trassg rmational

tainly, there have
{perhaps as
Thompson's

despite, bu iliarity ner s d

not even sm i s a memorabl st:

The super Yy very spec centrate on bac ta and
e - .

(e

only succes f genetics, f
tately convis : here one ;1d obsery wmanly short time -~ 50 many
r in degree couid be expected to produce a

ization, at present there
stematic or fundamental
5 | rrent work, (a} and (b}
e surely sound for the natural history

We look fo

P1d exte on

(mathematica
ents which

As usual, trad ilosophy dis
doubts about the reliabil Eﬂ{fOSDGC{iOﬁ, e
tike), and thereby == consciously or unconsciousiyl -~
the critical issue,namely th ‘hose (sub)consc Am@ﬂts constitute

theary? the situation in miner-
he Historical marks above), and more
ical theory, of the domain of phe-

for anvthing

alogy before X-ray crystall
generaily the inadequacy,
nomena that can be made vis

impressed by its unquestiocnably distinctive features, we sep

z reasoning from other intellectual activities; in humans
in other species. &Gaz e {official) alieged di
mak?na some such di ne ; ven less the -~ equally o

licee against assuhi ng intellectual abilities in subhuman species

before very recent advances in electronic technology, we uid not
record the more Ent'mate features of their behavi } The iSSue ise
whether this particular part of intellect
the mind's eye par fcularly vividly, is r

To repeat: (a) and {b) do not cast doubt
natural history of 3rcof5, je make do
with a rison betwee

nature

tion; o

- (i) An
scovery of
which dominate natur
nolecules. Bourbaki

Q0L e

a%zeady in
ructures} are to be
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fscovery of those
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orces a literal, but purely
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here too, since unquestionably, discussions of validity were temporal that is,
r

ly,

Titerally prior to theories of proof.) Granted all this, the hope rests on the
further assumption that an of validity (tacitly, in terms realistically
available at the present time) would be rewarding. OF course, the parallel to
validity in the case of physics is the business of reality, which -~ in its origi-
nally intended generality -- has not been of much conseguence for the progress of
physics. -- The claims just mentioned are disregarded in this article, but not
dismissed nor rejected. After all, we have evolved in the world in which we

tive. So why shouldn’t our built-in so-called a priori conceptions be a very good
guide in science, both efficient and reliable, and not primarily a limitation, an
obstacle between us and the Ding an sich? Certainly, a mild form of parancia is
needed to concentrate ¢ on the limitation -- either with pride in our Impotence
or in horror of it.
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